锐角三角函数经典总结
锐角三角函数 知识梳理

锐角三角函数知识梳理一、锐角三角函数的定义:在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边斜边=ac.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.即cosA=∠A的邻边斜边=bc.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.即tanA=∠A的对边∠A的邻边=ab.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.二、锐角三角函数的增减性:(1)锐角三角函数值都是正值.(2)当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).(3)当角度在0°≤∠A≤90°间变化时,0≤sinA≤1,1≥cosA≥0.当角度在0°<∠A<90°间变化时,tanA>0三、同角三角函数的关系:(1)平方关系:sin2A+cos2A=1(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=sinAcosA 或sinA=tanA•cosA.(3)正切之间的关系:tanA•tanB=1.四、互余两角的函数关系:在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:①一个角的正弦值等于这个角的余角的余弦值,即sinA=(90°-∠A);②一个角的余弦值等于这个角的余角的正弦值,即cosA=sin(90°-∠A);也可以理解成若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.五、特殊角的三角函数值:(1)特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=; tan60°=;(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.六、计算器-三角函数(1)用计算器可以求出任意锐角的三角函数值,也可以根据三角函数值求出锐角的度数.(2)求锐角三角函数值的方法:如求tan46°35′的值时,先按键“tan”,再输入角的度数46°35′,按键“=”即可得到结果.注意:不同型号的计算器使用方法不同.(3)已知锐角三角函数值求锐角的方法是:如已知sinα=0.5678,一般先按键“SHIFT”,再按键“sin”,输入“0.5678”,再按键“=”即可得到结果.注意:一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键七、解直角三角形1、(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角直角的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sinA=∠A的对边斜边=ac,cosA=∠A的邻边斜边=bc,tanA=∠A的对边∠A的邻边=ab.(a,b,c分别是∠A、∠B、∠C的对边)2、解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案3、坡度角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=hl=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.4、仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.5、方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.。
九年级锐角三角函数知识点总结

锐角三角函数知识总结 1、Rt△ABC中(1)∠A的对边与斜边的比值是∠A的正弦,记作sin∠A=∠A的对边斜边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cos∠A=∠A的邻边斜边(3)∠A的对边与邻边的比值是∠A的正切,记作tan∠A=∠A的对边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cot∠A=∠A的邻边∠A的对边2、特殊角度的三角函数值:3、互余角的三角函数间的关系sin(90°-α)=cosα, cos(90°-α)=sinα,tan(90°-α)=cotα, cot(90°-α)=tanα.AC B4、同角三角函数间的关系: ,,1cot tan =•αα,1cos sin 22=+αα5、三角函数值 (1)特殊角三角函数值(2)0°~90°的任意角的三角函数值,查三角函数表。
(3)锐角三角函数值的变化情况(i )锐角三角函数值都是正值(ii )当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii )当角度在0°≤α≤90°间变化时, 0≤sin α≤1, 1≥cos α≥0, 当角度α在0°至90°间变化时,0cot ,0tan >>αα。
6、解直角三角形的基本类型:解直角三角形的基本类型及其解法如下表:7、仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.。
中考复习: 锐角三角函数

中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。
把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。
锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。
当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。
2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。
3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。
4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。
5、正、余弦的平方关系:sin 2α+ cos 2α=1。
二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。
1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。
锐角三角函数知识点总结大全

锐角三角函数知识点总结大全
1.解直角三角形必备条件:(除直角外)至少知道两条边的
长度或一条边的长度和一个角的度数。
2.近似计算不能用勾股定理求边长,否则误差会很大。
3.解直角三角形解题思路总结:(除直角外)
(1)知一角求另一角题型:已知一个角的度数,用直角三角形中两锐角互余,求出另一角的度数。
(2)知两边求另一边题型:已知两边的边长,用勾股定理求出第三边的长。
(3)锐角三角函数:适用于“知角求边”或“知边求角”
的题型中。
(用sin,cos,tan,cot求出)。
4.仰角和俯角
(1)仰角:视线在水平线上方,与水平线形成的夹角。
(2)俯角:是现在水平线下方,与水平线形成的夹角。
5.锐角三角函数的性质(a为锐角)
(1)正弦的性质:
①取值范围:0<sina<1 ②增减性:a越大,sina越大(2)余弦的性质:
①取值范围:0<cosa<1 ②增减性:a越大,cosa越小联系:sina和cosa互为反函数
(3)正切的性质:
①取值范围:tana可取全体正数②a越大,tana越大
③当a无限接近90度时,tana无穷大。
(4)余切的性质
①取值范围:cota可取全体正数②当a无限接近0度时,cota无穷大③a越大,cota越小
6.锐角三角函数间的关系
(1)平方关系:sina2+cosa2=1
(2)倒数关系:tana=1
cota
(3)比值关系:①tana=sina
cosa ②cota=cosa
sina。
锐角三角函数知识点总结

锐角三角函数知识点总结与习题附答案1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角, 则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
对边邻边bA90B 90∠-︒=∠︒=∠+∠得由B A5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角; (2)俯角:视线在水平线下方的角。
(3)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即hi l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
:i h l=hlα4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4:OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向)。
锐角三角函数单元总结

第二十八章锐角三角函数单元总结【知识要点】知识点一锐角三角形锐角三角函数:如下图,在Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B)定义表达式取值范围关系正弦斜边的对边A A ∠=sin c a A =sin1sin 0<<A (∠A 为锐角)B A cos sin =B A sin cos =1cos sin 22=+A A 余弦斜边的邻边A A ∠=cos c b A =cos1cos 0<<A (∠A 为锐角)正切的邻边的对边A tan ∠∠=A A ba A =tan 0tan >A (∠A 为锐角)对边邻边斜边ACBba c 【正弦和余弦注意事项】1.sinA、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。
2.sinA、cosA 是一个比值(数值,无单位)。
3.sinA、cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关。
0°、30°、45°、60°、90°特殊角的三角函数值(重要)三角函数30°45°60°αsin 212223αcos 232221αtan 3313正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
正切的增减性:当0°<α<90°时,tan α随α的增大而增大,知识点二解直角三角形一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.直角三角形五元素之间的关系: 1.勾股定理()2.∠A+∠B=90°3.sin A==4.cos A==5.tan A==【考查题型】考查题型一正弦典例1.(2020·陕西西安市·西北工业大学附属中学九年级期中)如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC ∆的顶点都在这些小正方形的顶点上,则sin BAC ∠的值为()A .43B .34C .35D .45变式1-1.(2018·西城区·北京四中九年级期中)如图,在Rt ABC ∆中,90C = ∠,10AB =,8AC =,则sin A 等于()A .35B .45C .34D .43变式1-2.(2019·山东淄博市·九年级期中)如图,在Rt △ABC 中,∠C =90°,sin A =45,AC =6cm ,则BC 的长度为()A .6cmB .7cmC .8cmD .9cm考查题型二余弦典例2.(2020·福建省泉州市培元中学九年级期中)如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于()A .55B .255C 5D .23变式2-1.(2016·辽宁铁岭市·九年级期末)在ABC 中,C 90∠= ,AB 6=,1cosA 3=,则AC 等于()A .18B .2C .12D .118变式2-2.(2019·山东滨州市·九年级期末)如图,在平面直角坐标系中,点M 的坐标为M 52),那么cosα的值是()A B .23C .252D .53考查题型三正切典例3.(2020·广东深圳市·深圳中学八年级期中)如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为()A .12B .1C .33D 变式3-1.(2018·江苏苏州市·九年级期末)如图,在等腰Rt ABC ∆中,90C ∠=︒,6AC =,D 是AC 上一点,若1tan 5DBA ∠=,则AD 的长为().A .2B C D .1变式3-2.(2020·河北唐山市·九年级期末)如图,有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是∠BAC ,若2tan 5BAC ∠=,则此斜坡的水平距离AC 为()A .75mB .50mC .30mD .12m考查题型四特殊角的三角函数值典例4.(2018·南昌市期末)点M(-sin 60°,cos 60°)关于x 轴对称的点的坐标是()A .(32,12)B .(-32,-12)C .(-32,12)D .(-12,-32)变式4-1.(2019·山东淄博市·九年级期中)下列式子错误的是()A .cos40°=sin50°B .tan15°•tan75°=1C .sin 225°+cos 225°=1D .sin60°=2sin30°变式4-2.(2018·河北唐山市·九年级期末)如果△ABC 中,sin A =cos B =22,则下列最确切的结论是()A .△ABC 是直角三角形B .△ABC 是等腰三角形C .△ABC 是等腰直角三角形D .△ABC 是锐角三角形考查题型五同角的三角函数典例5.(2018·山东潍坊市·九年级期末)在Rt △ABC 中,∠C =90°,sinA=45,则cosB 的值等于()A .35B .45C .34D .55变式5-1.(2018·浙江台州市·九年级期末)在Rt △ABC 中,cosA=12,那么sinA 的值是()A .22B .32C .33D .12变式5-2.(2018·湖南岳阳市·九年级期末)在Rt ABC 中,C 90∠= ,如果4cosA 5=,那么tanA 的值是()A .35B .53C .34D .43考查题型六解直角三角形典例6.(2020·东北师大附中明珠学校九年级期中)如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为()A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα变式6-1.(2020·山东枣庄市·九年级期末)如图,在ABC ∆中,144CA CB cosC ==,=,则sinB 的值为()A .102B .3C .4D .104变式6-2.(2019·辽宁沈阳市·九年级期末)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为()A .11米B .(36﹣)米C .D .(36﹣考查题型七利用解直角三角形相关知识解决实际问题典例7.(2019·河南许昌市·九年级期末)如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者.在消防车上点A 处测得点B 和点C 的仰角分别是45°和65°,点A 距地面2.5米,点B 距地面10.5米.为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数.参考数据:≈1.4)变式7-1.(2018·江苏无锡市·九年级期末)如图,为了测量出楼房AC的高度,从距离楼底C 处603D(点D与楼底C在同一水平面上)出发,沿斜面坡度为3的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈43,计算结果用根号表示,不取近似值).变式7-2.(2018·山西晋中市期末)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB 的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)。
锐角三角函数知识点总结

锐角三角函数知识点总结一、引言数学是一门抽象而理性的学科,而三角函数则是数学中一个重要而又有趣的分支。
在这篇文章中,我将为你总结锐角三角函数的基本知识,并探讨其在数学和实际应用中的重要性。
二、什么是锐角三角函数在介绍锐角三角函数之前,我们先了解一下什么是锐角。
锐角是指角度小于90度的角。
而锐角三角函数是用来描述锐角三角形中角度和边长之间的关系的函数。
锐角三角函数一共有三个主要函数:正弦(sine)、余弦(cosine)和正切(tangent)。
三、正弦函数正弦函数是最基本的锐角三角函数之一。
它定义了角度和斜边与斜边的比值之间的关系。
正弦函数的基本公式为:sinθ = 对边/斜边,其中θ表示角度。
正弦函数的值域在-1到1之间。
四、余弦函数余弦函数也是锐角三角函数的一部分。
它定义了角度和邻边与斜边的比值之间的关系。
余弦函数的基本公式为:cosθ = 邻边/斜边。
余弦函数的值域同样在-1到1之间。
五、正切函数正切函数是锐角三角函数中的最后一个函数。
它定义了角度和对边与邻边的比值之间的关系。
正切函数的基本公式为:tanθ = 对边/邻边。
与正弦和余弦函数不同,正切函数的定义域是全体实数。
六、锐角三角函数的性质除了上述的基本定义,锐角三角函数还有一些重要的性质。
其中一些性质包括周期性、奇偶性和特殊角度的值。
1. 周期性:正弦函数、余弦函数、正切函数都是周期函数。
正弦函数和余弦函数的最小正周期为2π,而正切函数的最小正周期为π。
2. 奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数则既不是奇函数也不是偶函数。
3. 特殊角度的值:锐角三角函数在某些特殊的角度下有确定的值,比如sin30°=1/2,cos45°=√2/2等。
七、锐角三角函数的应用锐角三角函数在数学和实际应用中有着广泛的应用。
一些常见的应用包括:几何学中的三角测量、物理学中的运动分析、工程学中的结构分析等。
1. 几何学中的三角测量:锐角三角函数被广泛应用于三角测量中,比如测量两点间的距离、测量船和灯塔之间的角度等。
初中数学九年级锐角三角函数知识点总结

锐角三角函数是初中九年级数学中的一个重要内容,其中包括对正弦、余弦和正切函数的理解和应用。
下面是对锐角三角函数知识点的详细总结:1.三角函数的定义:- 正弦函数(sin):对于单位圆上的一个角,其对边的长度与斜边的长度的比值。
- 余弦函数(cos):对于单位圆上的一个角,其邻边的长度与斜边的长度的比值。
- 正切函数(tan):对于单位圆上的一个角,其对边的长度与邻边的长度的比值。
2.锐角的定义:锐角是角度在0°到90°之间的角。
3.单位圆:单位圆指半径长度为1的圆,锐角三角函数可以通过单位圆来定义和理解。
4.三角函数的图像:正弦函数、余弦函数和正切函数的图像可以通过将单位圆绕过原点旋转得到。
5. 正弦函数(sin)的特点:-定义域:[0°,90°]或[0,π/2]-值域:[-1,1]-周期:360°或2π- 特殊值:sin0° = 0, sin30° = 1/2, sin45° = √2/2, sin60° = √3/2, sin90° = 1-图像特点:关于y轴对称6. 余弦函数(cos)的特点:-定义域:[0°,90°]或[0,π/2]-值域:[-1,1]-周期:360°或2π- 特殊值:cos0° = 1, cos30° = √3/2, cos45° = √2/2,cos60° = 1/2, cos90° = 0-图像特点:关于x轴对称7. 正切函数(tan)的特点:-定义域:(0°,90°)或(0,π/2)-值域:R(实数集)-周期:180°或π- 特殊值:tan30° = 1/√3, tan45° = 1, tan60° = √3, tan90° = 不存在(无限大)-图像特点:周期性递增8.三角函数之间的关系:- 正弦函数和余弦函数的关系:sinθ = cos(90° - θ)- 正切函数与正弦、余弦函数的关系:tanθ = sinθ / cosθ9.锐角三角函数的应用:-通过正弦函数、余弦函数和正切函数可以求解三角形的边长和角度大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数经典总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII锐角三角函数与特殊角专题训练【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ∆中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记作A sin ,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos .斜边的邻边斜边的对边A A A A ∠=⋅∠=cos sin .若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB记作c ,则ca A =sin ,c bA =cos 。
2、当A ∠为锐角时, 1sin 0<<A ,1cos 0<<A (A ∠为锐角)。
二、 特殊角的正弦值与余弦值:2130sin =, 2245sin = , 2360sin = .2330cos = , 2245cos = , 2160cos = .三、 增减性:当00900<<α时,sin α随角度α的增大而增大;cos α随角度α的增大而减小。
四、正切概念:(1) 在ABC Rt ∆中,A ∠的对边与邻边的比叫做A ∠的正切,记作A tan 。
即 的邻边的对边A A A ∠∠=tan (或ba A =tan )五、特殊角的正弦值与余弦值:3330tan =; 145tan = ; 360tan = 六、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.)90sin(cos ),90cos(sin A A A A -︒=-︒=.七、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。
b即 ()A A -= 90cot tan , ()A A -= 90tan cot .八、同角三角函数之间的关系:⑴、平方关系:1cos sin 22=+A A ⑵商的关系AAA cos sin tan =A AA sin cos cot =⑶倒数关系tana ·cota=1【典型例题】【基础练习】 一、填空题:1. =︒+︒30sin 30cos ___________,2.sin 21= cos = 。
3.若21sin =θ,且︒<<︒900θ,则θ=_______,已知23sin =α,则锐角α=__________。
4.在_________cos ,,60,90,==∠=∠B A C ABC Rt 则中 ∆5.在ABC ∆,_________cos ,5,3,90====∠B AB AC C 则 6._________sin ,5,3,90,====∠A AB BC C ABC Rt 则中 ∆7.在ABC ∆Rt 中,︒=∠90C ,b a 33=,则A ∠=_________,A sin =_________8.在ABC ∆Rt 中,如果各边长度都扩大2倍,则锐角A 的正弦值和余弦值( )9.在ABC ∆中,若0cos 2322sin 2=⎪⎪⎭⎫ ⎝⎛-+-B A ,A ∠,B ∠都是锐角,则C ∠的度数是( )10.(1) 如果α是锐角,且154sin sin 22=+ α,那么α的度数为( )(2).如果α是锐角,且54cos =α,那么)90cos(α- 的值是( )11. 将︒21cos ,︒37cos ,︒41sin ,︒46cos 的值,按由小到大的顺序排列是_____________________12.在ABC ∆中,︒=∠90C ,若51cos =B ,则B 2sin =________ 13. 30cos 30sin 22+的值为__________, ________18sin 72sin 22=+14.一个直角三角形的两条边长为3、4,则较小锐角的正切值是( ) 15.计算22)31(45tan 60sin ---⋅ ,结果正确的是( ) 16.在_________,1,2tan ,,===∠=∠∆b a B Rt C ABC Rt 则若中 17.等腰梯形腰长为6,底角的正切为42,下底长为212,则上底长为 ,高为 。
18.在ABC ∆Rt 中,︒=∠90C ,3cot =A ,则2tan sin cot CB A ++的值为____________。
19.比较大小(用>、<、=号连接):(其中︒=+90B A )A A tan _____sin ,B A cos ______sin ,A A Atan _____cos sin20.在Rt ABC ∆中,︒=∠90C ,则B A tan tan ⋅等于( )二、【计算】21︒⋅︒+︒⋅︒45sin 30cos 45cos 30sin22.︒⋅︒+︒+︒30cos 30sin 45sin 2260sin 21。
23.)45cos 60)(sin 45sin 30)(cos 45sin 230sin 2(︒-︒︒+︒︒+︒ 24. 21+12--)(+2sin60°—︒60tan 1—【能力提升】AD EBC1、如图,在AB CD Rt ACB ABC Rt ⊥∠=∠,,中∆于点D ,AD =4,,54sin =∠ACD CD 求、BC 的值。
2、比较大小:sin23°______sin33°;cos67.5°_________cos76.5°。
3、若30°<α<β<90°,化简αβαβcos 123cos )cos (cos 2-+---4、已知1sin 40sin 22=+︒α,则锐角α=_________。
5、在54sin ,51cos ,90-===∠n B A C ABC Rt 中,∆那么n 的值是___________。
6、已知,cos sin ,cos sin n m ==+αααα 则m 、n 的关系是( )A .n m =B .12+=n nC .122+=n mD .n m 212-= 7、如图,在等腰Rt △ABC 中,∠C =90o ,AC =6,D 是AC 上一点,若tan ∠DBA =51,则AD 的长为( )A.2 B.3 C.2 D.18、如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为(用含a 的代数式表示)( ) A .a B .a 54C .a 22D .a 23 9、已知AD 是等腰△ABC 底边上的高,且tan ∠B=43, AC 上有一点E ,满足AE:CE=2:3则tan ∠ADE 的值是( ) 10、如图,在菱形ABCD 中,已知A E ⊥BC 于E ,BC=1,cosB=135,求这个菱形的面积。
BE CDA NCD11、(北京市中考试题) 在中ABC ∆Rt ,︒=∠90C ,斜边5=c ,两直角边的长b a 、是关于x 的一元二次方程0222=-+-m mx x 的两个根,求ABC ∆Rt 较小锐角的正弦值.12、(上海中考模拟)如图ΔABC 中,AD 是BC 边上的高,tan ∠B=cos ∠DAC 。
(1)求证:AC=BD (2)若sin ∠C=1312,BC=12,求AD 的长.14、(上海中考模拟)已知:如图,在BC D B ACB ABC Rt 是中,,53sin ,90==∠ ∆6 。
求.的正切值BAD ∠。
DC[思维拓展训练]1、如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置开始,按逆时针方向旋转(∠MPN 保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=二分之根号三。
oP=2.(1)当∠MPN旋转30°(即∠OPM=30°)时,求点N移动的距离;(2)求证:△OPN∽△PMN;(3)写出y与x之间的关系式;(4)试写出S随x变化的函数关系式,并确定S的取值范围.2题图2、如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形;(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;(4)是否存在时刻t,使得PQ⊥BD若存在,求出t的值;若不存在,请说明理由.3、如图:直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上.直线CB的表达式为y=-43x+163,点A、D的坐标分别为(-4,0),(0,4).动点P 自A 点出发,在AB 上匀速运行.动点Q 自点B 出发,在折线BCD 上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t (秒)时,△OPQ 的面积为s (不能构成△OPQ 的动点除外).(1)求出点B 、C 的坐标;(2)求s 随t 变化的函数关系式; (3)当t 为何值时s 有最大值?并求出最大值.4、如图,将矩形OABC 放置在平面直角坐标系中,点D 在边0C 上,点E 在边OA 上,把矩形沿直线DE 翻折,使点O 落在边AB 上的点F 处,且tan ∠BFD=34.若线段OA 的长是一元二次方程x 2—7x 一8=0的一个根,又2AB=30A .请解答下列问题:(1)求点B 、F 的坐标: (2)求直线ED 的解析式:(3)在直线ED 、FD 上是否存在点M 、N ,使以点C 、D 、M 、N 为顶点的四边 形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.6题图5、如图,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°, AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合巫台).把△DEF沿EF对折,点D的对应点是点G,设DE=x,△GEF与梯形ABCD重叠部分的面积为y。
(1) 求CD的长及∠1的度数;(2) 若点G恰好在BC上,求此时x的值;11 (3) 求y 与x 之间的函数关系式。