热力学第二定律总结

合集下载

热力学第二定律 概念及公式总结

热力学第二定律 概念及公式总结

热力学第二定律一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。

二、 热力学第二定律1. 热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功 热 【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、 卡诺定理(在相同高温热源和低温热源之间工作的热机)ηη≤ηη (不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、 熵的概念1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+ηηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质 :周而复始 数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η(数值上相等) 4. 熵的性质:(1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。

热力学第二定律及其思考

热力学第二定律及其思考

热力学第二定律及其思考1. 热力学第二定律:从热到冷不能自发发生热力学第二定律是热力学基本定律之一。

它是指任何一个孤立系统正向发生的过程,总是使得系统中的热量流从高温物体流向低温物体,而不会反过来,也就是从热到冷不能自发发生。

这个定律简单地概括了热力学中的不可逆性,表示热能不能自动流动。

2. 熵增原理:不可逆性的本质热力学第二定律是由于热力学中的不可逆性导致的。

这种不可逆性的本质是熵增。

熵是热力学基本量之一,是描述物质状态的一个重要物理量。

熵可以用来描述一个系统中的混乱程度。

熵增原理就是系统的混乱程度总是在增加。

也就是说,一旦一个系统发生了不可逆的过程,它的熵就会增加。

因此,热力学第二定律是通过熵增原理来表达的。

3. 应用:热机效率的限制热力学第二定律的一个重要应用是限制热机效率。

热机是将热能转化为机械能的机器,如蒸汽机、内燃机等。

热机效率就是机器所能转化的热能与输入的热能之比。

根据热力学第二定律,这个比值永远不能达到100%。

因为一旦机器将部分热能转化为机械能,就会产生废热。

废热会让机器中的热量流从高温物体流向低温物体,从而使得转化热能的效率降低。

这就是为什么现代的汽车引擎只能在约30%的效率范围内运行的原因。

4. 热力学第二定律的哲学意义热力学第二定律不仅仅是一个物理学定律,它还有广泛的哲学意义。

它表明了自然界的不可逆性,也表明了时间的箭头指向未来。

这些意义不仅仅对物理学有影响,还对生命哲学、社会科学以及政治哲学等学科产生了深刻的影响。

5. 维持世界的秩序热力学第二定律揭示了混乱与秩序的本质原理。

秩序是一个有组织的状态,而混乱是一个没有组织的状态。

它们之间的转换总是由能量流动和熵增引起的。

因此,我们可以把维持世界的秩序理解为维持热力学第二定律的不可逆性。

无论是自然界还是社会,只有按照这个原理运行,才会保持稳定和有序。

6. 总结热力学第二定律是热力学学科中的重要基本定律之一。

它揭示了热能自动流动的方向,也揭示了不可逆性的本质原理。

大学物理热力学第二定律知识点总结

大学物理热力学第二定律知识点总结

大学物理热力学第二定律知识点总结热力学第二定律是大学物理热学部分的重要内容,它揭示了热现象过程中的方向性和不可逆性。

理解和掌握热力学第二定律对于深入研究热学以及相关领域具有重要意义。

以下是对热力学第二定律相关知识点的详细总结。

一、热力学第二定律的表述1、克劳修斯表述热量不能自发地从低温物体传向高温物体。

这意味着热传递的过程具有方向性,如果没有外界的干预,热量只会从高温物体流向低温物体,而不会反向流动。

2、开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。

也就是说,第二类永动机是不可能制成的。

第二类永动机是指一种能够从单一热源吸热,并将其全部转化为功,而不产生其他变化的热机。

二、热力学第二定律的微观解释从微观角度来看,热力学第二定律反映了大量分子热运动的无序性。

在一个孤立系统中,分子的热运动总是从有序趋向无序,这是一个自发的过程。

比如,将不同温度的气体混合在一起,它们会自发地达到温度均匀分布的状态,而不会自动地分离成原来的不同温度区域。

这是因为分子的无规则运动使得它们更容易趋向无序的分布。

三、熵熵是描述系统无序程度的热力学概念。

熵的增加表示系统的无序程度增加。

对于一个绝热过程,系统的熵永不减少。

如果是可逆绝热过程,熵不变;如果是不可逆绝热过程,熵增加。

熵的计算公式为:$dS =\frac{dQ}{T}$,其中$dQ$ 是微元过程中的吸热量,$T$ 是热力学温度。

四、卡诺循环与卡诺定理1、卡诺循环卡诺循环由两个等温过程和两个绝热过程组成,是一种理想的热机循环。

通过卡诺循环,可以计算出热机的效率。

卡诺热机的效率为:$\eta = 1 \frac{T_2}{T_1}$,其中$T_1$ 是高温热源的温度,$T_2$ 是低温热源的温度。

2、卡诺定理(1)在相同的高温热源和低温热源之间工作的一切可逆热机,其效率都相等,与工作物质无关。

(2)在相同的高温热源和低温热源之间工作的一切不可逆热机,其效率都小于可逆热机的效率。

热力学第二定律概念及公式总结

热力学第二定律概念及公式总结

热⼒学第⼆定律概念及公式总结热⼒学第⼆定律⼀、⾃发反应-不可逆性(⾃发反应乃是热⼒学的不可逆过程)⼀个⾃发反应发⽣之后,不可能使系统和环境都恢复到原来的状态⽽不留下任何影响,也就是说⾃发反应是有⽅向性的,是不可逆的。

⼆、热⼒学第⼆定律1. 热⼒学的两种说法:Clausius:不可能把热从低温物体传到⾼温物体,⽽不引起其它变化Kelvin :不可能从单⼀热源取出热使之完全变为功,⽽不发⽣其他的变化2. ⽂字表述:第⼆类永动机是不可能造成的(单⼀热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(⽆条件,⽆痕迹,不引起环境的改变)可逆性:系统和环境同时复原3. ⾃发过程:(⽆需依靠消耗环境的作⽤就能⾃动进⾏的过程)特征:(1)⾃发过程单⽅⾯趋于平衡;(2)均不可逆性;(3)对环境做功,可从⾃发过程获得可⽤功三、卡诺定理(在相同⾼温热源和低温热源之间⼯作的热机)ηη≤ηη(不可逆热机的效率⼩于可逆热机)所有⼯作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与⼯作物质⽆关四、熵的概念1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+ηηηη=η任意可逆过程的热温商的值决定于始终状态,⽽与可逆途径⽆关热温商具有状态函数的性质:周⽽复始数值还原从物理学概念,对任意⼀个循环过程,若⼀个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热⼒学状态函数熵的变化值可⽤可逆过程的热温商值来衡量ηη:起始的商ηη:终态的熵ηη=(ηηη)η(数值上相等) 4. 熵的性质:(1)熵是状态函数,是体系⾃⾝的性质是系统的状态函数,是容量性质(2)熵是⼀个⼴度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可⽤克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何⼀个隔离系统中,若进⾏了不可逆过程,系统的熵就要增⼤,所以在隔离系统中,⼀切能⾃动进⾏的过程都引起熵的增⼤。

热力学第二定律

热力学第二定律

热力学第二定律热力学第二定律是热力学中的重要定律之一,它描述了热量在自然界中的传递方向。

热力学第二定律对于理解能量转化和宇宙演化具有重要意义。

在本文中,我们将探讨热力学第二定律的基本原理和应用。

1. 热力学第二定律的基本原理热力学第二定律可以从不同角度进行表述,但最为常见的是开尔文-普朗克表述和卡诺定理。

1.1 开尔文-普朗克表述开尔文-普朗克表述中,热力学第二定律可以简要地概括为“热量不会自发地从低温物体传递到高温物体。

”这意味着热量的传递是不可逆的,自然趋向于热量从高温物体传递到低温物体。

1.2 卡诺定理卡诺定理是另一种常见的表述方式,它描述了理想热机的最高效率。

根据卡诺定理,任何一台工作在两个温度之间的热机的效率都不会超过理论上的最高效率,这个最高效率由热源温度和冷源温度决定。

2. 热力学第二定律的应用热力学第二定律在许多领域都有重要的应用,下面我们将介绍几个常见的应用领域。

2.1 工程领域在工程领域中,热力学第二定律被广泛运用于热能转化系统的设计和优化。

例如,在汽车发动机中,通过合理设计燃烧过程、热能回收和废热利用等手段,可以提高发动机的效率,减少能量的浪费。

2.2 环境科学热力学第二定律的应用也涉及到环境科学领域。

例如,根据热力学第二定律的原理,热力学模型可以用于预测和评估环境中的能量传递和转化过程。

这有助于我们更好地理解和管理环境资源。

2.3 生命科学热力学第二定律在生命科学中也有广泛的应用。

生物体内的能量转化和代谢过程都受到热力学定律的限制。

通过热力学模型的建立和分析,可以深入研究生物体内能量转化的机理与调控。

3. 热力学第二定律的发展与挑战热力学第二定律的发展经历了许多里程碑,但仍然存在一些挑战和未解之谜。

3.1 热力学第二定律与时间箭头热力学第二定律与时间箭头之间的关系是一个待解之谜。

根据热力学第二定律,熵在一个封闭系统中总是增加的,即系统总是趋向于混乱状态。

然而,宇宙的演化似乎表明时间具有一个明确的方向,即宇宙从低熵状态(有序状态)向高熵状态(混乱状态)演化。

热力学第二定律 概念及公式总结教学总结

热力学第二定律 概念及公式总结教学总结

热力学第二定律概念及公式总结热力学第二定律一、自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。

二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质:周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4. 熵的性质:(1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。

热力学第二定律具体内容

热力学第二定律具体内容

热力学第二定律具体内容:热力学第二定律是热力学定律之一,是指热永远都只能由热处转到冷处.热力学第二定律是描述热量的传递方向的分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能.此定律的一种常用的表达方式是,每一个自发的物理或化学过程总是向著熵(entropy)增高的方向发展.熵是一种不能转化为功的热能.熵的改变量等于热量的改变量除以绝对温度.高、低温度各自集中时,熵值很低;温度均匀扩散时,熵值增高.物体有秩序时,熵值低;物体无序时,熵值便增高.现在整个宇宙正在由有序趋于无序,由有规则趋于无规则,宇宙间熵的总量在增加.克劳修斯表述不可能把热量从低温物体传到高温物体而不引起其他变化.开尔文表述不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响.开尔文表述还可以表述成:第二类永动机不可能造成.若要简捷热能不能完全转化为机械能,只能从高温物体传到低温物体。

物理化学热力学第二定律总结

物理化学热力学第二定律总结

热力学第二定律1.热力学第二定律:通过热功转换的限制来研究过程进行的方向和限度。

2.热力学第二定律文字表述:第二类永动机是不可能造成的。

(从单一热源吸热使之完全变为功而不留下任何影响。

)3.热力学第二定律的本质: 一切自发过程,总的结果都是向混乱度增加的方向进行(a. 热与功转换的不可逆性; b.气体混合过程的不可逆性; c.热传导过程的不可逆性)4.热力学第二定律的数学表达式:Clausius 不等式5.卡诺循环→热机效率(即:热转化为功的限度有多大?)→卡诺定理(所有工作于同温热源和同温冷源之间的热机,其效率都不能超过可逆机,即可逆机的效率最大。

)→从卡诺循环得到结论:热效应与温度商值的加和等于零。

→任意可逆循环热温商的加和等于零→熵的引出→熵的变化值可用可逆过程的热温商值来衡量→Clausius 不等式:d QS Tδ≥→熵增加原理(熵增加原理)→把与体系密切相关的环境也包括在一起,用来判断过程的自发性(∆S iso =∆S (体系)+∆S (环境)≥0):“>” 号为自发过程;“=” 号为可逆过程) 6.等温过程的熵变:(1)理想气体等温变化:∆S =nRln(V 2/V 1)=nRln(P 1/P 2);(2)等温等压可逆相变(若是不可逆相变,应设计可逆过程): ∆S(相变)=∆H (相变)/T(相变);(3)理想气体(或理想溶液)的等温混合过程:∆S =-R ∑n B lnx B 7. 变温过程的熵变:(1)等容变温:⎰=∆21d m ,T TV TTnC S(2)等压变温:(3):8.标准压力下,求反应温度T 时的熵变值:9.用熵作为判据时,体系必须是孤立体系,也就是说必须同时考虑体系和环境的熵变,这很不方便→有必要引入新的热力学函数,利用体系自身状态函数的变化,来判断自发变化的方向和限度。

因此引入新的函数:亥姆霍兹函数A=U-TS 与吉布斯函数G=H-TS 。

10.等温、可逆过程中,体系对外所作的最大功等于体系亥姆霍兹函数的减少值;自发变化总是朝着亥姆霍兹函数减少的方向进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 热力学第二定律总结核心内容:不可逆或自发021<>-+=∆+∆=∆⎰amb ramb iso T Q TQ S S S δ 可逆或平衡 不可能对于恒T 、V 、W ˊ=0过程:不可逆或自发0)(0,,><∆-∆=-∆==∆'ST U TS U A W V T 可逆或平衡 反向自发对于恒T 、p 、W ˊ=0过程:不可逆或自发0)(0,,><∆-∆=-∆=∆='ST H TS H G W p T 可逆或平衡 反向自发主要内容:三种过程(单纯pVT 变化、相变、化学反应)W 、Q 、ΔU 、ΔH 、△S 、△A 、△G 的计算及过程方向的判断。

一、内容提要1、热力学第二定律的数学形式不可逆或自发⎰<>∆21TQS δ 可逆或平衡 不可能上式是判断过程方向的一般熵判据。

将系统与环境一起考虑,构成隔离系统则上式变为:不可逆或自发021<>-+=∆+∆=∆⎰amb ramb iso T Q TQ S S S δ 可逆或平衡 不可能上式称为实用熵判据。

在应用此判据判断过程的方向时,需同时考虑系统和环境的熵变。

将上式应用于恒T 、V 、W ˊ=0或恒T 、p 、W ˊ=0过程有:不可逆或自发0)(0,,><∆-∆=-∆==∆'ST U TS U A W V T 可逆或平衡 反向自发此式称为亥姆霍兹函数判据。

不可逆或自发0)(0,,><∆-∆=-∆=∆='ST H TS H G W p T 可逆或平衡 反向自发此式称为吉布斯函数判据。

熵判据需同时考虑系统和环境,而亥姆霍兹函数判据和吉布斯函数判据只需考虑系统本身。

熵判据是万能判据,而亥姆霍兹函数判据和吉布斯函数判据则是条件判据(只有满足下角标条件时才能应用)。

此外,关于亥姆霍兹函数和吉布斯函数,还有如下关系:r T W A =∆ r V T W A '=∆, r p T W G '=∆,即恒温可逆过程系统的亥姆霍兹函数变化等于过程的可逆功;恒温恒容可逆过程系统的亥姆霍兹函数变化等于过程的可逆非体积功;恒温恒压可逆过程系统的吉布斯函数变化等于过程的可逆非体积功。

下面将△S 、△A 和△G 的计算就三种常见的过程进行展开。

2、三种过程(物质三态pVT 变化、相变、化学反应)△S 、△A 和△G 的计算 (1)物质三态(g 、l 或s 态)pVT 变化(无相变、无化学反应)恒容时:⎰=∆21,T T m v V TdT nC S只有当恒压时:⎰=∆21,T T m P p TdT nC S对于凝聚态物质的任意过程,由于熵随压力或体积的变化率很小,因此有:⎰⎰≈≈∆2121,,T T m V T T m P TdT nC TdT nC S对于气态物质的任意过程,由于熵随压力或体积的变化率不可忽略,而p T V T TVp S T p V S )()(,)()(∂∂-=∂∂∂∂=∂∂(麦克斯韦关系式),因此有: dV T p T dT nC dV V STdT nC S VV V T T m V T V V T T m V ⎰⎰⎰⎰∂∂+=∂∂+=∆21212121)()(,,或dp T V T dT nC dp V STdT nC S pp p T T m p p p p T T m p ⎰⎰⎰⎰∂∂-=∂∂+=∆21212121)()(,,其中V T p )(∂∂及p TV)(∂∂可由气体的实际状态方程或实验数据求得。

对于理想气体的任意过程,可以通过可逆途径计算其△S:1212,ln lnV V nR T T nC S m v +=∆ 2112,ln lnp p nR T T nC m p += 12,12,ln lnV V nC p p nC m p m v += 这就是计算理想气体任意过程△S 的万能公式。

当过程恒容,恒压或恒温时,公式相应有更为简单的形式。

对于任意物态,△A 和△G 可根据A 和G 的定义式进行计算 △A=△U-△(TS) △G=△H-△(TS) 亦可根据A 和G 的热力学基本方程进行计算⎰⎰--=∆2211V V T T pdV SdT A ⎰⎰+-=∆2211p p T T Vdp SdT G(2)相变相变分为可逆相变和不可逆相变两大类。

由于熵变只等于可逆过程的热温熵,因此对于可逆相变,熵变可以通过相变过程的热温商直接进行计算。

而对于不可逆相变。

熵变必须通过设计可逆途径进行计算,即利用可逆相变数据以及熵是状态函数的性质进行计算。

这也就是第一章中曾提到的状态函数法。

①可逆相变:在两相平衡温度和压力下的相变为可逆相变。

相变一般为恒温恒压过程, ⎰⎰∆====∆∆=2121,,THTQ TQ TQ S H Q p rrp δδ因此 ②不可逆相变:不是在两相平衡温度或压力下的相变为不可逆相变。

为了计算不可逆相变过程的熵变,通常设计一条包含有可逆相变步骤在内的可逆途径,而在具体设计可逆途径时,又分为如下两种情形: a 、 改变相变温度:T 2,p 下的相变:相相不可逆相变βα−−−→− ΔS(T 2) ΔS 2T 1,p 下的相变:相相可逆相变βα−−−→− ΔS(T 1)⎰⎰⎰∆+∆=+∆+=∆+∆+∆=∆212112)()()()()()(1,1,2112T T p T T m p T T m p TdT C T S TdTnC T S TdTnC S T S S T S βα其中)()(,,αβm p m p p nC nC C -=∆b 、改变相变压力:T ,p 2下的相变:相相不可逆相变βα−−−→− ΔS(p 2)ΔS 1 ΔS 1ΔS 2T ,p 1下的相变:相相可逆相变βα−−−→− ΔS(p 1)⎰⎰⎰∂∆∂+∆=∂∂+∆+∂∂==∆+∆+∆=∆212112])([)(])([)(])([)()(112112p p T p p T p p T dppS p S dp p S p S dp p S S p S S p S βα其中T T T pS p S p S ])([])([])([∂∂-∂∂=∂∆∂αβ 由麦克斯韦关系式可知,p T T V p S )()(∂∂-=∂∂。

对于凝聚态物质,由于p TV)(∂∂很小,可以忽略不计,因此0])([≈∂∆∂T p S 。

而对于气态物质,p TV)(∂∂较为可观。

对于理想气体,pnRT V p =∂∂)(。

对于实际气体,可由实际气体的状态方程或实验数据求得p TV)(∂∂。

在实际计算不可逆相变过程的熵变时,究竟选择以上a 、b 两种方法中的何者,应视题给已知条件进行决定。

相变过程的△A 和△G 仍利用A 和G 的定义式进行计算,但不可利用热力学基本方程进行计算,因为后者只适用于单纯pVT 变化,而不适用于相变和化学反应。

S T U TS U A ∆-∆=∆-∆=∆)( S T H TS H G ∆-∆=∆-∆=∆)((3)化学反应对于化学反应aA+bB=l L+mM 或∑=BB B 0υ,可以通过反应物和产物的标准摩尔熵计算其标准摩尔反应熵:),()()()()()(T B S B bS A aS M mS L lS T S m BB m m m m m r θθθθθθυ∑=--+=∆又由反应物和产物的θm f H ∆或θm c H ∆求得反应的θm r H ∆(T),则反应的,)(amb m r S T T H ∆-=∆θ所以TT H T S S m r m r iso )()(θθ∆-∆=∆。

标准摩尔反应熵随反应温度的变化关系为:⎰∆+∆=∆21)()(12T T p m r m r TdT C T S T S θθθ其中∑=--+=∆Bmp B mp mp mp m p p B C B bC A aC M mC L lC C )()()()()(,,,,,θθθθθθυ化学反应过程△A 和△G 的计算公式如下:S T U TS U A ∆-∆=∆-∆=∆)( S T H TS H G ∆-∆=∆-∆=∆)(此外,化学反应过程的△G 还可由反应物和产物的θm f G ∆ 或电池电动势E 求得。

3、热力学基本方程对于封闭系统的单纯pVT 变化过程:dU=TdS-pdV dH=TdS+Vdp dA=-SdT-pdV dG=-SdT+Vdp 以上四式称为热力学基本方程。

4、热力学状态函数间的重要关系式及吉布斯——亥姆霍兹方程从热力学基本方程出发,应用数学原理可以得出热力学状态函数之间的重要关系式:T S H S U p V =∂∂=∂∂)()(p VAV U T S -=∂∂=∂∂)()( V p G p H T S =∂∂=∂∂)()(S TGT A p V -=∂∂=∂∂)()( 吉布斯——亥姆霍兹方程:2])([T U T T A V -=∂∂ , 2])([TUT T A V ∆-=∂∆∂ 2])([T H T T G p -=∂∂ , 2])([TH T T G p ∆-=∂∆∂ 5、麦克斯韦关系式数学上,若Ndy Mdx dz +=,则y x xNy M )()(∂∂=∂∂。

对比热力学基本方程,有:V S S p V T )()(∂∂-=∂∂ p S S V p T )()(∂∂=∂∂ V T TpV S )()(∂∂=∂∂ p T T V p S )()(∂∂-=∂∂以上四式称为麦克斯韦关系式。

6、其它重要关系式 (1) T nC T S m v V ,)(=∂∂ TnC T Sm p p ,)(=∂∂ (2)对于任意三个其中两两彼此独立的状态函数x 、y 、z, 都有如下循环关系:1)()()(-=∂∂∂∂∂∂x z y zyy x x z (3)设有状态函数x 、y 、z, z=z(x ,y), dy yzdx x z dz x y )()(∂∂+∂∂=,则有: ①u x y u xyy z x z x z )()()()(∂∂∂∂+∂∂=∂∂,其中u 为第四个状态函数 ②y y zx xz )(1)(∂∂=∂∂③y y y xuu z x z )()()(∂∂∂∂=∂∂其中u 为第四个状态函数 ④x y z y x z ∂∂∂=∂∂∂22即x y y x xzy y z x ])([])([∂∂∂∂=∂∂∂∂(尤拉关系式),麦克斯韦关系式即是此式的具体形式。

以上这此关系式,在热力学演绎(公式证明)中经常用到。

7、克拉佩龙方程和克劳修斯——克拉佩龙方程应用热力学基本方程和热力学原理,可导出纯物质两相平衡时压力和温度之间的函数关系。

(1)克拉佩龙方程纯物质任意两相平衡时:mmV T H dT dp ∆∆=,式中m H ∆为摩尔相变焓,m V ∆为摩尔相变体积差。

相关文档
最新文档