人教版A版高中数学高二选修2-1作业 空间向量的数乘运算
【精品】高中数学人教A版选修2-1课件:3.1.2空间向量的数乘运算课件(55张)

(1 ) A B B C ( 2 ) A B A D A A1 1 (3 ) A B A D C C 1 2 1 ( 4 ) ( A B A D A A1 ) 3
A A1
D1 B1ຫໍສະໝຸດ C1D BC
例题:
•
P课本 97
习题 3.1
A组
第1题
如图, 已知平行六面体ABCD-A1B1C1D1,化简下列各表达式, D1 并在图中标出化简结果的向量: C
bba b ) c a (b c ) b ) k a+ k b
加法结合律: ( a
数乘分配律: k ( a
4、平面向量的加法的推广
(1)首尾相接的若干向量之和,等于由起始向量的起点指向 末尾向量的终点的向量;
A A A A A A A A A A 1 2 2 3 3 4 n 1 n 1 n
C
a b
O
+
A
b
B
OB OA AB
a
ka ( k > 0 ) ka ( k < 0 )
CA OA OC
空间向量的加减法 空间向量的数乘
新课:一 、空间向量的数乘运算及运算律
1、定义: 实数 λ 与空间向量 a 的积是一个向量,记作 λ a,并规定: ① λ a 的长度 | λ a | = | λ | · | a |; ② 当 λ>0 时,λ a 的方向与 a 的方向相同;
线段的起点和终点字母表示.
相等向量:长度相等且方向相同的向量.
B A C D
一 、平面向量:2、平面向量的加法、减法与数乘运算
b
a
向量加法的三角形法则
b a
向量加法的平行四边形法则
人教版高中数学选修2-1第三章3.1.2空间向量的数乘运算

导入新课复习上一节课,我们借助“类比思想”把平面向量的有关概念及加减运算扩展到了空间.(1) 加法法则及减法法则平行四边形法则或三角形法则. (2) 运算律加法交换律及结合律.两个空间向量的加、减法与两个平面向量的加、减法实质是一样的.因为:空间任意两个向量都可平移到同一个平面内,成为同一平面内的向量.因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们.我们知道平面向量还有数乘运算及相应的运算律.借助类比思想,同样可以定义空间向量的数乘运算及相应的运算律.教学目标知识目标正确理解共线、方向向量等基本概念;初步掌握数乘运算,理解运算律;熟练掌握共线向量基本定理、推论及应用.能力目标经历知识形成探索过程,体验“类比”思想,并逐步学会“分析、归纳、抽象、概括等思维方法.情感目标1. 通过自主探究与合作交流,不断体验“成功”,激发学习热情和求知欲,充分体现学生的主体地位;2. 通过类比思想和方法的应用,感受和体会数学思想的魅力,培养学“做数学”的习惯和热情.教学重难点重点共线向量概念、基本定理及推论.难点共线概念的正确理解及较复杂的三点共线判定.知识要点1. 空间向量数乘运算的定义与平面向量一样,实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘(multiplication of vetor by salar)运算.(1)结果仍然是一个向量;(2)方向:当λ>0时,λa与a方向相同;当λ<0时,λa与a方向相反;当λ=0时,λa是零向量0; (3)大小: λa的长度是a长度的|λ|倍.aλa(λ<0)a λa(λ>0)2.数乘运算的运算律显然,空间向量的数乘运算满足分配律及结合律()λ(a +b )=λa +λbλ+μa =λa +μaλ(μa )=(λμ)a 即:知识要点(1) λa与a 之间是什么关系?(2) λa 与a 所在直线之间的关系?对于空间向量的数乘运算的运算律的证明,方法与证明平面向量数乘运算的运算律类似.知识要点3.共线向量(或平行向量)的定义表示空间向量的有向线段所在直线互相平行或重合,则称这些向量叫共线向量(colliner vectors)或平行向量(parallel vectors)记作a//b(1)向量平行与直线平行的比较;(2)关注零向量; (3)对空间任意两个向量a 与b ,如果 ,那么a 与b 有什么相等关系?反过来呢?b //a 零向量与任何向量平行(1)当我们说a,b共线时,表示a,b的两条有向线段所在直线既可能是同一直线,也可能是平行线;(2)当我们说a // b时,也具有同样的意义.知识要点4.共线向量基本定理对于空间任意两个向量a ,b(b≠0),a // b的充要条件是存在实数λ,使a = λb(1)b≠0的理解.若b=0,则a任意,λ不唯一;(2)若a // b,b // c,则a一定平行于c吗?(不一定,考虑中间向量为零向量)5.共线向量基本定理的推论如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对于空间任意一点像O ,点P 在直线l 上的充要条件是存在实数t ,使 OP = OA + ta. (1) AaOP B其中向量a叫做直线l的方向向量(direction vector)在l上取AB=a,则(1)式可化为OP = (1- t)OA + t OB.(2)说明: (1),(2)都叫做空间直线的向量参数表示式.由此可知,空间任意直线由空间一点及直线的方向向量唯一确定.知识要点6.共面向量定义平行于同一平面的向量,叫做共面向量(coplanar vectors).空间任意两个向量总是共面的,但空间任意三个向量既可能是共面的,也可能是不共面的.7.共面向量的定理如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在唯一的有序实数对(x、y),使p = x a + y b8.共面向量的定理的推论空间一点P位于平面MAB内的充分必要条件是存在有序实数对x、y,使MP = xMA + yMB或对空间任一定点O,有OP = OM + xMA + yMB.Ma AbB A' p P对空间任意一点O 和不共线的三点A 、B 、C ,试问满足向量关系式(其中x+y+z=1)的四点P 、A 、B 、 C 是否共面?OP =xOA+yOB +zOC解答原式可以变形为OP=(1-y-z)OA+yOB+zOC,OP-OA=y(OB-OA)+z(OC-OA), AP=y AB+z AC,所以,点P与点A,B,C共面.例题如下图,已知平行四边形ABCD,过平面AC外一点O作射线OA、OB、OC、OD,在四条射线上分别取点E、F、G、H,并且使OE OF OG OH====kOA OB OC OD求证:四点E、F、G、H共面.D'A'B'C'DA B CO分析:欲证E,F,G,H四点共面,只需证明EH,EF,EG共面.下面我们利用AD,AB,AC共面来证明.证明:因为 所以 OE=kOA ,OF=kOB , OG=kOC ,OH=kOD. 由于四边形ABCD 是平行四边形,所以AC=AB+AD. 解答OE OFOGOH====kOA OB OC OD继续因此EG=OG-OE=kOC-kOA=k AC=k(AB+AD)=k(OB-OA+OD-OA)=OF-OE+OH-OE=EF+EH.由向量共面的充要条件知E,F,G,H四点共面.课堂小结1.空间向量的数乘运算.2.空间向量的数乘运算的运算律.满足分配律及结合律.3.共线向量与共面向量共线向量 共面向量 定义 向量所在直线互相平行或重合. 平行于同一平面的向量,叫做共面向量. 定理 推论 运用 判断三点共线,或两直线平行 判断四点共线,或直线平行于平面)0a (b //a ≠b λa =p b a b y αx p +=ABt OA OP +=AC y AB x OA OP ++=共面1)y (x OBy OA x OP =++=1)z y (x 0OC z OB y OA x OP =++=++=高考链接1.(2006年福建卷)已知|OA|=1,|OB|= ,OA·OB=0,点C 在∠AOB 内,且∠AOC=30°,设OC=mOA+nOB (m 、n ∈R),则 等于_______. 3nm 3D. 33 C. 3B. 31 A. BOA =1,OB =3,OA.OB =0,解析: 点C 在AB 上,且∠AOC=30°设A 点坐标为(1,0),B 点的坐标为(0, )C 点的坐标为(x ,y)=( , ) OC =mOA+nOB(m,n R)∈33434则∴ 3n m ,41,n 43m ===课堂练习1.选择(1)若对任一点O 和不共线的三A,B,C,且有 则x+y+z=1是四点P 、A 、B 、C 共面的() A. 必要不充分条件 B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件 R),z y,(x,OC z OB y OA x OP ∈++= C(2)对于空间任意一点O ,下列命题正确的是(). A.若 ,则P 、A 、B 共线 B.若 ,则P 是AB 的中点C.若 ,则P 、A 、B 不共线D.若 ,则P 、A 、B 共线 OP =OA+t AB3OP =OA+AB OP=OA -t AB OP=-OA+AB A(3)下列命题正确的是()CA.若a与b共线,b与c共线,则a与c共线B.向量a,b,c共面就是它们所在的直线共面C.零向量没有确定的方向D.若a // b,则存在唯一的实数λ使得a = λb解答A.中向量b为零向量时要注意,B.中向量的共线、共面与直线的共线、共面不一样,D.中需保证b不为零向量.答案C.点评:零向量是一个特殊的向量,时刻想着零向量这一特殊情况对解决问题有很大用处.像零向量与任何向量共线等性质,要兼顾 .2.解答题已知:且m,n,p不共面.若a∥b,求x,y的值.,p2yn8m1)(xb0,p4n2m3a+++=≠--=空间向量在运算时,注意到如何利用空间向量共线定理.解答 ∵a // b,且a ≠0, ∴b= λ a ,即 又∵m ,n ,p 不共面,∴.p 4λn 2λm 3λp 2y n 8m 1)(x --=+++8.y 13,x ,42y 2831x =-=∴-=-=+习题答案1. (1)AD; (2)AG;(3)MG2. (2)x=1; (2)x=y=1/2; (3) x=y=1/2;3.CA QBRPSO。
人教新课标A版高二数学《选修2-1》3.1.2 空间向量的数乘运算

探究点:三点共线
如何利用共线向量定理判定三点共线?
A B C
O
典例分析
利用BD构建EH与FG的关系
典例分析
证明:
跟踪训练
知识点三:共面向量
共面向量:平行于同一平面的向量,叫做共面向量.
想一想,为什么? 说明:空间任意两个向量都是共面向量, 但空间任意三个向量既可能是共面的,也可能是不共面的.
当堂训练
D
当堂训练
则D点位于( D ) A.BC边的中线上 C.BC边的中垂线上 B.BC边的高线上 D.∠BAC的平分线上
谢谢大家!
a
λ<0
|a| 大小 |λa|=|λ|·
运算律
典例分析
O M
[思路探索]在三角形中运用向量的线性运算进行分解 数乘 解:
A
G
C N
B
减法 加法
跟踪训练
A
知识点二:共线向量
1.共线向量:
如果表示空间向量的有向线段所在直线
互相平行或重合,则这些向量叫做共线向量
(或平行向量),记作a∥b.
规定:零向量与任意向量共线.
第三章 空间向量与立体几何 §3.1.2 空间向量的数乘运算
引入课题
平面向量的数乘运算是如何定义的?
其几何意义是什么?
其运算律是怎样的?
空间向量与平面向量有何关系?
能否将平面向量的数乘运算推广到空间向量?
知识点一:数乘运算的概念
定义:与平面向量的数乘运算相同, 实数λ与空间向量a的乘积λa, 称为向量的数乘. 方向 当λ>0时, λa与向量a的方向相同 λ>0
证明:
∵E 、 F 、 G 、 H 分别是所在三角形的重心,
高二数学人教A版选修2-1课件:3.1.2 空间向量的数乘运算(共25张ppt)

B.O→M+O→A+O→B+O→C= 0 C. M→A+M→B+M→C=0
D.O→M=14O→B-O→A+12O→C
3.下列说法正确的是( D )
A.在平面内共线的向量在空间不一定共线 B.在空间共线的向量在平面内不一定共线 C.在平面内共线的向量在空间一定不共线 D.在空间共线的向量在平面内一定共线
加法交换律 a b b a 加法结合律
(a b) c a (b c)
注:两个空间向量的加、减法与两个平面向量 的加、减法实质是一样的.
b b
a a
我们知道平面向量还有数乘运算. 类似地,同样可以定义空间向量的数乘运算,其 运算律是否也与平面向量完全相同呢?
1.空间向量的数乘运算.(重点) 2.共线向量及共面向量的应用.(重点、难点) 3.向量的共面、共线与直线的位置关系.
整过程
方向
资料
筛选Βιβλιοθήκη 认知高效学习模型-学习的完
整过程
消化
固化
模式
拓展
小思 考
TIP1:听懂看到≈认知获取;
TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大 概可以用来解决什么问题,而这些东西过去你都不知道;
TIP3:认知获取是学习的开始,而不是结束。
为啥总是听懂了, 但不会做,做不好?
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的 广 度进行过比较精准的测定:通常情况下一个人的 记忆 广度为7±2项内容。
【全程复习方略】2014-2015学年高中数学 3.1.2空间向量的数乘运算课时作业 新人教A版选修2-1

空间向量的数乘运算(30分钟50分)一、选择题(每小题3分,共18分)1.在平行六面体ABCD-A1B1C1D1中,向量,,是( )A.有相同起点的向量B.等长向量C.共面向量D.不共面向量【解析】选C.由题意知,==-,所以向量,,是共面向量.2.(2014·沈阳高二检测)下列命题中正确的是( )A.若a∥b,b∥c,则a与c所在直线平行B.向量a,b,c共面即它们所在直线共面C.空间任意两个向量共面D.若a∥b,则存在惟一的实数λ,使a=λb【解析】选C.对A.若a∥b,b∥c,则a与c所在直线平行,错误.当b=0时不成立;B.向量a,b,c共面即它们所在直线共面,错误,因为空间平行的向量也是共面的;C.空间任意两个向量共面,正确;D.若a∥b,则存在惟一的实数λ,使a=λb,错误,当b=0时不成立.【变式训练】与共线是直线AB∥CD的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.若与共线,则∥,此时AB与CD可能平行也可能为同一直线;而若AB∥CD,则必有与共线.3.(2014·西安高二检测)对空间任一点O和不共线三点A,B,C,能得到P,A,B,C四点共面的是( )A.=++B.=++C.=-++D.以上都不对【解析】选B.因为=++,所以3=++,所以-=(-)+(-),所以=+,所以=--,所以P,A,B,C共面.【变式训练】对于空间任意一点O和不共线的三点A,B,C有6=+2+3,则( )A.四点O,A,B,C必共面B.四点P,A,B,C必共面C.四点O,P,B,C必共面D.五点O,P,A,B,C必共面【解析】选B.由6=+2+3,得(-)=2(-)+3(-),即=2+3.由共面向量定理,知P,A,B,C四点共面.4.已知两非零向量e1,e2不共线,设a=λe1+μe2(λ,μ∈R且λ,μ≠0),则( ) A.a∥e1 B.a∥e2C.a与e1,e2共面D.以上三种情况均有可能【解析】选C.若a∥e1,则存在实数t使得a=t e1,所以t e1=λe1+μe2,所以(t-λ)e1=μe2,则e1与e2共线,不符合题意.同理,a与e2也不平行.由向量共面的充要条件知C正确.5.(2014·南宁高二检测)已知O,A,B是平面上的三个点,直线AB上有一点C,满足2+=0,则等于( )A.2-B.-+2C.-D.-+【解析】选A.由已知得2(-)+(-)=0,所以=2-.6.如图所示,在平行六面体ABCD-A1B1C1D1中,M为AC与BD的交点.若=a,=b,=c,则下列向量中与相等的向量是( )A.-a+b+cB.a+b+cC.a-b+cD.-a-b+c【解析】选A.=+=+(-)=+-=-a+b+c.二、填空题(每小题4分,共12分)7.已知e1,e2是不共线向量,a=3e1+4e2,b=-3e1+8e2,则a与b是否共线(填是或否).【解析】设a=λb,即3e1+4e2=λ(-3e1+8e2)=-3λe1+8λe2,所以⇒所以不存在λ,使a=λb,即a与b不共线.答案:否8.(2014·福州高二检测)如图,在正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.用,,表示向量,则= .【解析】=++=++(+)=++(-+)=++.答案:++9.如图所示,在四棱锥O-ABCD中,底面ABCD为平行四边形,=a,=b,=c,若=x a+y b+z c,则x+y+z= .【解析】在△OBD中,=+=+-=+-=+--(-)=+-=a-b+c,故x+y+z=1.答案:1三、解答题(每小题10分,共20分)10.在平行六面体ABCD-A1B1C1D1中,=,=2.设=a,=b,=c,试用a,b,c表示.【解题指南】先利用三角形法则进行向量的加减运算,将表示成其他向量,然后进一步用a,b,c表示.【解析】如图所示,连接AN,则=-=+-=+-(+)=+(-)-(+)=c+(b-c)-(a+b)=-a+b+c.【拓展延伸】数形结合法表示向量用已知向量表示未知向量,体现了向量的数乘运算.解题时要结合具体图形,利用三角形法则、平行四边形法则,将目标向量逐渐转化为已知向量.本题也可以先将表示为=++.11.(2014·武汉高二检测)已知A,B,C三点不共线,对平面ABC外的任意一点O,若点M满足=++.(1)判断,,三个向量是否共面.(2)判断点M是否在平面ABC内.【解析】(1)由已知,得++=3,所以-=(-)+(-),所以=+=--.所以向量,,共面.(2)由(1)知向量,,共面,三个向量的基线又过同一点M,所以四点M,A,B,C共面,所以点M在平面ABC内.【变式训练】直线AB,CD为两异面直线,M,N分别为线段AC,BD的中点,求证:向量,,共面. 【证明】如图,在封闭图形ABNM中,=++, ①在封闭图形CDNM中,=++, ②又因为M,N分别为线段AC,BD的中点,所以+=0,+=0,①+②得2=+,即=+,所以向量,,共面.(30分钟50分)一、选择题(每小题4分,共16分)1.(2014·泰安高二检测)如图所示,已知A,B,C三点不共线,P为平面ABC内一定点,O为平面ABC外任一点,则下列能表示向量的为( )A.+2+2B.-3-2C.+3-2D.+2-3【解析】选 C.根据A,B,C,P四点共面的充要条件可知=x+y.由图知x=3,y=-2,所以=+3-2.2.(2014·济南高二检测)下列命题:①若A,B,C,D是空间任意四点,则有+++=0;②|a|-|b|=|a+b|是a,b共线的充要条件;③若a,b共线,则a与b所在直线平行;④对空间任意一点P与不共线的三点A,B,C,若=x+y+z(x,y,z∈R),则P,A,B,C四点共面.其中不正确命题的个数是( ) A.1 B.2 C.3 D.4【解析】选C.①若A,B,C,D是空间任意四点,则有+++=0正确;②|a|-|b|=|a+b|是a,b共线的充要条件,错误;③若a,b共线,则a与b所在直线平行,错误,有可能是共线、平行或者其中有零向量;④对空间任意一点P与不共线的三点A,B,C,若=x+y+z(x,y,z∈R)且x+y+z=1,则P,A,B,C 四点共面.【变式训练】在下列条件中,使M与A,B,C一定共面的是( )A.=3-2-B.+++=0C.++=0D.=-+【解析】选C.因为++=0,所以=--,所以M与A,B,C必共面.3.(2013·温州高二检测)空间四边形ABCD,连接AC,BD,设M,G分别是BC,CD的中点,则-+等于( )A. B.3 C.3 D.2【解析】选B.-+=-(-)=-=+=+2=3.4.(2014·石家庄高二检测)已知点M在平面ABC内,并且对空间任意一点O,有=x++,则x的值为( )A.1B.0C.3D.【解析】选D.因为=x++,且M,A,B,C四点共面,所以x++=1,x=.二、填空题(每小题5分,共10分)5.已知i与j不共线,则存在两个非零常数m,n,使k=m i+n j是i,j,k共面的条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”中的一个).【解析】若i不平行于j,则k与i,j共面⇔存在惟一的一对实数x,y使k=x i+y j.答案:充要6.有下列命题:①若∥,则A,B,C,D四点共线;②若∥,则A,B,C三点共线;③若e1,e2为不共线的非零向量,a=4e1-e2,b=-e1+e2,则a∥b;④若向量e1,e2,e3是三个不共面的向量,且满足等式k1e1+k2e2+k3e3=0,则k1=k2=k3=0.其中是真命题的序号是(把所有真命题的序号都填上).【解析】根据共线向量的定义,若∥,则AB∥CD或A,B,C,D四点共线,故①错;∥且,有公共点A,所以②正确;由于a=4e1-e2=-4b,所以a∥b,故③正确;易知④也正确.答案:②③④三、解答题(每小题12分,共24分)7.设A,B,C及A1,B1,C1分别是异面直线l1,l2上的三点,而M,N,P,Q分别是线段AA1,BA1,BB1,CC1的中点.求证:M,N,P,Q四点共面.【证明】如图,过B1作l3∥l1取点C2∈l3且BC=B1C2.因为=,=,所以=2,=2.因为A,B,C及A1,B1,C1分别共线,所以=λ=2λ,=μ=2μ.于是=+=+=+(-)=(+)=(2λ+2μ)=λ+μ.因此,,共面.故M,N,P,Q四点共面.8.已知斜三棱柱ABC-A′B′C′,设=a,=b,=c.在面对角线AC′上和棱BC上分别取点M和N,使=k,=k(0≤k≤1).求证:(1)与向量a和c共面.(2)MN∥面A′AB.【证明】(1)显然=k=k b+k c,且=+=a+k=a+k(-a+b)=(1-k)a+k b,=-=(1-k)a+k b-k b-k c=(1-k)a-k c.因此,与向量a和c共面.(2)由(1)知与向量a,c共面,a,c在面A′AB内,而不在面A′AB内,所以MN∥面A′AB.。
人教A版高中数学高二选修2-1学案 空间向量的数乘运算

3.1.2 空间向量的数乘运算【使用说明及学法指导】1.先自学课本,理解概念,完成导学提纲;2.小组合作,动手实践。
【学习目标】1.掌握空间向量的数乘运算律,能进行简单的代数式化简;2.理解共线向量定理和共面向量定理及它们的推论;3.能用空间向量的运算意义及运算律解决简单的立体几何中的问题.【重点】能用空间向量的运算意义及运算律解决简单的立体几何中的问题【难点】理解共线向量定理和共面向量定理及它们的推论;一、自主学习1.预习教材P86~ P87, 解决下列问题复习1:化简:⑴ 5(32-);b a-)+4(23a b⑵()()-+--+-.a b c a b c63复习2:在平面上有两个向量,a b,若b是非零向量,则a与b平行的充要条件是2.导学提纲1.空间任意两个向量有____种位置关系?如何判定它们的位置关系?任意两个向量的夹角的范围是______________?2. 如果表示空间向量的所在的直线互相或,则这些向量叫共线向量,也叫_____________3对空间任意两个向量,a b(0a b的充要条件是存在唯一实数λ,使得______,为何要求b≠),//b≠?3.如图,l为经过已知点A且平行于已知非零向量的直线,对空间的任意一点O,点P在直线l上的充要条件是4.对空间两个不共线向量,a b,向量p与向量,a b共面的充要条件是存在,使得.5.空间一点P 与不在同一直线上的三点A,B,C 共面的充要条件是: ⑴ 存在 ,使⑵ 对空间任意一点O ,有6.向量共面的充要条件的理解(1)MP =xMA →+yMB →.满足这个关系式的点P 都在平面MAB 内;反之,平面MAB 内的任一点P 都满足这个关系式.这个充要条件常用以证明四点共面.(2)共面向量的充要条件给出了空间平面的向量表示式,即任意一个空间平面可以由空间一点及两个不共线的向量表示出来,它既是判断三个向量是否共面的依据,又可以把已知共面条件转化为向量式,以便于应用向量这一工具.另外,在许多情况下,可以用“若存在有序实数组(x ,y ,z )使得对于空间任意一点O ,有OB =(1-t )OA →=xOA →+yOB →+zOC →,且x +y +z =1成立,则P 、A 、B 、C 四点共面”作为判定空间中四个点共面的依据.二、典型例题例1.1. 下列说法正确的是( )A.a 与非零向量b 共线,b 与c 共线,则a 与c 共线B. 任意两个相等向量不一定共线C. 任意两个共线向量相等D. 若向量a 与b 共线,则a b λ=2. 正方体''''ABCD A B C D -中,点E 是上底面''''A B C D 的中心,若''BB x AD y AB z AA =++,则x = ,y = ,z = .3. 若点P 是线段AB 的中点,点O 在直线AB 外,则OP = OA + OB .4. 平行六面体''''ABCD A B C D -, O 为A 1C 与B 1D 的交点,则'1()3AB AD AA ++= AO5. 已知平行六面体''''ABCD A B C D -,M 是AC 与BD 交点,若',,AB a AD b AA c ===,则与'B M 相等的向量是( )A. 1122a b c -++; B. 1122a b c ++;C.1122a b c -+; D. 1122a b c --+. 6. 在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ).A .0 B.1 C. 2 D. 37.下列等式中,使M ,A ,B ,C 四点共面的个数是( ) ①;OM OA OB OC =--②111;532OM OA OB OC =++③0;MA MB MC ++= ④0OM OA OB OC +++=.A. 1B. 2C. 3D. 4例2. 已知平行六面体''''ABCD A B C D -,点M 是棱AA '的中点,点G 在对角线A 'C 上,且CG:GA '=2:1,设CD =a ,',CB b CC c ==,试用向量,,a b c 表示向量',,,CA CA CM CG .变式:已知长方体''''ABCD A B C D -,M 是对角线AC '中点,化简下列表达式: ⑴ 'AA CB - ; ⑵ '''''AB B C C D ++ ⑶ '111222AD AB A A +-例3 如图,已知平行四边形ABCD,过平面AC 外一点O 作射线OA,OB,OC,OD,在四条射线上分别取点E,,F,G,H,并且使,OE OF OG OHk OA OB OC OD==== 求证:E,F,G,H 四点共面.变式:已知空间四边形ABCD 的四个顶点A,B,C,D 不共面,E,F,G,H 分别是AB,BC,CD,AD 的中点,求证:E,F,G,H 四点共面.三、变式训练:课本第89页练习1-3 四、课堂小结1.知识:2.数学思想、方法:3.能力:五、课后巩固1. 若324,(1)82a m n p b x m n yp =--=+++,ABCDFE G H0a ≠,若//a b ,求实数,x y .2.已知两个非零向量21,e e 不共线,12,AB e e =+ 121228,33AC e e AD e e =+=-. 求证:,,,A B C D 共面.。
高二数学人教A版选修2-1课件:3.1.2 空间向量的数乘运算

即������������ =y������������ +z������������ .
∴点 P 与点 A,B,C 共面.
+
������������
=
2 3
������������
−
������������
+
1 3
������������1
=23 (������������
+
������������ )-������������
+
1 3
(������
������1
+
������1 ������1 )
=23 (������������
知识精要
典题例解
迁移应用
一 二三
知识精要
典题例解
迁移应用
1.设 M 是△ABC 的重心,记������������=a,������������=b,������������=c,则������������=(
)
答案:D
解析:∵M 是△ABC 的重心,
∴������������
=
2 3
������������
目标导航
预习导引
123
已知在空间四边形 OABC 中,M,N 分别是对边 OA,BC 的中点,
点 G 在 MN 上,且 MG=2GN.设������������=a,������������=b,������������=c,则用 a,b,c 表示向
人教A版高中数学选修2-1课件空间向量的数乘运算

例2(课本例)已知ABCD,从平面AC外一点O引向量
OE kOA, OF kOB, OG kOC , OH kOD
求证:①四点E、F、G、H共面;
②平面AC//平面EG.
证明:∵四边形ABCD为
O
① ∴AC AB AD
(﹡)
EG OG OE kOC kOA
k(OC OA) kAC
注:①、②、③式都称为平面的向量表示式, 即平面由空间一点及两个不共线向量唯一确定.
试证明:对于不共线的三点 A、B 、C 和平面 ABC 外的
一点 O ,空间一点 P 满足关系式 OP xOA yOB zOC ,则 点 P 在平面 ABC 内的充要条件是 x y z 1 . 证明:⑴充分性
量在空间不一定共线
(B)在空间共线的向量在平面内不一定共线 (C)在平面内共线的向量在空间一定不共线 (D)在空间共线的向量在平面内一定共线
2.下列说法正确的是:C(A)平面内的任意
两个向量都共线
(B)空间的任意三个向量都不共面 (C)空间的任意两个向量都共面 (D)空间的任意三个向量都共面
例3:如图,已知空间四边形ABCD中,向量 AB a, AC b, AD c, 若M为BC的中点,
(4) | a | | | | a |
2、空间向量的数乘的运算律
(1)数乘分配律1:(a b) a b
(2)数乘分配律2: ( )a a a
(3)数乘结合律: (a) ()a
二、空间中的共线向量
1、定义:
如果表示空间向量的有向线段所在直线互相平 行或重合,则这些向量叫做 共线向量
∵ OP xOA yOB zOC 可变形为OP (1 y z)OA yOB zOC , ∴ OP OA y(OB OA) z(OC OA) ∴ AP y AB z AC
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.在平行六面体ABCD-EFGH中,已知M,N,R分别是AB,AD,AE上的点,且AM=MB,AN= ND,AR=2RE,求平面MNR分对角线AG所得线段AP与PG的比.
解析:如图,设 =m ,
∵ = + + =2 +3 + ,
∴ =2m +3m + m .
由于P,M,R,N共面,∴2m+3m+ m=1,
④若向量e1,e2,e3是三个不共面的向量,且满足等式k1e1+k2e2+k3e3=0,则k1=k2=k3=0.
其中是真命题的序号是__________(把所有真命题的序号都填上).
解析:根据共线向量的定义,若 ∥ ,则AB∥CD或A,B,C,D四点共线,故①错; ∥ 且 , 有公共点A,所以②正确;由于a=4e1- e2=-4 =-4b,所以a∥b.故③正确;易知④也正确.
∵ = ,∴ = = (- + + )=- + + .
又∵ = - ,∴ =- + + .
∵ =m,∴ =m =- + + .
∵ =- + = - + ,
∴ = + + .
又∵B,G,P,D四点共面,∴1- =0,即m= .
15.如图,平行六面体ABCD-A1B1C1D1中,E,F分别在B1B和D1D上,且BE= BB1,DF= DD1.
解析:因为点N为BC的中点,所以 = ( + ).
又 = ,所以 = - = ( + )- ,
则 = = ( + )- ,
所以 = + = + ( + )- = + + .
答案:D
12.有下列命题:
①若 ∥ ,则A,B,C,D四点共线;
②若 ∥ ,则A,B,C三点共线;
③若e1,e2为不共线的非零向量,a=4e1- e2,b=-e1+ e2,则a∥b;
= + ( - )=- a+ b+c.
答案:A
4.已知空间向量a,b,且 =a+2b, =-5a+6b, =7a-2b,则一定共线的三点是()
A.A,B,DB.A,B,C
C.B,C,DD.A,C,D
解析:∵ = + =2a+4b=2 ,∴A,B,D三点共线.
答案:A
5.在下列条件中,使M与A,B,C一定共面的是()
A. B. C. D.1
解析: = + + ,则x=1,y=- ,z= ,故选C.
答案:C
3.如图,在平行六面体ABCD-A1B1C1D1中,M为AC与BD的交点,若 =a, =b, =c,则下列向量中与 相等的向量是()
A.- a+ b+cB. a+ b+cC. a- b+cD.- a-
∴四边形EFGH是梯形.
B组 能力提升
11.如图所示,已知三棱锥O-ABC中,M,N分别是OA,BC的中点,点G在线段MN上,且MG=2GN.设 =x +y +z ,则x,y,z的值分别为()
A.x= ,y= ,z=
B.x= ,y= ,z=
C.x= ,y= ,z=
D.x= ,y= ,z=
课时作业(十七)空间向量的数乘运算
A组 基础巩固
1.若a与b不共线,且m=a+b,n=a-b,p=a,则()
A.m、n、p共线B.m与p共线
C.n与p共线D.m、n、p共面
解析:由于(a+b)+(a-b)=2a,即m+n=2p,即p= m+ n,又m与n不共线,所以m,n,p共面.
答案:D
2.在平行六面体ABCD-EFGH中,若 =x -2y +3z ,则x+y+z等于()
A. =3 -2 -
B. + + + =0
C. + + =0
D. = - +
解析:∵ + + =0,∴ =- - ,∴M与A,B,C必共面.
答案:C
6.已知正方体ABCD-A1B1C1D1中, = ,若 =x +y( + ),则()
A.x=1,y= B.x= ,y=1
C.x=1,y= D.x=1,y=
解析:∵A,B,C,D四点共面,
∴ =m +n +p ,且m+n+p=1.
由条件知 =(-2x) +(-3y) +(-4z) ,
∴(-2x)+(-3y)+(-4z)=1,
∴2x+3y+4z=-1.
答案:-1
9.非零向量e1,e2不共线,使ke1+e2与e1+ke2共线的k的值是________.
解析:若ke1+e2,e1+ke2共线,则ke1+e2=λ(e1+ke2),所以 ∴k=±1.
答案:±1
10.已知四边形ABCD是空间四边形,E,H分别是边AB,AD的中点,F,G分别是边CB,CD上的点,且 = , = .求证:四边形EFGH是梯形.
证明:∵E,H分别是AB,AD的中点,
∴ = , = , = - = -
= ( - )= = ( - )
= = ( - )= ,
∴ ∥ 且| |= | |≠| |.
(1)证明:A,E,C1,F四点共面;
(2)若 =x +y +z ,求x+y+z的值.
解:(1)证明:∵ABCD-A1B1C1D1是平行六面体,∴ = = = ,
∴ = , = ,
∴ = + + = + + +
= + = + + + = + ,由向量共面的充要条件知A,E,C1,F四点共面.
(2)∵ = - = + -( + )= + - - =- + + ,又 =x +y +z ,∴x=-1,y=1,z= ,∴x+y+z= .
解析: = + = + = + ( + ).所以x=1,y= .
答案:D
7.化简 (a+2b-3c)+5 -3(a-2b+c)=__________.
答案: a+ b- c
8.已知O是空间中任意一点,A,B,C,D四点满足任意三点不共线,但四点共面,且 =2x +3y +4z ,则2x+3y+4z=________.
从而得m= ,即 = ,∴ = .
14.如图,H为四棱锥P-ABCD的棱PC的三等分点,且PH= HC,点G在AH上,AG=mAH.四边形ABCD为平行四边形,若G,B,P,D四点共面,求实数m的值.
解析:连接BD,BG.
∵ = - 且 = ,
∴ = - .
∵ = + ,∴ = + - =- + + .