北师大版高二数学选修2-1空间向量试卷及答案
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(含答案解析)

一、选择题1.已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A .85B .97C .12D .230 2.长方体12341234A A A A B B B B -的底面为边长为1的正方形,高为2,则集合12{|i j x x A B A B =⋅,{1,2,3,4},{1,2,3,4}}i j ∈∈中元素的个数为( )A .1B .2C .3D .4 3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,E 是棱AB 的中点,F 是侧面AA 1D 1D 内一点,若EF ∥平面BB 1D 1D ,则EF 长度的范围为()A .[2,3]B .[2,5]C .[2,6]D .[2,7] 4.已知向量(2,0,2)a =-,则下列向量中与a 成45的夹角的是( )A .(0,0,2)B .(2,0,0)C .(2,2D .)2,2,0- 5.若{},,a b c 是空间的一个基底,则下列各组中不能构成空间一个基底的是( ) A .,2,3a b cB .,,a b b c c a +++C .,,a b c b c c +++D .2,23,39a b b c a c ++- 6.在边长为2的菱形ABCD 中,23BD =ABCD 沿对角线AC 对折,使二面角B AC D --的余弦值为13,则所得三棱锥A BCD -的内切球的表面积为( ) A .43π B .π C .23π D .2π 7.已知在平行六面体1111ABCD A BC D -中,过顶点A 的三条棱所在直线两两夹角均为60︒,且三条棱长均为1,则此平行六面体的对角线1AC 的长为( )A 3B .2C .5D 68.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( )A .2B .3C .5D .69.在直三棱柱111ABC A B C -中,90ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A .1010-B .1510-C .1010D .151010.《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑P ABC -中,PA ⊥平面ABC ,AB BC ⊥,且1PA AB BC ===,则二面角A PC B --的大小是( )A .30B .45︒C .60︒D .90︒11.如图,四棱锥P ABCD -的底面是边长为2的正方形, Q 为BC 的中点,PQ ⊥面ABCD ,且2PQ =,动点N 在以D 为球心半径为1的球面上运动,点M 在面 ABCD 内运动,且PM 5=,则MN 长度的最小值为( )A 352B .23C .25-D 33212.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53C .2D .259二、填空题13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为________.14.已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______. 15.在空间四边形ABCD 中,E F 、分别是AB CD 、中点,且5,EF =又6,8AD BC ==,则AD 与BC 所成角的大小为____________.16.如图,空间四边形OABC 中,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,分MN 所成的定比为2,OG xOA yOB zOC =++,则,,x y z 的值分别为_____.17.已知,若向量互相垂直,则k 的值为____. 18.已知()()()2,1,2,1,3,3,13,6,a b c λ=-=--=,若向量,,a b c 共面,则λ=_________.19.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD a =,则三棱锥D ABC -的体积为 .20.已知平行六面体中,则____.三、解答题21.如图,四棱锥P ABCD -的底面为直角梯形,且AB AD ⊥,BC //AD ,BC AB =112AD ==,10PA PD ==,平面PAD ⊥平面ABCD ,点M 为棱PD 上动点.(1)当M 为PD 的中点时,平面PAB ⋂平面PCD =l ,求证:l //平面ACM ; (2)是否存在点M 使二面角M AC D --的余弦值为2211,若存在,请确定M 的位置;若不存在,请说明理由.22.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,,M N 分别为棱,PD BC 的中点,2PA AB ==.(1)求证://MN 平面PAB ;(2)求直线MN 与平面PCD 所成角的正弦值.23.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,//AD BC ,AD AB ⊥,4AB AS ==,3AD =,6BC =,E 为SB 的中点.(1)求证://AE 平面SCD .(2)求二面角B AE C --的余弦值.24.如图,在正方体1111ABCD A BC D -中,E 为1BB 的中点.(1)证明:1//BC 平面1AD E ;(2)求直线1BC 到平面1AD E 的距离;(3)求平面1AD E 与平面ABCD 夹角的余弦值.25.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:平面111A AMN EB C F ⊥;(2)设O 为111A B C △的中心,若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.26.如图:三棱锥A BCD -中,AB ⊥平面BCD ,且222AD AB CD ===,2BC =;BM AC ⊥,BN AD ⊥,垂足分别为M ,N .(1)求证:AMN 为直角三角形;(2)求直线BC 与平面BMN 所成角的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A【分析】用空间向量基本定理表示出AC ',然后平方后转化为数量积的运算求得.【详解】记a AB =,b AD =,c AA '=,则43cos900a b ⋅=⨯⨯︒=,同理152b c ⋅=,10a c ⋅=,由空间向量加法法则得AC a b c '=++,∴22222()222AC a b c a b c a b b c a c '=++=+++⋅+⋅+⋅222154352210852=+++⨯+⨯=, ∴85AC '=85AC '=.故选:A .【点睛】方法点睛:本题考查求空间线段长,解题方法是空间向量法,即选取基底,用基底表示出向量,然后利用向量模的平方等于向量的平方转化为向量的数量积进行计算. 2.C解析:C【分析】建立空间直角坐标系,结合向量的数量积的定义,进行计算,即可求解.【详解】由题意,因为正方体12341234A A A A B B B B -的底面为班车为1的正方形,高为2, 建立如图所示的空间直角坐标系,则12341234(1,1,0),(0,1,0),(0,0,0),(1,0,0),(1,1,2),(0,1,2),(0,0,2),(1,0,2)A A A A B B B B , 则12(1,0,2)A B =-, 与11(0,0,2)A B =相等的向量为223344A B A B A B ==,此时1211224A B A B ⋅=⨯=, 与14(0,1,2)A B =-相等的向量为23A B ,此时1214224A B A B ⋅=⨯=, 与41(0,1,2)A B =相等的向量为32A B ,此时1241224A B A B ⋅=⨯=, 与21(1,0,2)A B =相等的向量为34A B ,此时1221143A B A B ⋅=-+=, 与12(1,0,2)A B =-相等的向量为43A B ,此时1212145A B A B ⋅=+=, 体对角线向量为13(1,1,2)A B =--,此时1213145A B A B ⋅=+=, 24(1,1,2)A B =-,此时1224143A B A B ⋅=-+=,31(1,1,2)A B =,此时1231143A B A B ⋅=-+=,42(1,1,2)A B =-,此时1242145A B A B ⋅=+=,综上集合11{|,{1,2,3,4},{1,2,3,4}}{3,4,5}i j x x A B A B i j =⋅∈∈=,集合中元素的个数为3个.故选:C .【点睛】本题主要考查了集合的元素的计算,以及向量的数量积的运算,其中解答中建立恰当的空间直角坐标系,熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.C解析:C【分析】过F 作1//FG DD ,交AD 于点G ,交11A D 于H ,根据线面垂直关系和勾股定理可知222EF AE AF =+;由,//EF FG 平面11BDD B 可证得面面平行关系,利用面面平行性质可证得G 为AD 中点,从而得到AF 最小值为,F G 重合,最大值为,F H 重合,计算可得结果.【详解】过F 作1//FG DD ,交AD 于点G ,交11A D 于H ,则FG ⊥底面ABCD2222222221EF EG FG AE AG FG AE AF AF ∴=+=++=+=+//EF 平面11BDD B ,//FG 平面11BDD B ,EF FG F ⋂=∴平面//EFG 平面11BDD B ,又GE 平面EFG //GE ∴平面11BDD B又平面ABCD 平面11BDD B BD =,GE 平面ABCD //GE BD ∴ E 为AB 中点 G ∴为AD 中点,则H 为11A D 中点即F 在线段GH 上min 1AF AG ∴==,max 145AF AH =+=min 112EF ∴+=max 156EF +则线段EF 长度的取值范围为:2,6本题正确选项:C【点睛】本题考查立体几何中线段长度取值范围的求解,关键是能够确定动点的具体位置,从而找到临界状态;本题涉及到立体几何中线面平行的性质、面面平行的判定与性质等定理的应用.4.B解析:B【分析】根据空间向量数量积的坐标公式,即可得到答案【详解】 根据夹角余弦值cos a ba b θ⋅=对于A 若()b 0,0,2,=则-22==-222a b a b ⋅⨯cos 452︒=,故不符合条件对于B 若()b 20,0,=,则22==22a ba b ⋅⨯cos 45︒=,故符合条件 对于C 若(b 0,2,=,则-21==-cos 45222a b a b ⋅≠︒⨯,故不符合条件 对于D 若()b 2-=,则21==cos 45222a b a b ⋅≠︒⨯,故不符合条件 故选B 【点睛】 本题考查了向量的数量积,运用公式代入进行求解,较为简单5.D解析:D【分析】根据空间向量的共面定理,一组不共面的向量构成空间的一个基底,对选项中的向量进行判断即可.【详解】对于:,2,3,:,,,:,,A a b c B a b b c c a C a b c b c c ++++++,每组都是不共面的向量,能构成空间的一个基底,对于D :2,23,3-9a b b c a c ++满足:()()3-932-23a c a b b c ⎡⎤=++⎣⎦,是共面向量,不能构成空间的一个基底, 故选D【点睛】本题主要考查了向量的相关知识,考查了空间向量共面的判断与应用问题,熟练掌握向量基底的定义以及判断条件是解题的关键,属于基础题. 6.C解析:C【分析】作出图形,利用菱形对角线相互垂直的性质得出DN ⊥AC ,BN ⊥AC ,可得出二面角B ﹣AC ﹣D 的平面角为∠BND ,再利用余弦定理求出BD ,可知三棱锥B ﹣ACD 为正四面体,可得出内切球的半径R ,再利用球体的表面积公式可得出答案.【详解】如下图所示,易知△ABC 和△ACD 都是等边三角形,取AC 的中点N ,则DN ⊥AC ,BN ⊥AC . 所以,∠BND 是二面角B ﹣AC ﹣D 的平面角,过点B 作BO ⊥DN 交DN 于点O ,可得BO ⊥平面ACD .因为在△BDN 中,3BN DN ==,所以,BD 2=BN 2+DN 2﹣2BN •DN •cos ∠BND 1332343=+-⨯⨯=, 则BD =2.故三棱锥A ﹣BCD 为正四面体,则其内切球半径为正四面体高的14,又正四面体的高为棱长的63,故662126R ==. 因此,三棱锥A ﹣BCD 的内切球的表面积为226244(3R πππ=⨯=. 故选C .【点睛】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.7.D解析:D【分析】由()2211+BC CC ,AC AB =+根据已知条件能求出结果 【详解】∵()2211+BC CC AC AB =+ =222111222AB BC CC AB BC AB CC BC CC +++⋅+⋅+⋅=1+1+1+2×1×1×cos60°+2×1×1×co s60°+2×1×1×cos60°=6. ∴AC =6故选D .【点睛】这个题目考查了向量的点积运算和模长的求法;对于向量的题目一般是以小题的形式出现,常见的解题思路为:向量基底化,用已知长度和夹角的向量表示要求的向量,或者建系实现向量坐标化,或者应用数形结合.8.A解析:A 【解析】解:由题意可知:()1,1,b a t t t -=---- , 则:()()()222211322b a t t t t -=--+-+-=+≥ ,即b a - 的最小值是2 . 本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.9.C解析:C 【分析】本题首先可以根据题意建立空间直角坐标系,然后根据2AB =以及11BC CC ==得出12,0,1AB 、()10,1,1BC =,最后根据1111cos θAB BC AB BC 即可得出结果.【详解】因为三棱柱111ABC A B C -是直三棱柱,且90ABC ∠=︒,所以可以以B 为原点、AB 为x 轴、BC 为y 轴、1BB 为z 轴构建空间直角坐标系, 如图:因为2AB =,11BC CC ==,所以()2,0,0A ,()10,0,1B ,()0,0,0B ,()10,1,1C , 故12,0,1AB ,()10,1,1BC =,设异面直线1AB 与1BC 所成角为θ,则1111110cos θ1052AB BC AB BC , 故选:C. 【点睛】本题考查异面直线所成角的求法,可借助空间向量来求解,能否合理的构建空间直角坐标系是解决本题的关键,考查计算能力,考查数形结合思想,是中档题.10.C解析:C 【分析】建立空间直角坐标系,利用空间向量法求二面角的余弦值; 【详解】解:如图建立空间直角坐标系,因为1PA AB BC ===,所以()0,0,0A ,()0,2,0C ,22,,022B ⎛⎫ ⎪ ⎪⎝⎭,()0,0,1P ,()0,2,1CP =-,22,,022BC ⎛⎫=- ⎪ ⎪⎝⎭显然面APC 的一个法向量可以为()1,0,0n =, 设面BPC 的法向量为(),,m x y z =则·0·0m CP m BC ⎧=⎨=⎩,即2022022y z x y ⎧-+=⎪⎨-+=⎪⎩,令1y =则2z =,1x =,所以()1,1,2m = 设二面角A PC B --为θ,则()22211cos 21112n m n mθ===⨯++所以60θ=︒ 故选:C【点睛】本题考查利用空间向量法求二面角,属于中档题.11.C解析:C 【分析】若要使MN 最短,点N 必须落在平面ABCD 内,且一定在DN 的连线上,此时应满足,,,D N M Q 四点共线,通过几何关系即可求解【详解】如图,当点N 落在平面ABCD 内,且,,,D N M Q 四点共线时,MN 距离应该最小,由PM 5=可得1MQ =,即点M 在以Q 为圆心,半径为1的圆上,由几何关系求得5DQ =,1DN MQ ==,故552NM DN MQ =--=-故答案选:C 【点睛】本题考查由几何体上的动点问题求解两动点间距离的最小值,属于中档题12.B解析:B 【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值. 【详解】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系, 设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=, 22225||(3)6916BP x z x x ∴=-+=-+ 225488191625255x ⎛⎫=-+⎪⎝⎭, ||5tan ||3AB BP θ∴=, tan θ∴的最大值为53.故选:B . 【点睛】本题主要考查的是线面所成角,解题的关键是找到线面所成角的平面角,是中档题.二、填空题13.【分析】画出题目描述的图形判断直线mn 的所成的角通过解三角形即可【详解】如图:α‖平面CB1D1α∩平面ABCD=mα∩平面ABA1B1=n 可知:m//CD1m//B1D1因为△CB1D1是正三角形解析:32【分析】画出题目描述的图形,判断直线m 、n 的所成的角,通过解三角形即可. 【详解】 如图:α‖平面CB 1D 1, α∩平面ABCD=m, α∩平面ABA 1B 1=n, 可知:m//CD 1,m//B 1D 1, 因为△CB 1D 1是正三角形. 所以m 、n 所成角就是∠CD 1B 1=60°则m 、m 所成角的正弦值为:3 2故选:A 【点睛】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力,解决问题的关键是在空间图形中找到异面直线所成的平面角.14.【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B 则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题 解析:()1,4,1--【分析】根据空间直角坐标系中点坐标公式求结果. 【详解】 设B (),,x y z ,则1230,1,2222x y z+++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--. 【点睛】本题考查空间直角坐标系中点坐标公式,考查基本分析求解能力,属基础题.15.【分析】将平移到一起利用勾股定理求得线线角为【详解】解:取中点连接中分别为的中点且同理可得且与所成的直角或锐角就是异面直线与所成角中得即异面直线与所成角等于故答案为:【点睛】方法点睛:平移法是立体几解析:90【分析】将,AD BC 平移到一起,利用勾股定理求得线线角为90. 【详解】解:取BD 中点G ,连接EG FG 、,ABD 中,,E G 分别为,AB BD 的中点,//EG AD ∴且132EG AD ==,同理可得//,FG BC 且142FG BC ==, EG ∴与FG 所成的直角或锐角就是异面直线AD 与BC 所成角,EFG △中,3,4,5EG GF EF ===,222EG FG EF ∴+=,得90,EGF ∠=︒即异面直线AD 与BC 所成角等于90, 故答案为:90. 【点睛】方法点睛:平移法是立体几何中求线线角的常用方法之一,平移时通常结合三角形中位线定理把欲求的角平移到一个三角形中,然后再解三角形即可.16.【解析】∵∴∴故答案为解析:111,,633【解析】∵ O G OM MG =+,1 2OM OA =,2,3MG MN MN ON OM ==-,1 ()2ON OB OC =+,∴111633OG OA OB OC =++,∴16x =,13y z ==,故答案为111,,63317.【分析】由向量垂直的坐标运算直接计算【详解】由题意∵与互相垂直∴=解得故答案为【点睛】本题考查空间向量垂直的坐标运算解题关键是掌握向量垂直的充要条件即 解析:522-或 【分析】由向量垂直的坐标运算直接计算. 【详解】 由题意2,5,1a b a b ==⋅=-,∵ka b +与2ka b -互相垂直,∴222()(2)2ka b ka b k a ka b b +⋅-=-⋅-=22250k k +-⨯=, 解得522k k ==-或, 故答案为522-或. 【点睛】本题考查空间向量垂直的坐标运算,解题关键是掌握向量垂直的充要条件,即0a b a b ⊥⇔⋅=.18.3【解析】试题分析:由于三个向量共面所以存在实数使得即有解得考点:空间向量的正交分解及其坐标表示解析:3 【解析】试题分析:由于a b c 、、三个向量共面,所以存在实数m n 、,使得=c ma nb +,即有13=2{6323m n m nm nλ-=-+=-,解得9{53m n λ===. 考点:空间向量的正交分解及其坐标表示.19.【分析】如图过作交于连接求出后利用公式可求体积【详解】如图过作交于连接在等腰直角三角形和等腰直角三角形中由于故而所以故因为底面又故【点睛】本题考查三棱锥体积的计算求出点到面的距离是关键本题属于基础题 解析:3212a 【分析】如图,过D 作DE AC ⊥交AC 于E ,连接BE ,求出DE 后利用公式可求体积. 【详解】如图,过D 作DE AC ⊥交AC 于E ,连接BE , 在等腰直角三角形DAC 和等腰直角三角形ABC 中, 由于2,AC a BE DE ==,故22DE BE a ==. 而BD a =,所以222BD DE BE =+,故DE BE ⊥, 因为BE AC E ⊥=,DE ⊥底面ABC , 又212ABC S a ∆=,故23112232212V a a a =⨯⨯=.【点睛】本题考查三棱锥体积的计算,求出点到面的距离是关键,本题属于基础题.20.【解析】试题分析:因为在平行六面体中所以则考点:本题考查的知识点是点线面间的距离计算考查空间两点之间的距离运算根据已知条件构造向量将空间两点之间的距离转化为向量模的运算是解答本题的关键 解析:【解析】试题分析:因为在平行六面体中,,所以,则.考点:本题考查的知识点是点、线、面间的距离计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.三、解答题21.(1)证明见解析;(2)M 为PD 的靠近点P 三等分点时,二面角M AC D --的22. 【分析】(1)延长,AB DC 交于Q ,连接PQ ,PQ 即为直线l ,证明//MC PQ 即可得线面平行; (2)取AD 的中点O ,连接OP ,OC ,分别以OC ,OD ,OP 为x 轴,y 轴,z 轴建立空间直角坐标系-O xyz .设DM DP λ=,利用空间向量法求二面角的余弦,由已知余弦值可求得λ,即存在. 【详解】(1)延长,AB DC 交于Q ,连接PQ .则易知PQ 为平面PAB 与平面PCD 的交线, 即:PQ 与l 重合.由题意,在ADQ △中://BC AD ,且12BC AD =, 故C 为DQ 的中点.又∵M 为PD 的中点,∴//MC PQ . 又∵MC ⊂平面ACM ,PQ ⊄平面ACM , ∴//PQ 平面ACM ,即//l 平面ACM .(2)取AD 的中点O ,连接OP ,OC ,由题意可得:OP AD ⊥,OC AD ⊥. 又∵平面PAD ⊥平面ABCD ,则OP ⊥平面ABCD ,∴分别以OC ,OD ,OP 为x 轴,y 轴,z 轴建立空间直角坐标系-O xyz . 则()0,1,0A -,()1,0,0C ,()0,1,0D ,()0,0,3P ,()0,1,3DP =-,()0,2,0AD =,()1,1,0AC =∵M 在棱PD 上,不妨设()()0,1,30,,3DM DP λλλλ==-=-, 其中01λ≤≤.∴AM AD DM =+()()0,2,00,,3λλ=+-()0,2,3λλ=-, 设平面MAC 的一个法向量为(),,m x y z =,则00m AM m AC ⎧⋅=⎨⋅=⎩即()2300y z x y λλ⎧-+=⎨+=⎩,令2z λ=-解得:3y λ=-,3x λ=.即()3,3,2m λλλ=--. 又∵平面ACD 的一个法向量()0,0,1m =. ∴()()()222222cos ,332m n λλλλ-<>==+-+-23λ=. 所以,M 为PD 的靠近点P 三等分点时,二面角M AC D --的余弦值为2211. 【点睛】方法点睛:本题考查证明线面平行,求二面角.求二面角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论; (2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补). 22.(1)证明见解析;10【分析】(1)证明线面平行,用线面平行的判定定理,在面PAB 内找一条直线与MN 平行;(2)建立空间直角坐标系,利用向量法求线面角.【详解】(1)在四棱锥P ABCD -中,取PA 的中点E ,连接EB 、EM ,因为M 是PD 的中点,所以EM AD ,且12EM AD =. 又因为底面ABCD 是正方形,N 是BC 的中点,所以BN AD ∥,且12=BN AD , 所以EM BN ∥且=EM BN ,所以四边形MNBE 是平行四边形.所以MN BE ∥.由于EB ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB .(2)因为底面ABCD 是正方形,所以AB ⊥AD .又因为PA ⊥平面ABCD ,所以可以以点A 为坐标原点,AB 、AD 、AP 分别为x 、y 、z 轴,如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,2,0)D ,(0,0,2)P ,(0,1,1)M ,(2,1,0)N .(2,2,2),(2,0,0)PC CD −−→−−→=-=-, 设平面PCD 的法向量为(,,)m x y z =,有:0,0,m PC m CD ⎧⋅=⎨⋅=⎩即0,0,x y z x +-=⎧⎨=⎩,令1y =,则=1z , 所以(0,1,1)m =. (2,0,1)MN =-,设直线MN 与平面PCD 所成角为θ, 有:sin cos ,MN m θ==MN mMN m ⋅⋅ ()02+10+11101025⨯⨯⨯-⋅. 所以直线MN 与平面PCD 10 【点睛】立体几何解答题的基本结构:(1)第一问一般是几何位置关系的证明,通常用判定定理;(2)第二问是计算,求角或求距离(求体积通常需要先求距离),通常可以建立空间直角坐标系,利用向量法计算.23.(1)证明见解析;(2)2211. 【分析】(1)取SC 的中点F ,连接,DF EF ,证明四边形ADFE 为平行四边形,可得//AE DF ,即可证//AE 平面SCD ;(2)建立如图所示空间直角坐标系,然后写出各点坐标,得平面ABE 的法向量为AD ,计算平面ACE 的法向量m ,利用数量积公式代入计算二面角的余弦值.【详解】(1)证明:取SC 的中点F ,连接,DF EF 因为E 、F 为SB 、SC 的中点,所以//EF BC 且132EF BC ==,又因为//AD BC ,3AD =,6BC =,所以//EF AD 且EF AD =,所以四边形ADFE 为平行四边形,所以//AE DF ,又AE ⊄平面SCD ,DF ⊂平面SCD ,所以//AE 平面SCD .(2)因为SA ⊥平面ABCD ,AD AB ⊥,所以建立如图所示空间直角坐标系, 则(0,0,0),(4,0,0),(4,6,0),(0,3,0),(2,0,2)A B C D E ,(2,0,2),(4,0,0),(4,6,0)AE AB AC ===,(0,3,0)AD =由题意可知AD ⊥平面ABE ,设平面ACE 的法向量(,,)m x y z =所以00AC m AE m ⎧⋅=⎨⋅=⎩,则460220x y x z +=⎧⎨+=⎩,得(3,2,3)m =-- 设二面角B AE C --的平面角为θ, 所以622cos cos ,11322AD mθAD m AD m ⋅-====⨯,所以二面角B AE C --的余弦值为2211.【点睛】本题考查了立体几何中的线面平行的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过中位线平行证明线线平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.24.(1)证明见解析;(2)23;(3)23. 【分析】 建立空间直角坐标系A xyz -,设正方体的棱长为2(1)求出平面1AD E 的法向量和1BC ,由11BC n ⊥可得答案;(2)直线1BC 到平面1AD E 的距离即为点B 到平面1AD E 的距离,利用AB nd n ⋅=可得答案;(3)求出平面ABCD 的一个法向量设平面1AD E 与平面ABCD 夹角为θ,111cos cos n n n n n n θ⋅=⋅=可得答案.【详解】 如图建立空间直角坐标系A xyz -,设正方体的棱长为2则(0,0,0)A ,(0,2,0)B ,1(2,0,2)D ,1(2,2,2)C , (0,2,1)E , (1)设平面1AD E 的法向量为1111(,,)n x y z =,100n AD n AE ⎧⋅=⎨⋅=⎩22020x z y z +=⎧∴⎨+=⎩, 令1x =,则1,z =-1,2y =111,,12n ⎛⎫∴=- ⎪⎝⎭,1(2,0,2)BC =,111(2,0,2)1,,12202C n B ⎛⎫⋅=⋅-=-= ⎪⎝⎭,∴11BC n ⊥, 1C B ⊄面1AD E 1//BC ∴平面1AD E .(2)1//BC 平面1AD E ,直线1BC 到平面1AD E 的距离即为点B 到平面1AD E 的距离, (0,2,0)AB =,111,,12n ⎛⎫=- ⎪⎝⎭,11AB n d n ⋅==10120(1)21114⨯+⨯+⨯-++=23, ∴直线1BC 到平面1AD E 的距离为23. (3)平面ABCD 的一个法向量为(0,0,2)n =,设平面1AD E 与平面ABCD 夹角为θ,111,,12n ⎛⎫=- ⎪⎝⎭,111cos cos n n n n n n θ⋅=⋅==10102(1)212114⨯+⨯+⨯-++=23, 所以平面1AD E 与平面ABCD 夹角的余弦值23. 【点睛】方法点睛:本题考查空间中线面平行关系、线面距离、面面角的求法,关键点是建立空间直角坐标系,利用向量法解决问题,考查学生的空间想象力和运算能力.25.(1)证明见解析;(2【分析】(1)证明EF ⊥平面1A AMN 即可得面面垂直;(2)求出BE 与EF 的夹角的余弦值,利用EF 是平面1A AMN 的法向量,易得线面角的正弦值.【详解】(1)因为侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,所以1BB BC ⊥,1//MN BB ,从而BC MN ⊥,又ABC 是正三角形,M 是BC 中点,所以AM BC ⊥,因为AM MN M ⋂=,,AM MN ⊂平面1A AMN ,所以BC ⊥平面1A AMN , 11//B C 平面ABC ,11BC ⊂平面11B C FE ,平面ABC 平面11B C FE EF =,所以11//B C EF ,而11//BC B C ,所以//EF BC ,所以EF ⊥平面1A AMN ,EF ⊂平面11B C FE ,所以平面111A AMN EB C F ⊥;(2)EF AM P =,连接PN ,//AO 平面11EB C F ,平面11EB C F平面1A AMN PN =,AO ⊂平面1A AMN ,所以//AO PN ,又由三棱柱的性质得//ON AP ,所以APNO 是平行四边形,所以AP NO =,O 是111A B C △的中心,则113ON A N =,所以11133AP A N AM ==, 所以13EF AP BC AM ==, 设3BC a =,则EF a =,3PN AO BC a ===,由三棱柱性质知四边形11B C FE 是等腰梯形,如图,11PN B C ⊥,作11EH B C ⊥于H ,则3EH PN a ==,又11(3)2B H a a a =-=,所以1B E,1111cos 10B H EBC B E ∠===. 由(1)知11B C 是平面1A AMN 的一个法向量,而11EB C ∠是1B E与11B C 的夹角, 所以直线1B E 与平面1A AMN所成角的正弦值等于11cos 10EB C ∠=.【点睛】本题考查证明面面垂直,考查求直线与平面所成角.求直线与平面所成角的方法: (1)定义法:作出直线与平面所成的角(证明),然后解三角形得到角;(2)空间向量法,建立空间直角坐标系,求出平面的一个法向量,由直线的方向向量与平面法向量夹角的余弦值的绝对值得出线面角的正弦值.本题求线面角时,把两者结合,求出直线与平面的一个垂线的夹角的余弦值,从而得出线面角的正弦值,省略了建立空间直角坐标系,用推理代替了计算,也是一种求角的思路. 26.(1)证明见解析;(2)4π. 【分析】(1)先证明CD ⊥平面ABC ,可得CD BM ⊥,则可得BM ⊥平面ACD ,即可得出BM AD ⊥,进而AD ⊥平面BMN ,即得出AD MN ⊥可说明;(2)以B 点为原点,过B 做CD 的平行线,如图建立空间直角坐标系,利用向量法可求出.【详解】解:(1)AB ⊥平面BCD ,CD ⊂平面BCD ,AB CD ∴⊥,1,2AB AD ==,3BD ∴= 2,1BC CD ==,∴222BC CD BD +=,BC CD ∴⊥,AB BC B ⋂=,CD 平面ABC ,BM ⊂平面ABC ,CD BM ∴⊥,BM AC ⊥,AC CD C =,BM ∴⊥平面ACD ,AD ⊂平面ACD ,BM AD ∴⊥,BN AD ⊥,BN BM B ⋂=,AD ∴⊥平面BMN ,MN ⊂平面BMN ,AD MN ∴⊥,∴AMN 为直角三角形;(2)以B 点为原点,过B 做CD 的平行线,如图建立空间直角坐标系,则()0,0,0B ,()0,0,1A ,()2,0C ,()2,0D -, ()2,0BC =,()2,1AD =--.由(1)得AD ⊥平面BMN ,∴AD 为平面BMN 的法向量, ∴2sin cos ,2AD BCAD BC AD BC θ⋅===⋅ ∴直线BC 与平面BMN 所成角大小为4π. 【点睛】 利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测卷(含答案解析)

一、选择题1.已知三棱锥P ABC -的所有棱长均为2,点M 为BC 边上一动点,若AN PM ⊥且垂足为N ,则线段CN 长的最小值为( )A .2133-B .2733-C .73D .12.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 1所成角的余弦值为( )A .26B .36C .56D .133.如图,点P 在正方体1111ABCD A BC D -的面对角线1BC 上运动,则下列四个结论: ①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ;1DP BC ⊥③;④平面1PDB 平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个4.如图:在直棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,,,P Q M 分别是A 1B 1,BC,CC 1的中点,则直线PQ 与AM 所成的角是( )A .6πB .4πC .3πD .2π 5.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A .255B .55C .45D .16.如图,在长方形ABCD 中,3AB =,1BC =,点E 为线段DC 上一动点,现将ADE ∆沿AE 折起,使点D 在面ABC 内的射影K 在直线AE 上,当点E 从D 运动到C ,则点K 所形成轨迹的长度为( )A .32B .233C .3πD .2π 7.已知A,B,C 三点不共线,对于平面ABC 外的任一点O,下列条件中能确定点M 与点A,B,C 一定共面的是( )A .OM OA OB OC =++B .2OM OA OB OC =-- C .1123OM OA OB OC =++D .111236OM OA OB OC =++ 8.设平面α的一个法向量为1(1,2,2)n =-,平面β的一个法向量为2(2,4,)n k =--,若//αβ,则k = ( )A .2B .-4C .-2D .49.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12B .22 C .13 D .16 10.在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A 3λB 2C 2λD 511.已知平行六面体1111ABCD A BC D -中,11114AE AC =,若1BE xAB yAD zAA =++,则x 的值为( )A .14B .34-C .1D .1212.以下命题①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅.其中正确的命题有( )A .0个B .1个C .2个D .3个二、填空题13.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H.且D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________.14.在直三棱柱111ABC A B C -中,90ACB ∠=,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.15.已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______. 16.如图所示,在正四棱柱1111ABCD A BC D -中,12AA =,1AB BC ==,动点P 、Q 分别在线段1C D 、AC 上,则线段PQ 长度的最小值是______.17.若直线l 的一个方向向量(1,3)d =,则l 与直线10x y -+=的夹角为______. 18.如图所示,三棱锥O ABC -中,OA a =,OB b =,OC c =,点M 在棱OA 上,且2OM MA =,N 为BC 中点,则MN =__________.(用a ,b ,c 表示)19.如图,空间四边形C OAB 中,a OA =,b OB =,C c O =,点M 在OA 上,且23OM =OA ,点N 为C B 中点,则MN 等于_____.(用向量表示)20.正三棱锥底面边长为1,侧面与底面所成二面角为45°,则它的全面积为________三、解答题21.如图,Rt ABC △中,90ABC ∠=︒,2BA BC ==,分别过A ,C 作平面ABC 的垂线1A A 和1C C ,12AA =,1CC h =,连结1AC 和1AC 交于点P .(Ⅰ)设点M 为BC 中点,若2h =,求证:直线PM 与平面1A AB 平行;(Ⅱ)设O 为AC 中点,二面角11A AC B --等于45°,求直线OP 与平面1A BP 所成角的大小.22.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 是一个菱形,3ABC π∠=,2AB =,23PA =(1)若Q 是线段PC 上的任意一点,证明:平面PAC ⊥平面QBD ;(2)求直线DB 与平面PBC 所成角θ的正弦值.23.如图,在三梭柱111ABC A B C -中,侧面11AA B B ,11AACC 均为菱形,12AA =,1160ABB ACC ∠=∠=︒,D 为AB 的中点.(Ⅰ)求证:1//AC 平面1CDB ;(Ⅱ)若60BAC ∠=︒,求直线1AC 与平面11BB C C 所成角的正弦值.24.如图,已知ABCD 为正方形,GD ⊥平面ABCD ,//AD EG 且2AD EG =,//GD CF 且2GD FC =,2DA DG ==.(1)求平面BEF 与平面CDGF 所成二面角的余弦值;(2)设M 为FG 的中点,N 为正方形ABCD 内一点(包含边界),当//MN 平面BEF 时,求线段MN 的最小值.25.如图,在四面体ABCD 中,AB AC ⊥,AD ⊥平面ABC ,点M 为棱AB 的中点,2AB AC ==,3AD =.(Ⅰ)求直线BC 与MD 所成角的余弦值;(Ⅱ)求平面ABD 和平面BDC 的夹角的余弦值.26.如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,4AB =,11112A B AC ==,11AB BC ⊥.(1)求1AA 的长;(2)求二面角11B AC C --的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】取PA 中点O ,得点N 在以O 为球心,半径为1的球面上,进一步可得N 的轨迹为一段圆弧,设点O 在平面PBC 的投影点为1O ,则点N 在以1O 为圆心的圆弧上,可得当点N在1CO 上时,CN 取最小值,求解三角形计算得答案.【详解】解:取PA 中点O ,AN PM ⊥,∴点N 在以O 为球心,半径为1的球面上, 又点N 在平面PBC 上,故N 的轨迹为一段圆弧,设点O 在平面PBC 的投影点为1O ,且点1(O PS S ∈为BC 中点),则点N 在以1O 为圆心的圆弧上, 3PS AS ==,设A 到PS 的距离为h ,则221132(3)122h ⨯⨯=⨯⨯-, 即263h =,得163OO =,21631()33PO =-=,22213PS =-=由N 在PS 上时,求得133NO =,求解Rt △1CO S ,得2212313213CO ⎛⎫=+ ⎪ ⎪=⎝⎭, 则当点N 在1CO 上时,CN 取最小值2133-, 故选:A .【点睛】本题考查空间中点、线、面间的距离计算,考查空间想象能力与思维能力,考查运算求解能力,解答的关键是弄清动点的轨迹;2.A解析:A【分析】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系, 利用空间向量求异面直线AE 与CD 1所成角的余弦值为26. 【详解】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为2,则A (2,0,0),E (0,2,1),D 1(0,0,2),C (0,2,0), ()2,2,1AE =-,()10,2,2D C =- ,∵cos <1,AE DC >=4226922-=⋅. ∴异面直线AE 与CD 1所成角的余弦值为26. 故选A .【点睛】 本题主要考查异面直线所成的角的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.3.C解析:C【分析】利用空间中线线、线面、面面间的位置关系求解.【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确;对于②,连接1A B ,11AC ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BAC 面1ACD ,从而由线面平行的定义可得,故②正确;对于③,由于DC ⊥平面11BCBC ,所以1DC BC ⊥,若1DP BC ,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确.故选C .【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.4.D解析:D【分析】建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可.【详解】以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -,设2AB =,则()()()()0,0,0,1,0,2,1,1,0,0,2,1A P Q M ,据此可得:()()0,1,2,0,2,1PQ AM =-=,0PQ AM ⋅=,故PQ AM ⊥,即直线PQ 与AM 所成的角是2π. 本题选择D 选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值.【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()()220,2,2PB a b a b =--=-+,三角形PBC 的面积为()2221251282BC PB a b a a ⨯⨯=-+=-+,当126105a ==时,面积取得最小值为266255128555⎛⎫⨯-⨯+= ⎪⎝⎭,故选A. 【点睛】本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值.6.C解析:C【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.【详解】由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是12, 如图当E 与C 重合时,4=12, 取O 为AD′的中点,得到△OAK 是正三角形.故∠K0A=3π,∴∠K0D'=23π, 其所对的弧长为1223π⨯=3π, 故选:C【点睛】 本题考查与二面角有关的立体几何综合题目,解题的关键是由题意得出点K 的轨迹是圆上的一段弧,翻折问题中要注意位置关系与长度等数量的变与不变,属于中档题目. 7.D解析:D【分析】根据点M 与点,,A B C 共面,可得1x y z ++=,验证选项,即可得到答案.【详解】设OM xOA yOB zOC =++,若点M 与点,,A B C 共面,,则1x y z ++=,只有选项D 满足,.故选D.【点睛】本题主要考查了向量的共面定理的应用,其中熟记点M 与点,,A B C 共面时,且OM xOA yOB zOC =++,则1x y z ++=是解答的关键,着重考查了分析问题和解答问题的能力.8.D解析:D【分析】根据平面平行得法向量平行,再根据向量平行坐标表示得结果.【详解】因为//αβ,所以12122//24n n k-==--,,解之得4k =,应选答案D 【点睛】本题考查向量平行坐标表示,考查基本求解能力,属基础题. 9.C解析:C【分析】根据题意,以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,平面外一点到平面的距离可以用平面上任意一点与该点的连线在平面法向量上的投影表示,而法向量垂直于平面上所有向量,由AC ,1AD 即可求得平面1ACD 的法向量n ,而1D E 在n 上的投影即为点E 到面1ACD 的距离,即可求得结果【详解】以D 为坐标原点,直线1DADC DD ,,分别为x y z ,,轴,建立空间直角坐标系,如图所示:则()1101A ,,,()1001D ,,,()100A ,,,()020C ,, E 为AB 的中点,则()110E ,, ()1111D E ∴=-,,,()120AC =-,,,()1101AD =-,,设平面1ACD 的法向量为()n a b c =,,,则100n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩,即200a b a c -+=⎧⎨-+=⎩ 可得2a b a c =⎧⎨=⎩可取()212n =,, ∴点E 到面1ACD 的距离为1212133D E n d n ⋅+-=== 故选C【点睛】本题是一道关于点到平面距离的题目,解题的关键是掌握求点到面距离的方法,建立空间直角坐标系,结合法向量求出结果,属于中档题。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》检测卷(有答案解析)

一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( )A .12B .13C .512D .712 2.正方体''''ABCD A B C D -棱长为6,点P 在棱AB 上,满足PA PB =,过点P 的直线l 与直线''A D 、'CC 分别交于E 、F 两点,则EF =( )A .313B .95C .18D .213.如图,在正方体1111ABCD A B C D ﹣中,1A H ⊥平面11AB D ,垂足为H ,给出下面结论:①直线1A H 与该正方体各棱所成角相等;②直线1A H 与该正方体各面所成角相等;③过直线1A H 的平面截该正方体所得截面为平行四边形;④垂直于直线1A H 的平面截该正方体,所得截面可能为五边形,其中正确结论的序号为( )A .①③B .②④C .①②④D .①②③ 4.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A 25B 5C .45D .15.如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是( )A .30B .45C .60D .906.在正方体ABCD --A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( )A .10-B .10C .15-D .15 7.如图,在平行六面体1111ABCD A BC D -中,M 为11AC 与11B D 的交点.若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( )A .11+22+a b cB .1122a b c -+C .1122-++a b c D .1122+-a b c 8.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A.1 B.2 C.4 D.89.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为()A.45°B.135°C.45°或135°D.90°10.已知菱形ABCD中,∠60ABC=︒,沿对角线AC折叠之后,使得平面BAC⊥平面DAC,则二面角B CD A--的余弦值为().A.2 B.12C.3D.511.如图,四棱锥P ABCD-的底面是边长为2的正方形,Q为BC的中点,PQ⊥面ABCD,且2PQ=,动点N在以D为球心半径为1的球面上运动,点M在面 ABCD 内运动,且PM5=,则MN长度的最小值为()A352B.23C.25-D33212.在平面直角坐标系中,()2,3A -、()32B -,,沿x 轴将坐标平面折成60︒的二面角,则AB 的长为( )A .2B .211C .32D .42二、填空题13.设P ,A ,B ,C 是球O 表面上的四个点,PA ,PB ,PC 两两垂直,且1PA PB PC ===,则球O 的表面积为____________.14.如图所示,在正四棱柱1111ABCD A BC D -中,12AA =,1AB BC ==,动点P 、Q 分别在线段1C D 、AC 上,则线段PQ 长度的最小值是______.15.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点.给出如下命题:①直线PB 与直线CE 是异面直线;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为22.其中正确命题的序号是______________.(将你认为正确的命题序号都填上)16.如图所示的是正方体的表面展开图,还原成正方体后,其中完全一样的是________.17.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x =__________.18.设G 是三棱锥V ABC -的底面重心,用空间的一组基向量,,VA VB VC 表示向量VG =________________________19.直线1:(3)30l a x y ++-=与直线2:5(3)40l x a y +-+=,若的方向向量是的法向量,则实数_____.20.已知平面α⊥平面β,且l αβ⋂=,在l 上有两点A ,B ,线段AC α⊂,线段BD β⊂,并且AC l ⊥,BD l ⊥,6AB =,24BD =,8AC =,则CD =______.三、解答题21.如图,直三棱柱ABC-A 1B 1C 1中,ABC 是边长为6的等边三角形,D ,E 分别为AA 1,BC 的中点.(1)证明:AE //平面BDC 1;(2)若123AA =,求DE 与平面BDC 1所成角的正弦值. 22.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,且3AD PD ==,33PC =,平面PCD ⊥平面ABCD ,点E 为线段PC 的中点.(1)求证:DE ⊥面PBC ;(2)若点F 在线段AB 上,且13AF AB =,求二面角C DE F --的平面角的正弦值. 23.如图,在四棱锥P ABCD -中,AB //CD ,223AB DC ==AC BD F ⋂=,且PAD △与ABD △均为正三角形,AE 为PAD △的中线,点G 在线段AE ,且2AG GE =.(1)求证:GF //平面PDC ;(2)若平面PAD ⊥平面ABCD ,求平面PAD 与平面GBC 所成锐二面角的余弦值. 24.在直三棱柱111ABC A B C -中,12AC BC CC ===,90ACB ∠=︒,点D 在棱AC 上(不同于点A ,C ),点E 为棱1CC 的中点.(1)求直线1BC 与平面1A BE 所成角的正弦值;(2)若二面角1A BE D --的余弦值为6,求线段CD 的长. 25.如图,在四棱锥S ABCD -中,侧面SCD 为钝角三角形且垂直于底面ABCD ,底面为直角梯形且90ABC ∠=︒,12AB AD BC ==,CD SD =,点M 是SA 的中点.(1)求证:BD ⊥平面SCD ; (2)若直线SD 与底面ABCD 所成的角为60︒,求SD 与平面MBD 所成角的正弦值. 26.如图,在四棱锥P ABCD -中,PA AD ⊥,13,2AD BC ==,5PC ,//AD BC ,AB AC =,150BAD ∠=,30PDA ∠=.(Ⅰ)证明:PA ⊥平面ABCD ;(Ⅱ)在线段PD 上是否存在一点F ,使直线CF 与平面PBC 所成角的正弦值等于14?若存在,指出点F 的位置;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据向量共面定理求解.【详解】 由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-, ∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦, ∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩. 故选:B .结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=.2.C解析:C【分析】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.再建立空间直角坐标系求解即可.【详解】画图分析可得过P 的直线l 与直线''A D 、'CC 的交点E 、F 在线段''D A 、'C C 的延长线上.以A 为坐标原点建立如图空间直角坐标系,则设(,0,6)E e ,(6,6,)F f ,(0,3,0)P又,,E P F 共线,则EP PF λ=,故(,3,6)(6,3,)e f λ--=,故6133666e e f f λλλλ-==⎧⎧⎪⎪=⇒=-⎨⎨⎪⎪-==-⎩⎩. 故(6,0,6)E -,(6,6,6)F -,则222(12)6(12)18EF =++=.故选:C【点睛】本题主要考查了利用空间直角坐标系求解共线问题的方法等,属于中等题型.3.D解析:D【解析】由A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,结合线线角和线面角的定义,可判断①②;由四边形A 1ACC 1为矩形,可判断③;由垂直于直线A 1H 的平面与平面AB 1D 1平行,可判断④.【详解】 如图,在正方体ABCD ﹣A 1B 1C 1D 1中,A 1H ⊥平面AB 1D 1,垂足为H ,连接A 1C ,可得A 1C ⊥AB 1,A 1C ⊥AD 1,即有A 1C ⊥平面AB 1D 1,直线A 1H 与直线A 1C 重合,直线A 1H 与该正方体各棱所成角相等,均为2①正确;直线A 1H 与该正方体各面所成角相等,均为arctan 22,故②正确; 过直线A 1H 的平面截该正方体所得截面为A 1ACC 1为平行四边形,故③正确;垂直于直线A 1H 的平面与平面AB 1D 1平行,截该正方体,所得截面为三角形或六边形,不可能为五边形.故④错误.故选:D .【点睛】本题考查线线角和线面角的求法,以及正方体的截面的形状,考查数形结合思想和空间想象能力,属于中档题.4.A解析:A【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值.【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()()220,2,2PB a b a b =--=-+PBC 的面积为()2221251282BC PB a b a a ⨯⨯=-+=-+126105a ==时,面积取得最小值为26625512855⎛⎫⨯-⨯+= ⎪⎝⎭,故选A. 【点睛】本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值. 5.D解析:D【分析】可以建立空间直角坐标系,求出向量1A M与DN 的夹角进而求出异面直线1A M 与DN 所成角.【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设正方体1111ABCD A BC D -中棱长为2,则1(2,A 0,2),(0,M 1,0),(0,D 0,0),(0,N 2,1),1(2,AM =-1,2)-,(0,DN =2,1), 设异面直线1A M 与DN 所成角为θ,则11cos 0A M DNA M DN θ⋅==⋅,90θ∴=.∴异面直线1A M 与DN 所成角的大小为90.故选D .【点睛】本题考查异面直线所成角的求法,考查正方体的结构特征,异面直线所成角等基础知识,是基础题.6.B解析:B【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值.【详解】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,,∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,,设平面1B BD 的法向量为(),,x n y z =, ∵ n BD ⊥,1n BB ⊥, ∴220 20x y z --=⎧⎨=⎩,令y 1=,则() 110n =-,,, ∴10cos ,n BEn BE n BE ⋅==⋅, 设直线BE 与平面1B BD 所成角为θ, 则10sin cos ,5n BE θ==,故选B . 【点睛】本题考查直线与平面所成角的正弦值的求法,解题时要注意向量法的合理运用,准确得到面的法向量是解题的关键,是中档题. 7.C解析:C 【分析】根据空间向量的运算法则,化简得到11122BM AB AD AA =-++,即可求解. 【详解】由题意,根据空间向量的运算法则,可得1111112BM BB B M AA B D =+=+1111111111111()()222222AA A D A B AA AD AB AB AD AA a b c =+-=+-=-++=-++. 故选:C.【点睛】在空间向量的线性运算时,要尽可能转化为平行四边形或三角形中,运用平行四边形法则、三角形法则,以及利用三角形的中位线、相似三角形等平面几何的性质,把未知向量转化为已知向量有直接关系的向量来解决.8.A解析:A【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2i AB A P B B +⋅,最后根据棱长为1以及i AB BP 即可得出结果. 【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+,因为棱长为1,i AB BP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅, 故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A.【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题. 9.C解析:C【分析】先求出两个向量的夹角为,=45︒<>m n ,再转化为二面角的大小.【详解】cos ,21⋅<>===⨯⋅m nm n m n ,即,=45︒<>m n , 所以两平面所成二面角为45°或180°-45°=135°.答案:C【点睛】本题考查了空间向量的夹角和二面角的求法,考查了计算能力和逻辑推理能力,属于基础题目.10.D解析:D【分析】取AC 的中点E ,分别以EA ,ED ,EB 为x 轴,y 轴,z 轴建立空间直角坐标系,利用空间向量求二面角B CD A --的余弦值.【详解】解:如图取AC 的中点E ,分别以EA ,ED ,EB 为x 轴,y 轴,z 轴建立空间直角坐标系,令棱形ABCD 的边长为2,则()1,0,0A ,()1,0,0C -,()0,3,0D ,()0,0,3B 设平面BCD 的法向量为(),,n x y z =,()1,0,3BC =--,()0,3,3BD =- 30330x z y z ⎧--=⎪⎨-=⎪⎩令3z =则3y =,3x =- 即()3,3,3n =-平面ACD 的法向量为()0,0,1m =令二面角B CD A --的夹角为θ 35cos 115n mn m θ===⨯ 因二面角B CD A --为锐二面角5cos θ=故选D 【点睛】本题考查求二面角二余弦值,关键是准确的建立空间直角坐标系,属于中档题. 11.C解析:C【分析】若要使MN 最短,点N 必须落在平面ABCD 内,且一定在DN 的连线上,此时应满足,,,D N M Q 四点共线,通过几何关系即可求解【详解】如图,当点N 落在平面ABCD 内,且,,,D N M Q 四点共线时,MN 距离应该最小,由PM 5=可得1MQ =,即点M 在以Q 为圆心,半径为1的圆上,由几何关系求得5DQ =,1DN MQ ==,故552NM DN MQ =--=-故答案选:C 【点睛】本题考查由几何体上的动点问题求解两动点间距离的最小值,属于中档题12.D解析:D【分析】作AC x ⊥轴于C ,BD x ⊥轴于D ,则AB AC CD DB =++,两边平方后代入数量积即可求得2||AB ,则AB 的长可求.【详解】如图,()2,3A -,()3,2B -,作AC x ⊥轴于C ,BD x ⊥轴于D ,则()2,0C -,()3,0D ,3AC ∴=,5CD =,2DB =,沿x 轴把坐标平面折成60︒的二面角,CA ∴<,60DB >=︒,且0AC CD CD DB ⋅=⋅=,222||()AB AB AC CD DB ∴==++ 222222AC CD DB AC CD CD DB AC DB =+++⋅+⋅+⋅19254232322⎛⎫=+++⨯⨯⨯-= ⎪⎝⎭. 42AB ∴=即AB 的长为故选:D .【点睛】本题主要考查了空间角,向量知识的运用,考查学生的计算能力,属于中档题. 二、填空题13.【分析】利用条件两两垂直且把三棱锥扩展为正方体球的直径即是正方体的体对角线长由球的表面积公式求解【详解】先把三棱锥扩展为正方体则正方体的体对角线的长为所以球的半径为所以球的表面积为【点睛】本题主要考 解析:3π【分析】利用条件PA ,PB ,PC 两两垂直,且1PA PB PC ===把三棱锥P ABC -扩展为正方体,球的直径即是正方体的体对角线长,由球的表面积公式求解.【详解】先把三棱锥P ABC -所以球的半径为所以球的表面积为24π3π2⎛⨯= ⎝⎭.【点睛】本题主要考查了球的体积公式:343V r π=球(其中r 为球的半径)及长方体的体对角线长公式:l =,,a b c 分别是长方体的长、宽、高).14.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量法计算出异面直线的公垂线的长度即为所求【详解】由题意可知线段长度的最小值为异面直线的公垂线的长度如下图所示以点为坐标原点所在直线分解析:13【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法计算出异面直线1C D 、AC 的公垂线的长度,即为所求.【详解】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x y y z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-, 可得()2,2,1n =-, 因此,min 23DA n PQ n ⋅==. 故答案为:23. 【点睛】 关键点点睛:解本题的关键在于将PQ 长度的最小值转化为异面直线AC 、1C D 的距离,实际上就是求出两条异面直线的公垂线的长度,利用空间向量法求出两条异面直线间的距离,首先要求出两条异面直线公垂线的一个方向向量的坐标,再利用距离公式求解即可. 15.①③④【分析】由题意画出图形由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心由棱锥底面积与高为定值判断③;设列出关于的函数式结合其几何意义求出最小值判断④【详解】解:对于①直线经过平解析:①③④【分析】由题意画出图形,由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设AE x =,列出PE EC +关于x 的函数式,结合其几何意义求出最小值判断④.【详解】解:对于①,直线PB 经过平面ABCD 内的点B ,而直线CE 在平面ABCD 内不过C ,∴直线PB 与直线CE 是异面直线,故①正确;对于②,当E 与D 重合时,BE AC ⊥,因为PA ⊥平面ABCD ,BE ⊂平面ABCD ,所以PA BE ⊥,又PA AC A =,PA ⊂平面PAC ,AC ⊂平面PAC ,BE ∴⊥平面PAC ,则BE 垂直AC ,故②错误;对于③,由题意知,四棱锥P ABCD -的外接球的球心为O 是PC 的中点,则△BCE 的面积为定值,且O 到平面ABCD 的距离为定值,∴三棱锥E BCO -的体积为定值,故③正确;对于④,设AE x =,则2DE x =-,2211(2)PE EC x x ∴+=+++-.由其几何意义,即平面内动点(,1)x 与两定点(0,0),(2,0)距离和的最小值知,其最小值为22,故④正确.故答案为:①③④.【点睛】本题考查命题的真假判断与应用,考查空间想象能力和思维能力,属于中档题. 16.()()()【解析】()中①⑤②④③⑥相对()中①④②⑤③⑥相对()中①④②⑤③⑥相对()中①④②⑤③⑥相对点睛:先由几何体的展开图还原几何体的形状根据熟悉的柱锥台球的图形明确几何体的展开对应关系结解析:(2)(3)(4)【解析】(1)中①⑤、②④、③⑥相对,(2)中①④、②⑤、③⑥相对,(3)中①④、②⑤、③⑥相对,(4)中①④、②⑤、③⑥相对.点睛:先由几何体的展开图还原几何体的形状.根据熟悉的柱、锥、台、球的图形,明确几何体的展开对应关系,结合空间想象将展开图还原为实物图.再在具体几何体中研究对应线面位置关系17.2【解析】因为向量所以则解之得应填答案解析:2【解析】因为向量(1,1,),(1,2,1),(1,1,1)a x b c ===,所以(0,0,1),2(2,4,2)c a x b -=-=,则()(2)222c a b x -⋅=-=-,解之得2x =,应填答案2。
新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(含答案解析)(4)

一、选择题1.如图,在60︒二面角的棱上有两点A 、B ,线段AC 、BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,若AB =4,AC =6,BD =6,则线段CD 的长为( )A .29B .10C .241D .2132.在四棱锥O ﹣ABCD 中,底面ABCD 是平四边形,设OA a =,OB b =,OC c =,则BD 可表示为( )A .a c b +-B .a +2b c -C .c b a +-D .a c +-2b3.阅读材料:空间直角坐标系O ﹣xyz 中,过点P (x 0,y 0,z 0)且一个法向量为=(a ,b ,c )的平面α的方程为a (x ﹣x 0)+b (y ﹣y 0)+c (z ﹣z 0)=0;过点P (x 0,y 0,z 0)且一个方向向量为d =(u ,v ,w )(uvw≠0)的直线l 的方程为000x x y y z z u v w---==,阅读上面材料,并解决下面问题:已知平面α的方程为x+2y ﹣2z ﹣4=0,直线l 是两平面3x ﹣2y ﹣7=0与2y ﹣z+6=0的交线,则直线l 与平面α所成角的大小为( ) A .arcsin 1414 B .arcsin 421C .arcsin51442D .arcsin123773774.已知空间三点坐标分别为A (4,1,3),B(2,3,1),C (3,7,-5),又点P (x,-1,3) 在平面ABC 内,则x 的值 ( ) A .-4B .1C .10D .115.在棱长为2的正方体1111ABCD A BC D -中,,E F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且1(02)AG λλ=<<,则点G 到平面1D EF 的距离为( )A .23B 2C .223λD 256.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A .255B .55C .45D .17.如图,将边长为2的正方体ABCD 沿对角线BD 折起,得到三棱锥1A BCD -,则下列命题中,错误的为( )A .直线BD ⊥平面1AOCB .1A B CD ⊥C .三棱锥1A BCD -的外接球的半径为2 D .若E 为CD 的中点,则//BC 平面1AOE 8.正方体1111ABCD A BC D -的棱长为a ,点M 在1AC 且112AM MC =,N 为1B B 的中点,则MN 为( ) A .216a B .66a C .156a D .153a 9.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .810.已知菱形ABCD 中,∠60ABC =︒,沿对角线AC 折叠之后,使得平面BAC ⊥平面DAC ,则二面角B CD A --的余弦值为( ).A .2B .12C .33D .5511.记动点P 是棱长为1的正方体1111-ABCD A BC D 的对角线1BD 上一点,记11D PD Bλ=.当APC ∠为钝角时,则λ的取值范围为( ) A .(0,1)B .1(,1)3C .1(0,)3D .(1,3)12.如图,棱长为1的正方体1111ABCD A BC D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B 2C 2D 3二、填空题13.设P ,A ,B ,C 是球O 表面上的四个点,PA ,PB ,PC 两两垂直,且1PA PB PC ===,则球O 的表面积为____________.14.长方体1111ABCD A BC D -中,1AB AD ==,12AA =,直线1AB 和1AC 的夹角的余弦值为__________.15.在空间直角坐标系O xyz -中,点(1,2,3)A -到原点的距离为__________. 16.已知(1,2,1),(2,2,2)A B -,点P 在z 轴上,且PA PB =,则点P 的坐标为____________.17.如图,已知边长为1的正'A BC ∆的顶点'A 在平面α内,顶点,B C 在平面α外的同一侧,点','B C 分别为,B C 在平面α内的投影,设''BB CC ≤,直线'CB 与平面''A CC 所成的角为ϕ.若'''A B C ∆是以角'A 为直角的直角三角形,则tan ϕ的最小值__________. 18.已知向量=211a -(,,),(,1,1)b λ=-,若a 与b 的夹角为钝角,则λ的取值范围是______. 19.已知,若向量互相垂直,则k 的值为____.20.已知60︒ 的二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知1AB = ,2AC = ,3BD = ,则线段CD 的长为__________.三、解答题21.如图所示,在多面体ABCDE 中,//DE AB ,AC BC ⊥,平面DAC ⊥平面ABC ,24BC AC ==,2AB DE =,DA DC =,点F 为BC 的中点.(1)证明:EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60︒,求平面DCE 与平面ADC 所成的锐二面角的余弦值.22.如图,在三棱锥P ABC -中,2PA PB ==,5AC BC PC ===,2AB =,点D ,E 分别为AB ,PC 的中点.(1)证明:平面PAB ⊥平面ABC ;(2)设点F 在线段BC 上,且BF FC λ=,若二面角C AE F --的大小为45°,求实数λ的值.23.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,,M N分别为棱,PD BC 的中点,2PA AB ==.(1)求证://MN 平面PAB ;(2)求直线MN 与平面PCD 所成角的正弦值.24.如图,已知正方体1111ABCD A BC D -的棱长为2,M 为1AA 的中点.(1)求证:1//A B 平面1MCD; (2)求平面1MCD 与平面11C CD 夹角的余弦值.25.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AB BC CA AA ===,D 为AB 的中点.(1)求证:1//BC 平面1DAC ;(2)求平面1DAC 与平面11AAC C 所成的锐二面角....的余弦值. 26.如图所示,在直三棱柱111ABC A B C -中,ABC 是边长为6的等边三角形,,D E 分别为1,AA BC 的中点.(1)证明://AE 平面1BDC(2)若123CC =,求DE 与平面11ACC A 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】CD CA AB BD =++,利用数量积运算性质可得2222222CD CA AB BD CA AB CA BD AB BD =+++++.根据CA AB ⊥,BD AB ⊥,可得0CA AB =,0BD AB =,由60︒二面角可得;cos120CA BD CA BD =︒,代入计算即可得出. 【详解】解:CD CA AB BD =++,∴2222222CD CA AB BD CA AB CA BD AB BD =+++++,CA AB ⊥,BD AB ⊥,∴0CA AB =,0BD AB =,1cos12066182CA BD CA BD =︒=-⨯⨯=-.∴222264621852CD =++-⨯=, ∴213CD =故选:D .【点睛】本题考查了利用向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题2.D解析:D 【分析】作出图形,根据条件得出BD BA BC =+,再得到BA a b =-,BC c b =-,即可求解, 得到答案. 【详解】如图所示,在四棱锥O ABCD -中,底面ABCD 是平行四边形,则BD BA BC =+, 在OAB ∆中,BA OA OB a b =-=-, 在OBC ∆中,BC OC OB c b =-=-, 故选:D.【点睛】本题主要考查了向量的线性运算,以及向量的加法的几何意义,其中解答中熟记向量的运算法则是解答的关键,着重考查了推理与计算能力,属于基础题.3.B解析:B 【分析】先根据两个平面的方程,求出平面交线的方向向量,结合已知平面的方程确定平面的法向量,然后求解. 【详解】平面α的法向量为n =(1,2,﹣2),联立方程组3270260x y y z --=⎧⎨-+=⎩,令x =1,得y =﹣2,z =2,令x =3,得y =1,z =8,故点P (1,﹣2,2)和点Q (3,1,8)为直线l 的两个点,∴PQ =(2,3,6)为直线l 的方向向量, ∵44cos ,3721||||PQ n PQ n PQ n ⋅-<>===-⨯ ,∴直线l 与平面α所成角的正弦值为421,故选B . 【点睛】本题主要考查直线和平面所成角的正弦,属于信息提供题目,理解题中所给的信息是求解关键.4.D解析:D 【分析】利用平面向量的共面定理即可求出答案 【详解】(),1,3P x -点在平面ABC 内,λμ∴存在实数使得等式AP AB AC λμ=+成立()()()4,2,02,2,21,6,8x λμ∴--=--+--42226028x λμλμλμ-=--⎧⎪∴-=+⎨⎪=--⎩,消去λμ,解得11x = 故选D 【点睛】本题主要考查了空间向量的坐标运算,共面向量定理的应用,熟练掌握平面向量的共面定理是解决本题的关键,属于基础题。
(北师大版)东莞市高中数学选修2-1第二章《空间向量与立体几何》测试(含答案解析)

一、选择题1.在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 为正方形,2AB =,E 为PB 的中点,若3cos ,3DP AE =,则PD =( )A .1B .32C .3D .22.长方体1111ABCD A BC D -,110AB AA ==,25AD =,P 在左侧面11ADD A 上,已知P 到11A D 、1AA 的距离均为5,则过点P 且与1AC 垂直的长方体截面的形状为( )A .六边形B .五边形C .四边形D .三角形3.如图,已知正方体1111ABCD A BC D -棱长为3,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .134.过平面α外一点A 引斜线段AB 、AC 以及垂线段AO ,若AB 与α所成角是30,6AO =,AC BC ⊥,则线段BC 长的取值范围是( )A .()0,6B .()6,+∞C .()0,63D .()63,+∞5.若直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,则1l 与2l 的位置关系是( ) A .12l l ⊥B .12l l C .1l 、2l 相交不垂直 D .不能确定6.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A 25B 5C .45D .17.在长方体1111ABCD A BC D -中,1AB BC ==,13AA 1AD 与1DB 所成角的余弦值为 A .15B 5C 5D 2 8.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 9.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在坐标平面上的正投影图形的面积,则( ) A .123S S S == B .21=S S 且23S S ≠ C .31S S =且32S S ≠D .32S S =且31S S ≠10.四棱锥P ABCD -中,(2,1,3),(2,1,0),(3,1,4)AB AD AP =-=-=-,则这个四棱锥的高为( ) A .55B .15C .25D .25511.如图,在四棱锥P ABCD -中,侧面PAD 是边长为4的正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为平面ABCD 上的动点,且满足•0MP MC =,则点M 到直线AB 的最远距离为( )A .25B .35C .45+D .422+12.在长方体1111ABCD A BC D -中,若13AC =111()AB AC AD AC ++⋅=( )A .0B 3C .3D .6二、填空题13.在长方体1111ABCD A BC D -中,若1AB BC ==,12AA =A 到平面11BD A 的距离为_______ .14.已知空间向量(1,0,0)a =,13(,,0)22b =,若空间向量c满足2c a ⋅=,52c b ⋅=,且对任意,x y R ∈,()()00001(,)c xa yb c x a y b x y R -+≥-+=∈,则c =__________. 15.如图,已知正方体1111ABCD A BC D -中,M 为棱11D C 的中点,则直线BM 和平面11AC B 所成角的正弦为_____________________.16.在棱长为1的正方体1111ABCD A BC D -中,E 为1AB 的中点,在面ABCD 中取一点F ,使1EF FC +最小,则最小值为__________.17.如图,正方体1111ABCD A BC D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点A ,P ,Q 的平面截该正方体所得的截面为S ,则下列命题正确的是__________(写出所有正确命题的编号).①当102CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形; ③当34CQ =时,S 与11C D 的交点R 满足114C R =;④当314CQ <<时,S 为五边形; ⑤当1CQ =时,S 618.已知αβ⊥,平面α与平面β的法向量分别为m ,n ,且(1,2,5)m =-,(3,6,)n z =-,则z =__________.19.如图所示的是正方体的表面展开图,还原成正方体后,其中完全一样的是________.20.已知平面α的一个法向量为()2,1,3n =--,()3,2,1M -,()4,4,1N ,其中M α∈,N α∉,则点N 到平面α的距离为__________.三、解答题21.在三棱台ABC DEF -中,2,60AB BC DE DAB EBA ∠∠====,平面ABED ⊥平面,.ABC BC BE ⊥(1)求证:平面ABED ⊥平面BCFE ; (2)求直线DF 与平面ABF 所成角的正弦值.22.如图,四棱锥P ABCD -的底面为直角梯形,且AB AD ⊥,BC //AD ,BC AB =112AD ==,10PA PD ==,平面PAD ⊥平面ABCD ,点M 为棱PD 上动点.(1)当M 为PD 的中点时,平面PAB ⋂平面PCD =l ,求证:l //平面ACM ; (2)是否存在点M 使二面角M AC D --的余弦值为2211,若存在,请确定M 的位置;若不存在,请说明理由.23.在四棱台1111ABCD A BC D -中,底面ABCD 是边长为2的菱形,1111AAA B ==,120BAD ∠=︒,1AA ⊥平面ABCD .(1)E 是棱AD 的中点,求证:1//B E 平面11CDD C ;(2)试问棱AD 上是否存在点M ,使得二面角111M A B D --的余弦值是5719?若存在,求点M 的位置;若不存在,请说明理由.24.如图.四棱柱ABCD-A 1B 1C 1D 1的底面是直角梯形,BC ∥AD ,AB AD ,AD=2BC=2,四边形ABB 1A 1和ADD 1A 1均为正方形.(1)证明;平面ABB 1A 1平面ABCD ; (2)求二面角B 1 CD-A 的余弦值.25.如图,四棱锥P ABCD -,PD ⊥平面ABCD ,//AD BC ,AB BC ⊥,1,2AB BC PD AD ====.(1)求证:平面PAC ⊥上平面PCD(2)求平面PAB 与平面PCD 所成锐二面角的余弦值.26.如图,在三棱锥P ABC -中,PAC △为等腰直角三角形,90APC ∠=︒,ABC 为正三角形,D 为AC 的中点,2AC =.(1)证明:PB AC ⊥; (2)若三棱锥P ABC -的体积为33,求二面角A PC B --的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】由已知以D 为原点建立空间直角坐标系,设(0,0,)P a ,求得,DP AE 的坐标,由数量积公式可得答案. 【详解】由已知DP DA DC 、、两两垂直,所以以D 为原点,建立如图所示的坐标系, 设(0)PD a a =>,则(0,0,)P a ,(2,0,0)A ,连接BD 取中点F ,连接EF ,所以//EF PD ,EF ⊥平面ABCD , 所以(1,1,)2a E ,所以(0,0,)DP a =,(1,1,)2a AE =-,由3cos ,3DP AE =,得2232cos ,3114a DP AE DP AE DP AE a a ⋅===⋅⋅++, 解得2a =. 故选:D.【点睛】本题考查了空间向量的数量积公式的应用,关键点是建立空间直角坐标系,由数量积公式求得a ,考查了学生的空间想象力.2.B解析:B 【分析】以D 为坐标原点建立如图所示的空间直角坐标系,先利用向量找出截面与11A D 、AD 和AB 的交点,再过Q 作//QF MN 交11B C 于F ,过F 作//EF QM ,交1BB 于E ,即可判断截面形状. 【详解】以D 为坐标原点建立如图所示的空间直角坐标系,则()()()120,0,5,25,0,10,0,10,0P A C ,()125,10,10AC ∴=--, 设截面与11A D 交于(),0,10Q Q x ,则()20,0,5Q PQ x =-,()12520500Q A C PQ x ∴⋅=---=,解得18Q x =,即()18,0,10Q ,设截面与AD 交于(),0,0M M x ,则()20,0,5M PM x =--,()12520500M AC PM x ∴⋅=--+=,解得22Mx =,即()22,0,0M , 设截面与AB 交于()25,,0N N y ,则()3,,0N MN y =,1253100N AC MN y ∴⋅=-⨯+=,解得7.5N y =,即()25,7.5,0N , 过Q 作//QF MN ,交11B C 于F ,设(),10,10F F x ,则()18,10,0F QF x =-, 则存在λ使得QF MN λ=,即()()18,10,03,7.5,0F x λ-=,解得22F x =,故F 在线段11B C 上,过F 作//EF QM ,交1BB 于E ,设()25,10,E E z ,则()3,0,10E EF z =--, 则存在μ使得EF QM μ=,即()()3,0,104,0,10E z μ--=-,解得 2.5E z =,故E 在线段1BB 上,综上,可得过点P 且与1AC 垂直的长方体截面为五边形QMNEF . 故选:B.【点睛】本题考查截面的形状的判断,解题的关键是先利用向量找出截面与11A D 、AD 和AB 的交点,即可利用平面的性质找出其它点的位置.3.D解析:D 【分析】建立空间直角坐标系,根据P 在11BCC B 内可设出P 点坐标,作1HM BB ⊥,连接PM ,可得222HP HM MP =+,作1PN CC ⊥,根据空间中两点间距离公式,再根据二次函数的性质,即可求得2HP 的范围.【详解】根据题意,以D 为原点建立空间直角坐标系如图所示:作1HM BB ⊥交1BB 于M,连接PM ,则HM PM ⊥ 作1PN CC ⊥交1CC 于N ,则PN 即为点P 到平面11CDD C 距离. 设(),3,P x z ,则()()()1,3,2,3,3,2,0,3,F M N z ()03,03x z ≤≤≤≤ ∵点P 到平面11CDD C 距离等于线段PF 的长 ∴PN PF =由两点间距离公式可得()()2212x x z =-+-()2212x z -=-,则210x -≥解不等式可得12x ≥ 综上可得132x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222332x z =+-+-()223321x x =+-+-()2213x =-+132x ⎛⎫≤≤ ⎪⎝⎭所以213HP ≥(当时2x = 取等) 故选:D 【点睛】本题考查了空间直角坐标系的综合应用,利用空间两点间距离公式及二次函数求最值,属于难题.4.C解析:C 【分析】画出已知图形,可得出OBC ∆是以OB 为斜边的直角三角形,求出OB 的长度,则线段BC 长的范围即可求出.【详解】 如下图所示:AO α⊥,BC α⊂,BC AO ∴⊥.又BC AC ⊥,AO AC A ⋂=,AO 、AC ⊂平面ACO ,BC ∴⊥平面ACO . OC ⊂平面ACO ,OC BC ∴⊥,在Rt OAB ∆中,6AO =,30ABO =∠,63tan 30AO OB ∴==. 在平面α内,要使得OBC ∆是以OB 为斜边的直角三角形,则0BC OB <<,即063BC <<BC 长的取值范围是(0,63.故选C.【点睛】本题考查线段长度的取值范围的求解,同时也考查了线面角的定义,解题的关键就是推导出线面垂直,得出线线垂直关系,从而构造直角三角形来求解,考查推理能力与计算能力,属于中等题. 5.A解析:A【分析】求出直线1l 、2l 的方向向量数量积为0,由此得到1l 与2l 的位置关系.【详解】由题意,直线1l 、2l 的方向向量分别为(1,2,2)a =-,(2,3,2)b =-,2640a b ⋅=-+-=,∴1l 与2l 的位置关系是12l l ⊥.故选A .【点睛】本题主要考查了两直线的位置关系的判断,考查直线与直线垂直的性质等基础知识,着重考查运算求解能力,属于基础题.6.A解析:A【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值.【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()0,2,PB a b =--=PBC 的面积为(122BC PB⨯⨯==126105a ==时,面积取得最小值为=,故选A. 【点睛】本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值.7.C解析:C【详解】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D 为坐标原点,DA,DC,DD 1为x,y,z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),D A B D ,所以11(1,0,3),(1,1AD DB =-=, 因为1111111cos ,52AD DB AD DB AD DB ⋅-===⨯,所以异面直线1AD 与1DB 所成角的余C. 点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.8.D解析:D【解析】分析:利用向量多边形与三角形法则即可求出,首先分析题中各选项都是由从O 出发的三个向量表示的,所以将待求向量用从O 出发的向量来表示,之后借助于向量的差向量的特征以及中线向量的特征,求得结果.详解:由题意可得21()32EF OF OE OA OB OC =-=-+ 211322OA OB OC =--,故选D. 点睛:该题考查的是有关空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题. 9.D解析:D【分析】试题分析:结合其空间立体图形易知,112222=⨯⨯=S ,2312222S S ==⨯⨯=,所以23S S =且13S S ≠,故选D .考点:空间直角坐标系及点的坐标的确定,正投影图形的概念,三角形面积公式. 10.A解析:A【分析】求出平面ABCD 的法向量n ,计算法向量n 与AP 的夹角得出AP 与平面ABCD 的夹角,从而可求出P 到平面ABCD 的距离. 【详解】 解:设平面ABCD 的法向量为(n x =,y ,)z ,则n ABn AD ⎧⊥⎨⊥⎩,∴23020x y z x y -+=⎧⎨-+=⎩,令1x =可得2y =,0z =,即(1n =,2,0), cos ,||||526n AP n AP n AP ∴<>==⨯ 设AP 与平面ABCD 所成角为α,则sin 526α=⨯,于是P 到平面ABCD 的距离为5||sin 5AP α=,即四棱锥P ABCD -的高为55. 故选:A .【点睛】 本题考查了空间向量在立体几何中的应用,属于基础题.11.B解析:B【分析】建立空间直角坐标系,求出点M 的轨迹,然后求出点M 到直线AB 的最远距离【详解】以D 为原点,DA 为x 轴,DC 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系则(2,0,23P ,()0,4,0,C设(),,0M a b ,04,04a b ≤≤≤≤ (2,,23MP a b ∴=--,(),4,0MC a b =-- •0MP MC =,22•240MP MC a a b b ∴=-+-+=,整理得()()22125a b -+-= M ∴为底面ABCD 内以()12O ,为圆心,以5r = 则点M 到直线AB 的最远距离为41535-=故选B【点睛】本题考查了运动点的轨迹问题,需要建立空间直角坐标系,结合题意先求出运动点的轨迹,然后再求出点到线的距离问题12.D解析:D【分析】建立空间直角坐标系,利用向量的坐标运算即可求解.【详解】如图建立空间直角坐标系A xyz -,设1,,AB a AD b AA c ===,则111(,0,),(,,0),(0,,),(,,)AB a c AC a b AD b c AC a b c ====.则111(2,2,2)2AB AC AD a b c AC ++==,所以21111()2()6AB AC AD AC AC ++⋅==.故选:D【点睛】本题主要考查了向量的坐标运算,向量的模的概念,属于容易题.二、填空题13.【分析】以为原点为轴为轴为轴建立空间直角坐标系利用向量法即可求解到平面的距离【详解】以为原点为轴为轴为轴建立空间直角坐标系则所以设平面的法向量为则取得所以到平面的距离故答案为:【点睛】本题主要考查了 6【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法,即可求解A 到平面11BD A 的距离【详解】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 则11(1,0,0),(1,0,2),(1,1,0),(0,0,2)A A B D , 所以11(0,1,2),(1,1,2),(0,1,0)BA BD BA =-=--=-, 设平面11BD A 的法向量为(,,)n x y z =, 则112020n BA y z n BD x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩,取1z =,得(0,2,1)n =,所以A 到平面11BD A 的距离2633n BAd n ⋅===. 故答案为:63. 【点睛】本题主要考查了点到平面的距离的求法,其中解答中熟记空间向量在立体几何中的应用,合理利用空间向量运算是解答的关键,着重考查了推理与运算能力,属于基础题. 14.【分析】设空间向量由已知条件可得的值由对任意得:进而得到答案【详解】解:空间向量设空间向量空间向量又由对任意则故故答案为:【点睛】本题考查的知识点是空间向量的数量积运算空间向量的模属于中档题 解析:22【分析】设空间向量(),,c m n z =,由已知条件可得m 、n 的值,由对任意x ,y R ∈,00|()||()|1c xa yb c x a y b -+-+=得:||1z =,进而得到答案.【详解】解:空间向量(1,0,0)a =,13(,22b =, 设空间向量(),,c m n z =,2c a ⋅=,52c b ⋅=, 2m ∴=,13522m = 2m ∴=,3n =, ∴空间向量()2,3,c z =, 又由对任意x ,y R ∈,()()001c xa yb c x a y b -+≥-+=,则||1z =, 故()22223122c =++=故答案为:【点睛】本题考查的知识点是空间向量的数量积运算,空间向量的模,属于中档题.15.【分析】以为原点建立空间直角坐标系写出相应点的坐标从而表示出和平面的法向量根据向量的夹角公式得到答案【详解】以为原点为轴为轴为轴建立空间直角坐标系如图所示设正方体棱长为则所以设面的法向量为所以取得设【分析】以D 为原点,建立空间直角坐标系,写出相应点的坐标,从而表示出BM 和平面11AC B 的法向量,根据向量的夹角公式,得到答案.【详解】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,如图所示,设正方体棱长为2,则()12,0,2A ,()10,2,2C ,()2,2,0B ,()0,1,2M所以()10,2,2BA =-,()12,0,2BC =-,()2,1,2BM =--,设面11BAC 的法向量为(),,m x y z =, 所以1100BA m BC m ⎧⋅=⎪⎨⋅=⎪⎩,220220y z x z -+=⎧⎨-+=⎩, 取1z =,得()1,1,1m =,设直线BM 和平面11AC B 所成的角为θ,所以sin cos ,m BMm BM m BM θ⋅==⋅9==, 所以直线BM 和平面11ACB【点睛】本题考查利用空间向量的方法求线面角,属于中档题.16.【解析】如图将正方体关于面对称则就是所求的最小值 14. 【解析】 如图,将正方体1111ABCD A BC D -关于面ABCD 对称,则1EC 就是所求的最小值,222113114124EC EN NC ⎛⎫=+=++= ⎪⎝⎭. 17.①②④【解析】①项时为而时线段上同理存在一点与平行此时为四边形且是梯形故命题①为真;②项是等腰梯形故命题②为真;③项当时如图所示∵点是的中点∴∴∴与的交点满足故命题③为假④项如图所示为五边形故命题④解析:①②④【解析】①项,12CQ =时,S 为APQD , 而102CQ <<时,线段1DD 上同理,存在一点,与PQ 平行, 此时,S 为四边形,且是梯形,故命题①为真;②项,1AP D Q =,1AD PQ ,1APQD 是等腰梯形,故命题②为真;③项 当34CQ =时,如图所示,0AP DC ⋂=, ∵点P 是BC 的中点,∴CO CD AB ==, ∴1113C R C Q CO QC ==, ∴S 与11C D 的交点R 满足113C R =, 故命题③为假. ④项,如图所示,S 为五边形,故命题④为真;⑤项,如图所示,S 221526222222⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭,故命题⑤为假.综上所述,命题正确的是:①②④.18.3【详解】∵且平面与平面的法向量分别为∴解得:解析:3【详解】∵αβ⊥,且平面α与平面β的法向量分别为m ,n ,∴(1,2,5)(3,6,)31250m n z z ⋅=-⋅-=--+=,解得:3z =.19.()()()【解析】()中①⑤②④③⑥相对()中①④②⑤③⑥相对()中①④②⑤③⑥相对()中①④②⑤③⑥相对点睛:先由几何体的展开图还原几何体的形状根据熟悉的柱锥台球的图形明确几何体的展开对应关系结解析:(2)(3)(4)【解析】(1)中①⑤、②④、③⑥相对,(2)中①④、②⑤、③⑥相对,(3)中①④、②⑤、③⑥相对,(4)中①④、②⑤、③⑥相对.点睛:先由几何体的展开图还原几何体的形状.根据熟悉的柱、锥、台、球的图形,明确几何体的展开对应关系,结合空间想象将展开图还原为实物图.再在具体几何体中研究对应线面位置关系20.【分析】根据点面距离公式再由向量的坐标运算得到结果即可【详解】平面的法向量为故所求距离故答案为【点睛】这个题目考查了点面距离的求法方法一可以同这个题目一样建系解决;方法二可以通过等体积法得到点面距离 14【分析】根据点面距离公式,再由向量的坐标运算得到结果即可.【详解】()1,2,2MN =,平面α的法向量为()2,1,3n =--, 故所求距离·214714MN nd n ===. 故答案为147. 【点睛】 这个题目考查了点面距离的求法,方法一可以同这个题目一样建系解决;方法二可以通过等体积法得到点面距离;方法三,如果题中条件有面面垂直的条件,可由点做面的垂线,垂足落在交线上.三、解答题21.(1)证明见解析;(2)4214. 【分析】(1)过E 作EH AB ⊥于H ,由面面垂直得EH ⊥平面ABC ,从而有EH BC ⊥,再结合已知,BC BE ⊥可得线面垂直后得线线垂直;(2)将三棱台ABC DEF -补体成三棱锥P ABC -,以B 为原点建立空间直角坐标系(如图),设2AB =,得出各点坐标,求出平面ABF 的法向量,由空间向量法求得线面角的正弦值.【详解】解:(1)过E 作EH AB ⊥于H ,因为面ABED ⊥面ABC ,面ABED ⋂面ABC BC =,所以EH ⊥平面ABC ,而BC ⊂平面ABC ,所以EH BC ⊥,又,BC BE ⊥BE EH E =,,BE EH ⊂平面ABED ,所以BC ⊥面ABED ,又BC ⊂平面BCFE所以平面ABED ⊥平面;BCFE(2)将三棱台ABC DEF -补体成三棱锥P ABC -,则,,D E F 分别是,,PA PB PC 的中点,PAB △是正三角形,设2AB =,以B 为原点建立空间直角坐标系(如图),()()()13330,1,3,0,2,0,2,0,0,1,,,0,,2222P A C F D ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ()()131,1,0,0,2,0,1,,22DF BA BF ⎛⎫∴=-== ⎪ ⎪⎝⎭设平面ABF 的法向量为,,,n x y z由00n AB n FB ⎧⋅=⎨⋅=⎩,有013022y x y z =⎧⎪⎨++=⎪⎩,令2z =得()3,0,2n =-. 42sin 14||||n DF n DF θ⋅∴==⋅∣.【点睛】方法点睛:本题考查证明面面垂直,求直线与平面所成的角.求线面角的常用方法(1)定义法,作出直线在平面内的射影(主要过直线上一点作平面的垂线),由直线与射影的夹角得出直线与平面所成的角(注意证明),然后解三角形得结论;(2)空间向量法,建立空间直角坐标系,求出平面的法向量,由直线的方向向量与平面的法向量夹角余弦值的绝对值得线面角的正弦值.22.(1)证明见解析;(2)M 为PD 的靠近点P 三等分点时,二面角M AC D --的余弦值为2211. 【分析】(1)延长,AB DC 交于Q ,连接PQ ,PQ 即为直线l ,证明//MC PQ 即可得线面平行; (2)取AD 的中点O ,连接OP ,OC ,分别以OC ,OD ,OP 为x 轴,y 轴,z 轴建立空间直角坐标系-O xyz .设DM DP λ=,利用空间向量法求二面角的余弦,由已知余弦值可求得λ,即存在.【详解】(1)延长,AB DC 交于Q ,连接PQ .则易知PQ 为平面PAB 与平面PCD 的交线,即:PQ 与l 重合.由题意,在ADQ △中://BC AD ,且12BC AD =, 故C 为DQ 的中点.又∵M 为PD 的中点,∴//MC PQ .又∵MC ⊂平面ACM ,PQ ⊄平面ACM ,∴//PQ 平面ACM ,即//l 平面ACM .(2)取AD 的中点O ,连接OP ,OC ,由题意可得:OP AD ⊥,OC AD ⊥. 又∵平面PAD ⊥平面ABCD ,则OP ⊥平面ABCD ,∴分别以OC ,OD ,OP 为x 轴,y 轴,z 轴建立空间直角坐标系-O xyz .则()0,1,0A -,()1,0,0C ,()0,1,0D ,()0,0,3P ,()0,1,3DP =-,()0,2,0AD =,()1,1,0AC =∵M 在棱PD 上,不妨设()()0,1,30,,3DM DP λλλλ==-=-,其中01λ≤≤.∴AM AD DM =+()()0,2,00,,3λλ=+-()0,2,3λλ=-,设平面MAC 的一个法向量为(),,m x y z =,则00m AM m AC ⎧⋅=⎨⋅=⎩即()2300y z x y λλ⎧-+=⎨+=⎩, 令2z λ=-解得:3y λ=-,3x λ=.即()3,3,2m λλλ=--.又∵平面ACD 的一个法向量()0,0,1m =. ∴()()()222222cos ,332m n λλλλ-<>==+-+-23λ=. 所以,M 为PD 的靠近点P 三等分点时,二面角M AC D --的余弦值为2211. 【点睛】方法点睛:本题考查证明线面平行,求二面角.求二面角的方法: (1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论; (2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补).23.(1)证明见解析;(2)存在,M 为AD 边上靠近A 的四等分点.【分析】(1)先证11//B E C D ,再根据线面平行判定定理即可证明命题;(2)取BC 中点G ,根据AG ,AD ,1AA 两两互相垂直建立坐标系,设点(0,,0)M t 分别求得平面11MA B 和平面111A B D 的法向量,再由二面角公式解得t 值,从而确定M 的位置.【详解】(1)证明:连1DC ,由1B C //AD ,得11B C E //D =, 故四边形11B EDC 为平行四边形.11//B E C D =,1C D ⊂平面11CDD C ,1B E ⊂/平面11CDD C , 所以1//B E 平面11CDD C ,(2)假设M 点存在,取BC 中点G ,因为底面ABCD 是菱形,120BAD ∠=︒,所以AG BC ⊥,AG AD ⊥,又1AA ⊥面ABCD ,所以AG ,AD ,1AA 两两互相垂直.以A 为坐标原点,AG ,AD ,1AA 为正方向建立空间直角坐标系A xyz -.由2AB =,得3AG =(0,,0)M t ,其中[0,2]t ∈.1(0,0,1)A ,131,122B ⎛⎫- ⎪ ⎪⎝⎭,()10,,1A M t =-,1131,022A B ⎛⎫=- ⎪ ⎪⎝⎭. 设()1,,n x y z =为平面11MA B 的一个法向量,则1111100n A B n MA ⎧⋅=⎪⎨⋅=⎪⎩,即31020y ty z ⎧-=⎪⎪-=⎩可取()11,3,3t n =. 易知平面111A B D 一个法向量为()20,0,1n =由1221212357cos ,19133n n n n n n t t ⋅===++‖,得12t =, 故M 为AD 边上靠近A 的四等分点.【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.24.(1)详见解析;(2)66. 【分析】(1)根据四边形ABB 1A 1和ADD 1A 1均为正方形,得到11,AA AB AA AD ⊥⊥,再由线面垂直的判定定理证得1AA ⊥平面ABCD ,然后利用面面垂直的判定定理证明.(2)以A 为原点,以1,,AB AD AA 分别为x ,y ,z 轴,建立空间直角坐标系,求得平面1BCD 的一个法向量为(),,m x y z =,又平面CDA 的一个法向量为()0,0,1n =,然后由cos ,m n m n m n ⋅=⋅求解.【详解】 (1)因为四边形ABB 1A 1和ADD 1A 1均为正方形.所以11,,AA AB AA AD AB AD A ⊥⊥⋂=,所以1AA ⊥平面ABCD ;又因为1AA ⊂平面ABB 1A 1,所以平面ABB 1A 1平面ABCD ;(2)以A 为原点,以1,,AB AD AA 分别为x ,y ,z 轴,建立空间直角坐标系:则()()()()10,0,0,2,1,0,0,2,0,2,0,2A C D B ,所以()()12,1,0,0,1,2CD CB =-=-,设平面1BCD 的一个法向量为(),,m x y z =, 则100m CD m CB ⎧⋅=⎪⎨⋅=⎪⎩,即2020x y y z -+=⎧⎨-+=⎩, 令1,2,1x y z ===,则()1,2,1m =,又平面CDA 的一个法向量为()0,0,1n =, 所以16cos ,66m nm n m n ⋅===⋅, 二面角B 1CD-A 6 【点睛】 方法点睛:求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.25.(1)证明见解析;(210 【分析】(1)证明AC CD ⊥,可得AC ⊥平面PCD ,从而得证面面垂直;(2)以,AB AD 为,x y 轴,过A 平行DP 的直线为z 轴,建立空间直角坐标系A xyz -,用空间向量法求二面角.【详解】(1)证明:∵//AD BC ,AB BC ⊥,1,2AB BC AD ===.∴2AC =2CD =,222AC CD AD +=,∴AC CD ⊥,∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴PD AC ⊥,又CD PD D = ∴AC ⊥平面PCD ,又AC ⊂平面PAC ,∴平面PAC ⊥平面PCD .(2)以,AB AD 为,x y 轴,过A 平行DP 的直线为z 轴,建立空间直角坐标系A xyz -, 则(0,0,0),(1,0,0),(1,1,0),(0,2,0),A B C D (0,2,1)P ,(0,2,1)AP =,(1,0,0)AB =,设平面PAB 的一个法向量为(,,)m x y z =,则200m AP y z m AB x ⎧⋅=+=⎨⋅==⎩,取1y =,则(0,1,2)m =-, 由(1)知平面PCD 的一个法向量为(1,1,0)AC =,10cos ,25AC mAC m AC m ⋅<>===⨯, 由图可得平面PAB 与平面PCD 10【点睛】方法点睛:本题考查证明面面垂直,考查用向量法二面角,求二面角的方法:(1)几何法(定义法):作出二面角的平面角并证明,然后解三角形求得平面角的大小; (2)建立空间直角坐标系,求出二面角的两个面的法向量,由法向量的夹角与二面角相等或互补可得.26.(1)证明见解析;(2)77. 【分析】(1)根据PAC △为等腰直角三角形,D 为中点,得到PD AC ⊥,再根据ABC 为正三角形,D 为中点,得到BD AC ⊥.然后利用线面垂直的判定定理证明. (2)设三棱锥P ABC -的高为h ,由 113332P ABC V AC BD h -=⨯⨯⨯⨯==, 求得h ,由以D 为坐标原点,建立空间直角坐标系,设为平面PBC 的一个法向量(),,n x y z =,又DB 是平面PAC 的一个法向量,然后由cos ,DB n DB n DB n ⋅=求解.. 【详解】(1)∵PAC △为等腰直角三角形,D 为中点,.∴PD AC ⊥,又ABC 为正三角形,D 为中点,∴BD AC ⊥.又PD BD D ⋂=,PD ,BD ⊂平面PBD ,∴AC ⊥平面PBD .又PB ⊂平面PBD ,∴PB AC ⊥.(2)设三棱锥P ABC -的高为h ,sin603BD BC =︒= ∴113332P ABC V AC BD h -=⨯⨯⨯⨯==, ∴1h =.又112PD AC ==, ∴PD ⊥平面ABC .如图,以D 为坐标原点,建立空间直角坐标系D xyz -,则()1,0,0A ,()3,0B ,()1,0,0C -,()0,0,1P ∴()0,3,0=DB ,()1,0,1CP =,()1,3,0CB =.设(),,n x y z =为平面PBC 的一个法向量, 则00CP n CB n ⎧⋅=⎨⋅=⎩,即030x z x +=⎧⎪⎨+=⎪⎩ 令1x =,得331y z ⎧=-⎪⎨⎪=-⎩∴31,13n ⎛⎫=-- ⎪ ⎪⎝⎭. 又DB 是平面PAC 的一个法向量, ∴7cos ,7DB nDB n DB n ⋅==- ∴二面角A PC B --7 【点睛】方法点睛:向量法求二面角的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.。
最新北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(包含答案解析)(2)

一、选择题1.如图,四边形ABCD 和ABEF 都是正方形,G 为CD 的中点,60DAF ∠=,则直线BG 与平面AGE 所成角的余弦值是( )A .25B .105C .155D .2152.已知空间三点坐标分别为A (4,1,3),B(2,3,1),C (3,7,-5),又点P (x,-1,3) 在平面ABC 内,则x 的值 ( ) A .-4B .1C .10D .113.将直角三角形ABC 沿斜边上的高AD 折成120︒的二面角,已知直角边43,46AB AC ==,那么下面说法正确的是( )A .平面ABC ⊥平面ACDB .四面体D ABC -的体积是86C .二面角A BCD --的正切值是423D .BC 与平面ACD 所成角的正弦值是2174.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为( )A .12B 2C .13D .165.下列命题中是真命题的是( )A .分别表示空间向量的两条有向线段所在的直线是异面直线,则这两个向量不是共面向B .若a b =,则,a b 的长度相等而方向相同或相反C .若向量,AB CD ,满足AB CD >,且AB 与CD 同向,则AB CD > D .若两个非零向量AB 与CD 满足0AB CD +=,则//AB CD6.如图,在空间四边形OABC 中,点E 为BC 中点,点F 在OA 上,且2OF FA =, 则EF 等于( )A .121+232OA OB OC - B .211+322OA OB OC -+ C .111222OA OB OC +- D .211322OA OB OC -- 7.侧棱长都都相等的四棱锥P ABCD -中,下列结论正确的有( )个 ①P ABCD -为正四棱锥;②各侧棱与底面所成角都相等; ③各侧面与底面夹角都相等;④四边形ABCD 可能为直角梯形 ( ) A .1B .2C .3D .48.如图,在平行六面体1111ABCD A BC D -中,M 为11AC 与11B D 的交点.若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( )A .11+22+a b c B .1122a b c -+ C .1122-++a b c D .1122+-a b c 9.已知菱形ABCD 中,∠60ABC =︒,沿对角线AC 折叠之后,使得平面BAC ⊥平面DAC ,则二面角B CD A --的余弦值为( ).A .2B .12C .33D .5510.在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A .3λB .22C .23λ D .5511.《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑,如图,在鳖臑P ABC -中,PA ⊥平面ABC ,AB BC ⊥,且1PA AB BC ===,则二面角A PCB --的大小是( )A .30B .45︒C .60︒D .90︒12.已知a =(λ+1,0,6),b =(2λ+1,2μ﹣1,2).若//a b ,则λ与μ的值分别为( )A .﹣5,﹣2B .1152--,C .5,2D .2152-,二、填空题13.如图,在正三棱柱111ABC A B C -中,12,AB AC AA === ,E F 分别是,BC 11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所成角的余弦值为104,则线段BD 的长为_______.14.设(3,3,1),(1,0,5),(0,1,0)A B C ,则AB 中点M 到C 的距离CM = _______. 15.若直线l 的一个方向向量(1,3)d =,则l 与直线10x y -+=的夹角为______. 16.如图,空间四边形OABC 中,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,分MN 所成的定比为2,OG xOA yOB zOC =++,则,,x y z 的值分别为_____.17.已知αβ⊥,平面α与平面β的法向量分别为m ,n ,且(1,2,5)m =-,(3,6,)n z =-,则z =__________.18.已知()()()2,1,2,1,3,3,13,6,a b c λ=-=--=,若向量,,a b c 共面,则λ=_________.19.三棱锥V-ABC 的底面ABC 与侧面VAB 都是边长为a 的正三角形,则棱VC 的长度的取值范围是_________.20.如图,在四面体D ABC -中,5AD BD AC BC ====,6AB DC ==.若M 为线段AB 上的动点(不包含端点),则二面角D MC B --的余弦值取值范围是__________.三、解答题21.如图,在多面体ABCDEF 中,等腰梯形ABCD 所在平面垂直于正方形CDEF 所在平面,1,2DA AB BC CD ====.(Ⅰ)求证:AC ⊥平面ADE ;(Ⅱ)求BF 与平面ADE 所成角的正弦值.22.已知在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD △是正三角形,CD ⊥平面PAD ,,,,E F G O 分别是,,,PC BC PD AD 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求平面EFG 与平面ABCD 所成锐二面角的大小.23.如图,在三梭柱111ABC A B C -中,侧面11AA B B ,11AACC 均为菱形,12AA =,1160ABB ACC ∠=∠=︒,D 为AB 的中点.(Ⅰ)求证:1//AC 平面1CDB ;(Ⅱ)若60BAC ∠=︒,求直线1AC 与平面11BB C C 所成角的正弦值.24.如图,在三棱台111ABC A B C -中,1AA ⊥平面ABC ,90BAC ∠=︒,4AB =,11112A B AC ==,11AB BC ⊥.(1)求1AA 的长;(2)求二面角11B AC C --的正弦值.25.如图,在四棱锥P ABCD -中,60APB BPD APD ∠=∠=∠=︒,4PB PD BC CD ====,6AP =.(Ⅰ)证明:AP BD ⊥;(Ⅱ)求PC 与平面PAD 所成角的正弦值.26.如图,四棱锥中P ABCD -中,底面ABCD 是直角梯形,//AB CD ,60DAB ∠=︒,2AB AD CD ==,侧面PAD ⊥底面ABCD ,且PAD △为等腰直角三角形,90APD ∠=︒.(Ⅰ)求证:AD PB ⊥;(Ⅱ)求平面PAD 与平面PBC 所成锐二面角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】以A 为原点,以AD 、AB 的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴建立空间直角坐标系,设2AB =,利用空间向量法可求得直线BG 与平面AGE 所成角的正弦值,再利用同角三角函数的基本关系可求得结果.【详解】以A 为原点,以AD 、AB 的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴,建立如图所示的空间直角坐标系A xyz -.设2AB =,得()0,0,0A 、()2,1,0G 、()0,2,0B 、(1,3E , 则()2,1,0AG =,(3AE =,()2,1,0BG =-,设平面AGE 的法向量为(),,n x y z =,则2020n AG x y n AE x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,则2y =-,z = 所以,平面AGE的一个法向量为(1,2,n =-,从而cos ,522n BG n BG n BG⋅<>===⋅, 故直线BG与平面AGE =.故选:C. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.2.D解析:D 【分析】利用平面向量的共面定理即可求出答案 【详解】(),1,3P x -点在平面ABC 内,λμ∴存在实数使得等式AP AB AC λμ=+成立()()()4,2,02,2,21,6,8x λμ∴--=--+--42226028x λμλμλμ-=--⎧⎪∴-=+⎨⎪=--⎩,消去λμ,解得11x = 故选D 【点睛】本题主要考查了空间向量的坐标运算,共面向量定理的应用,熟练掌握平面向量的共面定理是解决本题的关键,属于基础题。
【教学参考】高二北师大版数学选修2-1同步作业:第2章 空间向量基本定理 Word版含答案[ 高考]
![【教学参考】高二北师大版数学选修2-1同步作业:第2章 空间向量基本定理 Word版含答案[ 高考]](https://img.taocdn.com/s3/m/aefab85627284b73f24250fa.png)
珍贵文档空间向量基本定理 同步练习【选择题】1.下列命题正确的是 ( )A 、 如果向量→-a ,→-b 与任何向量不能构成空间的基底,那么→-a ,→-b 不共线B 、如果→-a ,→-b ,→-c 是三个基向量,那么→-a +→-b ,→-b +→-c ,→-c +→-a ,不能构成空间的一个基底C 、若→--OA ,→--OB ,→--OC 不构成空间的一个基底,那么O ,A ,B ,C 四点共面D 、空间中的基底只有有限个2.直三棱柱ABC —A 1B 1C 1中,若====A CC 11,,,则( )A .-+B .+-C .++-D .-+- 3.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅ 则△BCD 是 ( )A. 钝角三角形B.直角三角形C.锐角三角形D.不确定4.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M与点A 、B 、C 一定共面的是( )A .++=B .--=2C .1123OM OA OB OC =++D .111333OM OA OB OC =++ 5.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ( )A .n m //B . n m ⊥C .也不垂直于不平行于,D .以上三种情况都可能 【填空题】6.已知点G 是△ABC 的重心,O 是空间任一点,若的值则λλ,=++为 .7.若{,,a b c }构成空间的一个基底,实数x,y,z 满足0x a y b z c ++=,则x= ,y= ,z= .8.已知S 是△ABC 所在平面外一点,D 是SC 的中点,若BD =xAB yAC zAS ++, 则x +y +z = .珍贵文档 【解答题】9.平行六面体ABCD —A 1B 1C 1D 1中,=→--AB →-a ,=→--AD →-b ,=→--1AA →-c ,P ,M ,N 分别是CA 1,CD 1,C 1D 1的中点,点Q 在CA 1上,CQ∶QA 1=4∶1,试用基底{→-a ,→-b ,→-c }表示以下向量:→--AP ,→--AM ,→--AN ,→--AQ 。
北师大版高中数学高中数学选修2-1第二章《空间向量与立体几何》测试题(有答案解析)

一、选择题1.长方体1111ABCD A BC D -,110AB AA ==,25AD =,P 在左侧面11ADD A 上,已知P 到11A D 、1AA 的距离均为5,则过点P 且与1AC 垂直的长方体截面的形状为( )A .六边形B .五边形C .四边形D .三角形2.长方体12341234A A A A B B B B -的底面为边长为1的正方形,高为2,则集合12{|i j x x A B A B =⋅,{1,2,3,4},{1,2,3,4}}i j ∈∈中元素的个数为( )A .1B .2C .3D .43.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC的值为( ) A .0B .22C .12-D .124.如图:在直棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,,,P Q M 分别是A 1B 1,BC,CC 1的中点,则直线PQ 与AM 所成的角是( )A .6π B .4π C .3π D .2π 5.已知正四棱柱1111ABCD A BC D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( )A .23B .33C .23D .136.若向量(3,1,0)a =,(1,0,)b z =,,3a b π=,则实数z 的值为( )A .2B .2C .2±D .2±7.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45°B .135°C .45°或135°D .90°8.已知正方体1111ABCD A BC D -的棱长为1,E 为1BB 的中点,则点C 到平面11A D E 的距离为 A .55B .52C .53D .359.在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A .3λB .22C .23λ D .5510.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定11.已知A 、B 、C 是不共线的三点,O 是平面ABC 外一点,则在下列条件中,能得到点M 与A 、B 、C 一定共面的条件是( ) A .111222OM OA OB OC =++ B .OM OA OB OC =++C .1133OM OA OB OC =-+ D .2OM OA OB OC =--12.如图,一个结晶体的形状为平行六面体,其中,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60︒,若对角线1AC 的长是棱长的m 倍,则m 等于( )A .2B .3C .1D .2二、填空题13.如图,正方体1111ABCD A BC D -中,E 为线段1BB 的中点,则AE 与1CD 所成角的余弦值为____.14.空间四边形ABCD 的两条对棱AC 、BD 的长分别为5和4,则平行于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是__________.15.已知四边形ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则顶点D 的坐标为________.16.在四面体ABCD 中,△ABD 和△BCD 均为等边三角形,AB =2,6AC =,则二面角B ﹣AD ﹣C 的余弦值为_____. 17.已知平行六面体中,则____.18.如图,已知平面α⊥平面β,A ,B 是平面α与平面β的交线上的两个定点,DA β⊂,CB β⊂,且DA AB ⊥,CB AB ⊥,4=AD ,8BC =,6AB =,在平面α内有一个动点P ,使得APD BPC ∠=∠,则PAB △的面积的最大值是______.19.正四棱柱1111ABCD A BC D -的底面边长为2,若1AC 与底面ABCD 所成角为60°,则11AC 和底面ABCD 的距离是________20.如图,在四面体D ABC -中,5AD BD AC BC ====,6AB DC ==.若M 为线段AB 上的动点(不包含端点),则二面角D MC B --的余弦值取值范围是__________.三、解答题21.如图1,正方形ABCE ,2AB =,延长CE 到达D ,使DE CE =,M ,N 两点分别是线段,AD BE 上的动点,且AM BN =.将三角形ADE 沿AE 折起,使点D 到达1D 的位置(如图2),且1D E EC ⊥.(Ⅰ)证明://MN 平面1DCE ; (Ⅱ)在线段1AD 上确定点M 的位置,使平面MBE 与平面ABE 所成角(锐角)的余弦值为33. 22.如图,Rt ABC △中,90ABC ∠=︒,2BA BC ==,分别过A ,C 作平面ABC 的垂线1A A 和1C C ,12AA =,1CC h =,连结1AC 和1AC 交于点P .(Ⅰ)设点M 为BC 中点,若2h =,求证:直线PM 与平面1A AB 平行;(Ⅱ)设O 为AC 中点,二面角11A AC B --等于45°,求直线OP 与平面1A BP 所成角的大小.23.如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中60BAD ∠=︒,22AB AD ==,45BAE GAD ∠=∠=︒.(Ⅰ)求证:平面ADG ⊥平面BDG ; (Ⅱ)求直线BG 与平面AGFE 所成角的正弦值.24.在四棱台1111ABCD A BC D -中,底面ABCD 是边长为2的菱形,1111AAA B ==,120BAD ∠=︒,1AA ⊥平面ABCD .(1)E 是棱AD 的中点,求证:1//B E 平面11CDD C ;(2)试问棱AD 上是否存在点M ,使得二面角111M A B D --的余弦值是5719?若存在,求点M 的位置;若不存在,请说明理由.25.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)若//PB 平面AEC ,请确定点E 的位置,并说明理由.(2)设2AB AP ==,3AD =,若13PE PD =,求二面角P AC E --的正弦值.26.如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 中点.(1)PB ∥平面AEC ;(2)设PA =1,ABC ∠60︒=,三棱锥E -ACD ,求二面角D -AE -C 的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】以D 为坐标原点建立如图所示的空间直角坐标系,先利用向量找出截面与11A D 、AD 和AB 的交点,再过Q 作//QF MN 交11B C 于F ,过F 作//EF QM ,交1BB 于E ,即可判断截面形状. 【详解】以D 为坐标原点建立如图所示的空间直角坐标系,则()()()120,0,5,25,0,10,0,10,0P A C ,()125,10,10AC ∴=--, 设截面与11A D 交于(),0,10Q Q x ,则()20,0,5Q PQ x =-,()12520500Q A C PQ x ∴⋅=---=,解得18Q x =,即()18,0,10Q ,设截面与AD 交于(),0,0M M x ,则()20,0,5M PM x =--,()12520500M AC PM x ∴⋅=--+=,解得22Mx =,即()22,0,0M , 设截面与AB 交于()25,,0N N y ,则()3,,0N MN y =,1253100N AC MN y ∴⋅=-⨯+=,解得7.5N y =,即()25,7.5,0N , 过Q 作//QF MN ,交11B C 于F ,设(),10,10F F x ,则()18,10,0F QF x =-, 则存在λ使得QF MN λ=,即()()18,10,03,7.5,0F x λ-=,解得22F x =,故F 在线段11B C 上,过F 作//EF QM ,交1BB 于E ,设()25,10,E E z ,则()3,0,10E EF z =--, 则存在μ使得EF QM μ=,即()()3,0,104,0,10E z μ--=-,解得 2.5E z =,故E 在线段1BB 上,综上,可得过点P 且与1AC 垂直的长方体截面为五边形QMNEF . 故选:B.【点睛】本题考查截面的形状的判断,解题的关键是先利用向量找出截面与11A D 、AD 和AB 的交点,即可利用平面的性质找出其它点的位置.2.C解析:C 【分析】建立空间直角坐标系,结合向量的数量积的定义,进行计算,即可求解. 【详解】由题意,因为正方体12341234A A A A B B B B -的底面为班车为1的正方形,高为2, 建立如图所示的空间直角坐标系,则12341234(1,1,0),(0,1,0),(0,0,0),(1,0,0),(1,1,2),(0,1,2),(0,0,2),(1,0,2)A A A A B B B B , 则12(1,0,2)A B =-, 与11(0,0,2)A B =相等的向量为223344A B A B A B ==,此时1211224A B A B ⋅=⨯=, 与14(0,1,2)A B =-相等的向量为23A B ,此时1214224A B A B ⋅=⨯=, 与41(0,1,2)A B =相等的向量为32A B ,此时1241224A B A B ⋅=⨯=, 与21(1,0,2)A B =相等的向量为34A B ,此时1221143A B A B ⋅=-+=, 与12(1,0,2)A B =-相等的向量为43A B ,此时1212145A B A B ⋅=+=, 体对角线向量为13(1,1,2)A B =--,此时1213145A B A B ⋅=+=, 24(1,1,2)A B =-,此时1224143A B A B ⋅=-+=,31(1,1,2)A B =,此时1231143A B A B ⋅=-+=, 42(1,1,2)A B =-,此时1242145A B A B ⋅=+=,综上集合11{|,{1,2,3,4},{1,2,3,4}}{3,4,5}i j x x A B A B i j =⋅∈∈=,集合中元素的个数为3个.故选:C .【点睛】本题主要考查了集合的元素的计算,以及向量的数量积的运算,其中解答中建立恰当的空间直角坐标系,熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.A解析:A 【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解. 【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅coscos33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=. 故选A . 【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4.D解析:D 【分析】建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可. 【详解】以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -, 设2AB =,则()()()()0,0,0,1,0,2,1,1,0,0,2,1A P Q M , 据此可得:()()0,1,2,0,2,1PQ AM =-=,0PQ AM ⋅=,故PQ AM ⊥,即直线PQ 与AM 所成的角是2π.本题选择D 选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.5.A解析:A 【详解】试题分析:设1AB =112,5BD BC DC ∴===, 1BDC ∆面积为3211C BDC C BCD V V --=131********d d ∴⨯⨯=⨯⨯∴=2sin 3d CD θ∴==考点:线面角6.C解析:C 【解析】分析:根据两个向量的数量积的定义式,推导出其所成角的余弦公式,从而利用cos ,a b a b a b⋅<>=,结合22a a =,将有关量代入求得z 的值,得到结果.详解:根据题意得31cos ,23a b⨯===+, 化简得22z =,解得z = C.点睛:该题考查的是有关向量夹角余弦公式的问题,在解题的过程中,需要把握住向量夹角余弦公式,再者就是向量的模的平方和向量的平方是相等的,还有就是向量的模的坐标运算式.7.C解析:C 【分析】先求出两个向量的夹角为,=45︒<>m n ,再转化为二面角的大小. 【详解】1cos ,1⋅<>===⨯⋅m n m n m n,即,=45︒<>m n , 所以两平面所成二面角为45°或180°-45°=135°. 答案:C 【点睛】本题考查了空间向量的夹角和二面角的求法,考查了计算能力和逻辑推理能力,属于基础题目.8.A解析:A 【解析】分析:建立空间直角坐标系,结合题意得到点的坐标,然后利用空间向量求解点面距离即可.详解:如图所示,建立空间直角坐标系,则()10,0,1A ()10,1,1D,11,0,2E ⎛⎫ ⎪⎝⎭, 据此可得:()110,1,0A D =,111,0,2A E ⎛⎫=-⎪⎝⎭, 设平面11A D E 的法向量为()111,,m x y z =,则:1110102y x z =⎧⎪⎨-=⎪⎩, 据此可得平面11A D E 的一个法向量为()1,0,2m =,而()1,1,0C ,据此有:()11,1,1AC =-,则点C 到平面11A D E 的距离为11555AC m m⋅==. 本题选择A 选项.点睛:本题主要考查空间向量的应用,点面距离的求解等知识,意在考查学生的转化能力和计算求解能力.9.D解析:D 【分析】由几何体为正方体,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,求出平面D 1EF 的法向量n ,结合向量的点到平面距离公式求得点M 到平面D 1EF 的距离,结合N 为EM 中点即可求解 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1),设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d =||225||5EM n n ⋅==,N 为EM 中点,所以N 到该5故选:D .【点睛】本题考查利用向量法求解点到平面距离,建系法与数形结合是解题关键,属于中档题10.A解析:A 【分析】分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,利用空间向量即可得到所求角的余弦值的最大值,再根据余弦函数的单调性即可得到结果. 【详解】因为在直三棱柱111ABC A B C -中,AC BC ⊥,所以1,,CA CB CC 两两互相垂直, 所以分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,如图:因为12AC BC AA ===,所以(2,0,0)A ,(0,2,0)B ,1(2,0,2)A ,所以(1,1,1)Q , 设(0,,2)P y ,则(2,2,0)AB =-,(1,1,1)PQ y =--, 设异面直线AB 与PQ 所成角为θ,则cos θ=|cos ,|AB PQ <>=||||||AB PQ AB PQ⋅=====≤=3y =时等号成立) 又(0,)2πθ∈,且cos y θ=在(0,)2π内递减, 所以[,)62ππθ∈, 所以异面直线AB 与PQ 所成角的最小值为30°. 故选:A 【点睛】本题考查了利用空间向量解决夹角,考查了异面直线所成角的范围以及余弦函数的单调性,属于中档题.11.C解析:C 【分析】由共面向量定理可得:若定点M 与点A 、B 、C 一定共面,则存在实数x ,y ,使得AM xAB yAC =+,即(1)OM x y OA xOB yOC =--++,判断标准是验证OA ,OB ,OC 三个向量的系数和是否为1,若为1则说明四点M ,A ,B ,C 一定共面,由此规则即可找出正确的条件. 【详解】由题意,,A B C 三点不共线,点O 是平面ABC 外一点,对于A 由于向量的系数和是32,不是1,故此条件不能保证点M 在面ABC 上; 对于B ,等号右边三个向量的系数和为3,不满足四点共面的条件,故不能得到点M 与,,A B C 一定共面对于C ,等号右边三个向量的系数和为1,满足四点共面的条件,故能得到点M 与,,A B C 一定共面对于D ,等号右边三个向量的系数和为0,不满足四点共面的条件,故不能得到点M 与,,A B C 一定共面综上知,能得到点M 与,,A B C 一定共面的一个条件为C . 故选:C . 【点睛】本题考查平面向量的基本定理,利用向量判断四点共面的条件,解题的关键是熟练记忆四点共面的条件,利用它对四个条件进行判断得出正确答案,本题考查向量的基本概念,要熟练记忆.12.A解析:A 【分析】由题意画出结晶体的图形,利用向量加法的三角形法则求解晶体的对角线的长. 【详解】设AB a =,AD b =,1AA c =,棱长为t ,则两两夹角为60︒, 11AC AB AD A A a b c=++=+-, 22222222122232AC a b c a b c a b a c c b t t t ∴=+-=+++⋅-⋅-⋅=-=, 12AC t ∴=. 2m ∴=故选:A . 【点睛】本题考查了棱柱的结构特征,考查了向量加法三角形法则,解答的关键是掌握22||a a =,是基础题.二、填空题13.;【解析】【分析】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系利用向量法能求出AE 与CD1所成角的余弦值【详解】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系设正方体A10 【解析】 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出AE 与CD 1所成角的余弦值.【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为2,则A (2,0,0),E (2,2,1),C (0,2,0),D 1(0,0,2),AE =(0,2,1),1CD =(0,﹣2,2),设AE 与CD 1所成角为θ, 则cosθ112101055AE CD AE CD ⋅===⋅⋅, ∴AE 与CD 1所成角的余弦值为1010. 故答案为1010.【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.【解析】如图所示设∴∴∴周长又∵∴周长的范围为故答案为: 解析:(8,10)【解析】 如图所示, 设DH GHk DA AC==, ∴1AH EHk DA BD==-, ∴5GH k =,4(1)EH k =-, ∴周长82k =+. 又∵01k <<, ∴周长的范围为(8,10). 故答案为:(8,10).15.【解析】由平行四边形中对角线互相平分的性质知AC 的中点即为BD 的中点AC 的中点设D(xyz)则∴x =5y =13z =-3故D(513-3)解析:(5,13,3)- 【解析】由平行四边形中对角线互相平分的性质知,AC 的中点即为BD 的中点,AC 的中点7(,4,1)2O - ,设D (x ,y ,z ), 则7251,4,12222x y z +-++==-= ∴x =5,y =13,z =-3,故D (5,13,-3).16.【分析】如图所示建立空间直角坐标系平面的法向量平面的法向量利用夹角公式计算得到答案【详解】设中点为则故故两两垂直如图所示建立空间直角坐标系平面的法向量设平面的法向量为则解得:则法向量夹角故二面角B ﹣【分析】如图所示建立空间直角坐标系,平面ABD 的法向量()11,0,0n =,平面ACD的法向量()21,n =,利用夹角公式计算得到答案.【详解】设BD 中点为O,则AO CO ==AC =,故AO CO ⊥,故,,OA OC OD 两两垂直,如图所示建立空间直角坐标系.平面ABD 的法向量()11,0,0n =,设平面ACD 的法向量为()2,,n x y z =,()(),,0,1,0A CD ,则220,0n CD n AD ⋅=⋅=,解得:()21,n =,则法向量夹角1212cos 5n n n n θ⋅===⋅. 故二面角B ﹣AD ﹣C .【点睛】本题考查了二面角,意在考查学生的空间想象能力和计算能力.17.【解析】试题分析:因为在平行六面体中所以则考点:本题考查的知识点是点线面间的距离计算考查空间两点之间的距离运算根据已知条件构造向量将空间两点之间的距离转化为向量模的运算是解答本题的关键解析:【解析】试题分析:因为在平行六面体中,,所以,则.考点:本题考查的知识点是点、线、面间的距离计算,考查空间两点之间的距离运算,根据已知条件,构造向量,将空间两点之间的距离转化为向量模的运算,是解答本题的关键.18.12【解析】解析:12【解析】314219.【解析】分析:确定A1C1到底面ABCD的距离为正四棱柱ABCD﹣A1B1C1D1的高即可求得结论详解:∵正四棱柱ABCD﹣A1B1C1D1∴平面ABCD∥平面A1B1C1D1∵A1C1⊂平面A1B解析:26. 【解析】分析:确定A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高,即可求得结论. 详解:∵正四棱柱ABCD ﹣A 1B 1C 1D 1, ∴平面ABCD ∥平面A 1B 1C 1D 1, ∵A 1C 1⊂平面A 1B 1C 1D 1, ∴A 1C 1∥平面ABCD∴A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高∵正四棱柱ABCD ﹣A 1B 1C 1D 1的底面边长为2,AC 1与底面ABCD 成60°角, ∴A 1A=22tan60°=26 故答案为26.点睛:本题考查线面距离,确定A 1C 1到底面ABCD 的距离为正四棱柱ABCD ﹣A 1B 1C 1D 1的高是解题的关键.如果直线和已知的平面是平行的,可以将直线和平面的距离,转化为直线上一点到平面的距离.20.【详解】以AB 的中点为原点建立如图所示的空间直角坐标系则平面的一个法向量为设平面的一个法向量为则则令所以平面的一个法向量为所以因为所以所以所以即二面角的余弦值的取值范围是点睛:本题主要考查了空间几何 解析:99(,)1616-【详解】以AB 的中点为原点,建立如图所示的空间直角坐标系,则163(0,,(0,4,0),(,0,0)(33)22D C M a a --<<,平面MBC 的一个法向量为1(0,0,1)n =, 设平面DMC 的一个法向量为2(,,)n x y z =,则963(0,,),(,4,0)22DC MC a =-=-,则22963002040n DC y z n MC ax y ⎧⎧⋅=-=⎪⎪⇒⎨⎨⋅=⎪⎩⎪-+=⎩,令4639,,63z x y a ===,所以平面DMC 的一个法向量为2463(,63,9)n a=, 所以122299cos ,166316636381144n n a a ==⨯⨯+++, 因为33a -<<,所以29<a ,所以2166316631441442569a ⨯⨯+>+=, 所以129cos ,16n n <,即二面角的余弦值的取值范围是99(,)1616-.点睛:本题主要考查了空间几何体的结构特征和二面角的计算问题,空间向量是解决空间几何问题的锐利武器,利用空间向量求解空间角的关键在于“四破”:第一、破“建系关”,构建恰当的空间直角坐标系;第二、破“求坐标关”,准确求解相关点的坐标;第三、破“求法向量关”,求出平面的法向量;第四、破“应用公式关”.三、解答题21.(Ⅰ)证明见解析;(Ⅱ)M 是1AD 中点. 【分析】(Ⅰ)分别以1,,EA EC ED 为,,x y z 轴建立空间直角坐标系,写出各点坐标,并由122AD BE ==,AM BN =,可设1AM AD λ=,BN BE λ=,得出,M N 坐标,求出平面1D EC 的一个法向量n ,计算MN n ⋅后可证结论;(Ⅱ)在(Ⅰ)基础上,求出平面MBE 和平面ABE 的法向量,由法向量夹角的余弦值的3求得λ,得点M 位置. 【详解】(Ⅰ)由题意1,AE D E AE CE ⊥⊥,又1D E EC ⊥, 分别以1,,EA EC ED 为,,x y z 轴建立空间直角坐标系,则1(2,0,0),(2,2,0),(0,2,0),(0,0,2)A B C D ,设(,,)M x y z ,设1AM AD λ=,01)λ≤≤,而122AD BE ==AM BN =,则BN BE λ=,由1AM AD λ=得(2,,)(2,0,2)x y z λ-=-,22,0,2x y z λλ=-+==,即(22,0,2)M λλ-+,同理得(22,22,0)N λλ-+-+,所以(0,22,2)MN λλ=-+-,易知平面1D EC 的一个法向量是(1,0,0)n =,因为0MN n ⋅=,所以MN n ⊥,而MN ⊄平面1D EC ,所以//MN 平面1D EC ; (Ⅱ)由(Ⅰ)知(22,0,2)EM λλ=-+,(2,2,0)EB =, 设平面MBE 的一个法向量是(,,)m x y z =,由00m EB m EM ⎧⋅=⎨⋅=⎩得220(22)20x y x z λλ+=⎧⎨-++=⎩,取1x =,则1y =-,2212z λλλλ--==, 所以1(1,1,)m λλ-=-,又平面ABE 的一个法向量是(0,0,1)p =,则211cos ,12m p m p m pλλλ-⋅<>==-⎛⎫+ ⎪⎝⎭,由题意2113312λλλ-=-⎛⎫+ ⎪⎝⎭,解得12λ=. 所以M 是1AD 中点时,平面MBE 与平面ABE 所成角(锐角)的余弦值为33.【点睛】方法点睛:本题考查用空间向量法证明线面平行,求二面角.求二面角的方法: (1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论; (2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出二面角两个面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补). 22.(Ⅰ)证明见解析;(Ⅱ)60︒. 【分析】(Ⅰ)根据线面平行的判断定理可证明//PM 面1A AB .(Ⅱ)建立如图所示的空间直角坐标系,求出平面11AAC 的法向量和平面11AC B 的法向量后利用已知二面角可得2h 的值,再求出OP 和平面1A BP 的法向量后可得线面角的正弦值,从而可求角的大小. 【详解】解:(Ⅰ)若2h =,因为1A A ⊥平面ABC ,1C C ⊥平面ABC ,故11//A A C C , 因为112AA CC ==,故P 为1AC 的中点,由中位线知:1//PM A B ,而PM ⊄面1A AB ,1A B ⊂面1AAB , //PM ∴面1A AB(Ⅱ)以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 与平面ABC 垂直的直线为z 轴建立空间直角坐标系,则)B,()10,2A,()12C h,()C ,()1BA =-,()12BC h =-.设平面11AC A 的法向量为1n ,易得()11,0,0n =, 设平面11AC B 的法向量为()2,,n x y z =,由12120,0,BA n BC n ⎧⋅=⎪⎨⋅=⎪⎩得220,0,z h z -=-=取1z =,得2n ⎫=⎪⎭,12122cos 4516n n n n ⋅∴︒===21h =. 12A PPC ∴=,122210,3333OP OA OC ⎛⎫⎛⎫∴=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭. 设平面1A PB 的法向量,即平面1A BC 的法向量为()3111,,n x y z =,又()BC =-.由13130,0,BA n BC n ⎧⋅=⎪⎨⋅=⎪⎩得1111120,0,z +-==取11x =得(3n =. 设直线OP 与平面1A BP 所成的角为α,02πα<<.则33sin 2OP n OP n α⋅===,则60α=︒.所以直线OP 与平面1A BP 所成的角为60︒.【点睛】方法点睛:.线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.23.(Ⅰ)证明见解析;(Ⅱ)217【分析】(Ⅰ)证明:AD DB ⊥,GD DB ⊥,即可证明BD ⊥平面ADG ,从而得到平面ADG ⊥平面BDG ;(Ⅱ)建立空间直角坐标系,利用向量方法求直线GB 与平面AEFG 所成角的正弦值. 【详解】(Ⅰ)证明:在BAD 中,22AB AD ==,60BAD ∠=︒.由余弦定理2222cos60BD AD AB AB AD =+-︒,3BD , 222AB AD DB =+,AD DB ∴⊥,在直平行六面体中,GD ⊥平面ABCD ,DB ⊂平面ABCD ,GD DB ∴⊥, 又ADGD D =,,AD DG ⊂平面ADGBD ∴⊥平面ADG .又因为BD ⊂平面BDG , 所以平面ADG ⊥平面BDG ;(Ⅱ)解:如图以D 为原点建立空间直角坐标系D xyz -,45BAE GAD ∠=∠=︒,22AB AD ==,(1A ∴,0,0),(0,3,0)B ,(0,3,2)E ,(0G ,0,1),(1,3,2)AE =-,(1,0,1)AG =-,(0,3,1)GB =-,设平面AEFG 的法向量(,,)n x y z =,·320·0n AE x y z n AG x z ⎧=-++=⎪⎨=-+=⎪⎩令1x =,得33y -=,1z =, ∴3(1,,1)3n =-,设直线GB 和平面AEFG 的夹角为θ,∴21sin |cos ,|||7||||GB n GB n GB n θ=<>==, 所以直线GB 与平面AEFG 所成角的正弦值为217.【点睛】本题考查了立体几何中的面面垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.24.(1)证明见解析;(2)存在,M 为AD 边上靠近A 的四等分点. 【分析】(1)先证11//B E C D ,再根据线面平行判定定理即可证明命题;(2)取BC 中点G ,根据AG ,AD ,1AA 两两互相垂直建立坐标系,设点(0,,0)M t 分别求得平面11MA B 和平面111A B D 的法向量,再由二面角公式解得t 值,从而确定M 的位置. 【详解】(1)证明:连1DC ,由1B C //AD ,得11B C E //D =,故四边形11B EDC 为平行四边形.11//B E C D =,1C D ⊂平面11CDD C ,1B E ⊂/平面11CDD C , 所以1//B E 平面11CDD C ,(2)假设M 点存在,取BC 中点G ,因为底面ABCD 是菱形,120BAD ∠=︒,所以AG BC ⊥,AG AD ⊥,又1AA ⊥面ABCD ,所以AG ,AD ,1AA 两两互相垂直.以A 为坐标原点,AG ,AD ,1AA 为正方向建立空间直角坐标系A xyz -.由2AB =,得3AG =(0,,0)M t ,其中[0,2]t ∈.1(0,0,1)A ,131,12B ⎫-⎪⎪⎝⎭,()10,,1A M t =-,1131,022A B ⎛⎫=- ⎪ ⎪⎝⎭.设()1,,n x y z =为平面11MA B 的一个法向量,则1111100n A B n MA ⎧⋅=⎪⎨⋅=⎪⎩,即3102y ty z ⎧-=⎪⎪-=⎩可取()11,3,3t n =. 易知平面111A B D 一个法向量为()20,0,1n = 由1221212357cos ,133n n n n n n t t ⋅===++‖12t =, 故M 为AD 边上靠近A 的四等分点. 【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标; (2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值. 25.(1)点E 是PD 的中点,详见解析;(2)36161. 【分析】(1)点E 是PD 的中点,连接BD 交AC 与点O ,连接OE ,由中位线定理得到//OE PB ,再利用线面平行的判定定理证明.(2)以A 为原点,以AB ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系,分别求得平面PAC 的一个法向量()111,,m x y z =,平面ACE 的一个法向量()222,,n x y z =,设二面角P AC E --为θ,由cos m n m nθ⋅=⋅求解.【详解】(1)点E 是PD 的中点,如图所示:连接BD 交AC 与点O ,连接OE , 所以//OE PB ,又PB ⊄平面AEC ,OE ⊂平面AEC , 所以//PB 平面AEC .(2)以A 为原点,以AB ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系,则()()()()40,0,2,0,0,0,2,3,0,0,3,0,0,1,3P A C D E ⎛⎫ ⎪⎝⎭,所以()()42,3,0,0,0,2,0,1,3AC AP AE ⎛⎫=== ⎪⎝⎭,设平面PAC 的一个法向量为()111,,m x y z =,则00m AC m AP ⎧⋅=⎨⋅=⎩,即 11123020x y z +=⎧⎨=⎩,令 1113,2,0x y z ==-=,则()3,2,0m =- 设平面ACE 的一个法向量为()222,,n x y z =,则00n AC n AE ⎧⋅=⎨⋅=⎩,即 2221230403x y y z +=⎧⎪⎨+=⎪⎩, 令 22233,2,2x y z ==-=,则33,2,2n ⎛⎫=- ⎪⎝⎭,设二面角P AC E --为θ, 所以213cos 61m n m nθ⋅==⋅,所以 22213361sin 1cos 161θθ⎛⎫=-- ⎪ ⎪⎝⎭. 【点睛】方法点睛:1、利用向量求异面直线所成的角的方法:设异面直线AC ,BD 的夹角为β,则cos β=AC BD AC BD⋅⋅.2、利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.3、利用向量求面面角的方法:就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.26.(1)证明见解析;(2)14. 【分析】(1 )连接BD 交AC 于点O ,连接OE ,根据中位线定理可得//PB OE ,由线面平行的判定定理即可证明//PB 平面AEC ;(2)设菱形ABCD 的边长为a ,根据23243P ABCD P ACD E ACD V V V ---===可得2a =,以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴,建立空间直角坐标系,分别求出平面CAE 与平面DAE 的一个法向量,根据空间向量夹角余弦公式,可得结果. 【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 为BD 中点,E 为PD 的中点,所以//PB OE ,OE ⊂平面,ACE PB ⊄平面ACE ,所以//PB 平面AEC ;(2)设菱形ABCD 的边长为a ,23243P ABCD P ACD E ACD V V V ---===, 1233113132P ABCD ABCD V S PA a a -⨯⨯⨯=⋅==,则2a =. 取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴, 以AP 方向为z 轴,建立如图所示坐标系.()0,2,0D ,()0,0,0A ,10,1,2⎛⎫ ⎪⎝⎭E ,()3,1,0C10,1,2AE ⎛⎫= ⎪⎝⎭,()3,1,0AC =,设平面ACE 的法向量为1(,,)n x y z =, 由11,n AE n AC ⊥⊥,得10230y z x y ⎧+=⎪⎪+=⎩,令3y =1,23x z =-=- (11,3,23n =∴--,平面ADE 的一个法向量为()21,0,0n =1212121cos<,>41312n n n n n n ⋅===++⋅,即二面角D AE C --的余弦值为14. 【点睛】方法点睛:二面角的求法方法一:(几何法)找→作(定义法、三垂线法、垂面法)→证(定义)→指→求(解三角形)方法二:(向量法)首先求出两个平面的法向量,m n;再代入公式cosm nm nα⋅=±(其中,m n分别是两个平面的法向量,α是二面角的平面角.)求解.(注意先通过观察二面角的大小选择“±”号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AA 1 DCB B 1C 1 图高二数学(选修2-1)空间向量试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°2.如图,ABCD—A 1B1C1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( )A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A .1030B .21C .1530D .10154.正四棱锥S ABCD -的高2SO =,底边长AB =,则异面直线BD 和SC 之间的距离( )A .515 B .55 C .552 D .1055.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( )A .a 42 B .a 82 C .a 423 D .a 226.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离( )A .63 B .33 C .332 D .23 7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值( )A .621 B .338 C60210 D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形,90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面AB D 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值( )A .32B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是C B 延长线上一点,且BC BD =,则二面角B AD B --1的大小( )A .3π B .6π C .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E ,F 分别为棱AB ,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积V ( )A .66B .3316 C .316D .1611.有以下命题:①如果向量b a ,与任何向量不能构成空间向量的一组基底,那么b a ,的关系是不共线; ②,,,O A B C 为空间四点,且向量OC OB OA ,,不构成空间的一个基底,则点,,,O A B C一定共面;③已知向量,,是空间的一个基底,则向量,,-+也是空间的一个基底。
其中正确的命题是:( )(A )①② (B )①③ (C )②③ (D )①②③12. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
若=,=,AA =1则下列向量中与BM 相等的向量是( )(A ) ++-2121 (B)++2121(C )+--2121 (D )+-2121二、填空题:请把答案填在题中横线上(每小题6分,共30分).13.已知向量(0,1,1)a =- ,(4,1,0)b =,||a b λ+=且0λ>,则λ= ____________.14.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 .15. 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是11A B 、CD 的中点,求点B 到截面1AEC F 的距离 . 16.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面D B EF 的距离 .17.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线A E 与平面AB C 1D 1所成角的正弦值 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共60分).18.(15分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,求平面A 1B C 1与平面AB CD 所成的二面角的大小 19.(15分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 、F 、M 分别是A 1C 1、A 1D 和B 1A 上任一点,求证:平面A 1EF ∥平面B 1MC .20.(15分)在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且PA ⊥底面ABCD ,PD 与底面成30°角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的余弦值.C121.(15分)已知棱长为1的正方体A C 1,E 、F 分别是B 1C 1、C 1D 的中点. (1)求证:E 、F 、D 、B 共面;(2)求点A 1到平面的B DEF 的距离; (3)求直线A 1D 与平面B DEF 所成的角.参考答案一、1.C ;2.A ;3.B ;4.A ;5.A ;6.C ;7.A ;8.B ; 9.D ;10.B ; 11.A ;12.C ; 二、13.3 1415.36 16.1; 17.510 三、18. 解:如图建立空间直角坐标系,11C A =(-1,1,0),A 1=(0,1,-1) 设1n 、2n 分别是平面A 1B C 1与平面AB CD 的法向量, 由01=B A 可解得1n =(1,1,1)011=C A易知2n =(0,0,1),所以,=33所以平面A 1B C 1与平面AB CD 所成的二面角大小为a rccos33或 π-a rccos 33.19.证明:如图建立空间直角坐标系,则11C A =(-1,1,0),B 1=(-1,0,-1) A 1=(1,0,1), B 1=(0,-1,-1)设111C A A λ=,A A 11μ=,B B 11ν=(λ、μ、νR ∈,且均不为0)设1n 、2n 分别是平面A 1EF 与平面B 1MC 的法向量,由0= 可得 01⋅n 即 01=n0= 01⋅n 01n解得:1=(1,1,-1)由 012=⋅B n 可得 012=⋅A B n ν 即 012=⋅B n012=⋅B n 012=⋅B n 012=⋅B n解得2n =(-1,1,-1),所以1n =-2n , 1n ∥2n ,所以平面A 1EF ∥平面B 1MC . 20.(1)证明:∵PA ⊥平面ABCD ,∴PA ⊥AB ,又AB ⊥AD .∴AB ⊥平面PAD .又∵AE ⊥PD ,∴PD ⊥平面ABE ,故BE ⊥PD .(2)解:以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则点C 、D 的坐标分别为(a ,a ,0),(0,2a ,0).∵PA ⊥平面ABCD ,∠PDA 是PD 与底面ABCD 所成的角,∴∠PDA =30°.于是,在Rt △AED 中,由AD =2a ,得AE =a .过E 作EF ⊥AD ,垂足为F ,在Rt △AFE 中,由AE =a ,∠EAF =60°,得AF =2a ,EF =23a ,∴E (0,23,21a a ) 于是,CD a a AE},23,21,0{=={-a ,a ,0}设AE 与CD 的夹角为θ,则由cos θ||||CD AE CD AE ⋅420)()23()21(002321)(0222222=++-⋅++⋅+⋅+-⋅a a a a a a a a AE 与CD 所成角的余弦值为42. 21.解:(1)略.(2)如图,建立空间直角坐标系D —xyz , 则知B (1,1,0),).1,21,0(),1,1,21(F E 设.),,(的法向量是平面BDEF z y x n = )1,21,0(),0,1,1(,,==⊥⊥DF DF 由得⎪⎩⎪⎨⎧=+=⋅=+=⋅0210z y DF n y x DB n 则⎪⎩⎪⎨⎧-=-=.21y z y x 令)21,1,1(,1--==y 得.设点A 1在平面B DFE 上的射影为H ,连结A 1D ,知A 1D 是平面B DFE 的斜线段..23)21)(1(10)1)(1(),1,0,1(1=--+⨯+--=⋅∴--=A.1222,cos ||||.2223223||||,cos ,23)21(1)1(||,2)1()1(||111111112222221=⨯>=<⨯=∴=⨯=⨯<∴=-++-==-++-=A A A A n D A A A O A 又 即点A 1到平面B DFE 的距离为1.(3)由(2)知,A 1H=1,又A 1D=2,则△A 1HD 为等腰直角三角形, 4511=∠=∠H DA DH A.45,,,11111 =∠∴∠∴⊥DH A BDFE D A DH A BDFE D A HD BDFE H A 所成的角与平面就是直线上的射影在平面是平面。