信息光学公式整理1
信息光学公式

球面波复振幅分布k=2pi/λ, 傍轴条件下xy 平面上发散球面波的复振幅表示式傍轴条件下xy 平面上会聚球面波的复振幅表示式 22000(,)exp()exp ()()2a k U x y jkz j x x y y z z ⎧⎫⎡⎤=-+-⎨⎬⎣⎦⎩⎭]})()[(2exp{)exp(),(20200y y x x zk j z jk z a y x U -+---=平面波复振幅分布对于确定方向(α,β,γ为常数)传播的平面波,所选定的垂直z 轴的xy 平面任意方向传播的平面波在整个空间的空间频率1/λ表示空间频率 菲涅耳衍射公式 近似条件 夫琅禾费近似或远场近似孔径平面光场观察平面光场相位变换因子(复振幅透过率)2222221λξληλς++={}22000000022000(,)exp()2exp()(,)exp[()]2exp()exp()(,)2U x y jkz x y jk U x y j x x y y dx dy j zz z jkz x y jk U x y j z zπλλλ∞-∞+=-++=⎰⎰ ()()(),,exp exp cos cos cos U x y z a jk ra jk x y z αβγ=⋅=++⎡⎤⎣⎦ ()()()((),,exp cos exp cos cos exp exp cos cos U x y z a jkz jk x y a jk x y γαβαβ=+⎡⎤⎣⎦=+⎡⎤⎣⎦λβηcos 1==Y cos γζλ=λαξcos 1==X 220000000()()exp()(,)(,)exp[]2x x y y jkz U x y U x y jk dx dy j z z λ∞-∞-+-=⎰⎰002211[1()()]22x x y y r z z z --=++00000000(,)(,)(,)(,)*(,)U x y U x y h x x y y dx dy U x y h x y ∞-∞=--=⎰⎰22002x x y yx y r z z z ++=+-()()()222211,exp exp 22k t x y j x y p q k j x y f ⎡⎤⎛⎫=-++=⎢⎥ ⎪⎡⎤-+⎢⎥⎣⎝⎣⎦⎦⎭考虑透镜孔径在相干照明条件下,衍射受限系统的脉冲响应仅取决于系统光瞳函数!出瞳为直径D的圆形孔径截至频率物面上的截止频率ρco=|M|ρc1.2。
光学公式知识点

光学公式知识点光学是研究光的传播规律和光的性质的科学。
在光学研究中,我们常常需要使用一些公式来描述光的传播和相互作用。
本文将介绍一些基本的光学公式知识点,并逐步深入讨论它们的应用。
光的传播光的传播是光学研究的核心问题之一。
光在介质中的传播速度可以用光速公式来描述:v = c / n其中,v表示光在介质中的传播速度,c表示真空中的光速,n表示介质的折射率。
光线在通过界面时会发生折射现象。
根据斯涅尔定律,折射光线的入射角θi 和折射角θr之间满足下列关系:n1 * sin(θi) = n2 * sin(θr)其中,n1和n2分别表示两个介质的折射率。
光的成像光学中一个重要的应用是成像。
成像是指通过光学系统将物体的信息投射到成像平面上,形成物体的像。
以下是一些与成像相关的公式。
薄透镜成像公式薄透镜成像公式可以用来计算透镜成像的物距、像距和焦距之间的关系:1 / f = 1 / v - 1 / u其中,f表示透镜的焦距,v表示像距,u表示物距。
放大率公式放大率是指成像物体和实际物体的大小比值。
在成像中,放大率可以通过以下公式计算:M = -v / u其中,M表示放大率,v表示像距,u表示物距。
光的干涉与衍射光的干涉与衍射是光学中的重要现象,涉及到光的波动性质。
以下是一些与干涉与衍射相关的公式。
杨氏双缝干涉杨氏双缝干涉是一种经典的干涉现象,通过双缝的光程差可以计算出干涉现象的明暗条纹:x = m * λ * L / d其中,x表示干涉条纹的位置,m表示干涉级次,λ表示波长,L表示光源到屏幕的距离,d表示双缝间距。
菲涅尔衍射菲涅尔衍射是光线通过孔径时发生的衍射现象。
根据菲涅尔衍射公式,可以计算出衍射光强度的分布:I = (A / r)² * (sin(πa sinθ) / (πa sinθ))²其中,I表示衍射光强度,A表示孔径的振幅,r表示距孔径的距离,a表示孔径的半径,θ表示入射角。
信息光学公式整理1

信息光学公式 1·矩形函数⎪⎩⎪⎨⎧≤-=⎪⎭⎫ ⎝⎛-其它,021,100a x x a x x rectF { a sinc(a x ) } = rect(f /a )F ⎪⎭⎫ ⎝⎛Λ=b f b 1(bx)}{sinc22·inc s 函数()()a x x a x x a 000sin x x sinc --=⎪⎭⎫ ⎝⎛-ππ 3·三角形函数 ⎪⎩⎪⎨⎧≤-=⎪⎭⎫ ⎝⎛Λ其它,0,1a x a xa x4·符号函数()⎪⎩⎪⎨⎧<-=>=0,10,00,1sgn x x x x5·阶跃函数()⎩⎨⎧<>=0,00,1x x x step6·圆柱函数⎪⎩⎪⎨⎧<+=⎪⎪⎭⎫⎝⎛+其它,0,12222ayx a y x circ极坐标内⎩⎨⎧><=⎪⎭⎫ ⎝⎛ar o a r a r ,,1circ7·δ函数的定义 普通函数形式的定义()()⎪⎪⎭⎪⎪⎬⎫=⎩⎨⎧==∞≠≠=∞∞-⎰⎰1,0,0,0,0,dxdy y x y x y x y x δδ广义函数形式的定义()()()0,0,,φφδ=∞∞-⎰⎰dxdy y x y x其中()y x ,φ在原点处连续 δ函数的性质设函数()y x f ,在()00,y x 点出连续,则有 筛选性质()()()y x f dxdy y y x x y x f ,,,00=--∞∞-⎰⎰δ坐标缩放性质 ()()y x abby ax ,1,δδ=可变性 ()()()y x y x δδδ=, 8·梳状函数性质()()()∑∑∞-∞=∞∞-=-=m nx j m x x πδ2exp comb()∑∞∞-∆-∆=⎪⎭⎫ ⎝⎛∆x m x x x x δcomb()∑∞-∞=⎪⎭⎫⎝⎛∆-∆=∆m xm x x δ1xx comb ()()ξcomb x comb −−→←ℑ()ξx comb x x comb ∆∆−−→←⎪⎭⎫ ⎝⎛∆ℑx ()()()y x comb comb y x,comb =9·傅里叶变换()()(){}dxdy y x j y x f F ηξπηξ+-=∞∞-⎰⎰2exp ,, ()()()[]ηξηξπηξd d y x j F y x f +=∞∞-⎰⎰2exp ,,10·阶跃函数step(x)的傅里叶变换(){}(){}()⎭⎬⎫⎩⎨⎧-=+=ℑℑπξξδj 21x sgn 121x step11·卷积的定义()()()()()x h x f d x h f x g *=-=⎰∞∞-ααα定义()x f 和()x h 的二维卷积:()()()()()y x h y x f d d y x h f y x g ,*,,,,=--=⎰⎰∞∞-βαβαβα卷积的几个重要性质: 线性性质:{),(),(),(),(),()},(),(y x g y x bh y x g y x af y x g y x bh y x af *+*=*+卷积符合交换律:,(),(),(),(y x f y x h y x h y x f *=*卷积符合结合律:[][]),(),(),(),(),(),(y x g y x h y x f y x g y x h y x f **=**卷积的坐标缩放:若),(),(),(y x g y x h y x f =*,则),(1),(),(by ax g abby ax h by ax f =*(a,b 均不等于0)卷积位移不变性:若),(),(),(),(y x f y x h y x h y x f *=*,则),(),(),(),(),(000000y y x x g y y x x h y x f y x h y y x x f --=--*=*--函数),(y x f 与δ函数的卷积: ),(),(),(0000y y x x f y y x x y x f --=--*δ12·米尔对称性()()ηξηξ--=*,,FF13·卷积定理()()()x rect x rect *=Λx(){}(){}(){}()ξ2sinc x rect x rect ==Λℑℑℑx()(){}()()()ξξξrect rect rect sin x sinc ==*ℑx c()()(){}()x sinc rect sinc sinc 1==*-ℑξx x14·线性平移不变系统()()()()()y x h y x f d d y x h f y x g ,,,,,*=--=∞∞-⎰⎰βαβαβα15·函数变换输入函数 ()()y x y x f 002cos ,ηξπ+= 其频谱函数()()()[]0000,,21,ηηξξδηηξξδηξ-++--=F16·单色光波场的复振幅复振幅 ()()r k j ra P U *=exp 0光强 *==UU UI 217·X 方向的空间频率的相关公式等相线位方程 c kx =αcos λπ2=k αλc o s =X X 方向的空间频率λαξcos 1==X 18·整个空间的空间频率()()[]z y x j a Z Y X U ζηξπ++=2exp ,, 221λζηξ=++2219·泰伯效应()()jkz d n c n nG exp ⎪⎭⎫ ⎝⎛-=∑∞-∞=ξδξ 泰伯距离 λ22dz T =20·相干截止频率 f D λρ2c =非相干截止频率 f D λρρ22c oc == 21·相干面积 ()()SSC A Z A Ω≈=λλ2第二章2·1夫琅禾费近似()()()()⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡+=y y x x z k j y x z k j zj jkz y x y x h 002200exp 2exp exp ,,λ; 2·2菲涅尔衍射()()()()()0020200002exp ,exp ,dy dx z y y x x jk y x U zj jkz y x U ⎥⎥⎦⎤⎢⎢⎣⎡-+-=∞∞-⎰⎰λ傅里叶变换()()()()()()00002020000222exp 2exp ,2expexp1,dy dx y y xx z jy x z k j y x Uy x z k j jkz zj y x U ⎥⎦⎤⎢⎣⎡+-⨯⎥⎦⎤⎢⎣⎡+⨯⎥⎦⎤⎢⎣⎡+=∞∞-⎰⎰λπλ2·3透镜系统(1)输入平面位于透镜前焦面 这时f d =0得 ()()000000exp ,,dy dx f y y x x jk y x t c y x U ⎪⎪⎭⎫⎝⎛+-'=∞∞-⎰⎰ (2)输入面紧贴透镜 这时00=d 得 ()()00000022exp ,2exp ,dy dx q y y x x jk y x t qy x jk c y x U ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+'=∞∞-⎰⎰ (3)物在透镜后方()()()0000000022exp ,2exp ,dy dx d q y y x x jk y x t d q y x jk c y x U ⎪⎪⎭⎫⎝⎛-+-⎥⎦⎤⎢⎣⎡-+'=∞∞-⎰⎰ 4·1希尔伯特变换可看成是一个线性平移不变系统,该系统的脉冲响应为t t h π1)(-= 而 )()()(t u t j t t u r *⎥⎦⎤⎢⎣⎡+=πδ脉冲响应对应的传递函数为()()νπνn j t F H sg 1=⎭⎬⎫⎩⎨⎧-=4·2互相干函数时间的平均值⎰-∞→=TTT dt t f Tt f )(21lim)(光场的互相干函数())(,),(),(),(12**2*12211ττΓ=+--t P u t P u t t P u t t P u *=光场的自相干函数)(),(),(111*1ττΓ+=t P u t P u复相干度()()()()()21122/122111212]00[I I τττγΓ=ΓΓΓ=Q 点的光强为()()()()(){}τγ122121Re 2)(I Q I Q I Q I Q I Q ++=干涉条纹的可见度为min ma x m i n m a x I I I I +-=V ()()()()()τγ1221212Q I Q I Q I Q I +=Imax 和Imin 是Q 点附近干涉条纹的极大值和极小值()()()()()()()()Q I Q I Q I Q I I Q I Q I Q I Q I I 2121min 2121max 22-+=++=光源的光谱密度分布 ()()()()⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∞→∞→2T 2T2*,lim ,,lim v P v P v P v T T TTT U U UG相干时间vc ∆=1τ 相干长度c c c l τ= 时间延迟t =2h/c4·3确定像点坐标:i z 为正表示发散球面波,i z 为负表示会聚球面波1012121-⎪⎪⎭⎫ ⎝⎛±=z z z z r p i λλλλ p pi r i i i x z zx z z x z z x +±=2120012λλλλp pi r i i i y z z y z z y z z y +±=2120120λλλλ4.4)⎪⎪⎭⎫⎝⎛--=-±-⎰∞∞-A B AC A dx C Bx Ax 22exp 2exp π积分公式:4·5 范西泰特——策尼克定理()()()()[]()()()()βαβαβαβαλπβαψd d I d d y x z j I j y x I y x I y xy x y xy x J u ,2exp ,exp ,,,;,,;,221122112211∞∞-∞∞-⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡∆+∆-==4·6 傅里叶透镜的截止频率、空间带宽积和视场 1. 截止频率 传播方向角u 最大为 ()()fD D fD D u 22211-=-≈相应的空间频率 f D D uuλλλξ2sin 1-=≈=传播方向角u 最小为 ()()fD D f D D v 22211+=+≈相应的空间频率 fD D v vλλλξ2sin 1+=≈=2.空间带宽积δξξ单频线宽频带宽度信息容道∆=NfD D λξξ12-==∆11D =δξ SW N =∆=δξξSW 就是空间带宽积3.视场 21DD =4正弦条件 ηλf u f h ==sin。
光学牛顿公式和高斯公式

光学牛顿公式和高斯公式
光学公式(公式一):
在光学中,有一条被称为光学公式的基本关系式,其形式类似于牛顿公式。
这个公式
描述了光线经过光学元件(如透镜)时产生的折射现象。
设光线从一个介质(如空气)射入另一个介质(如玻璃),其入射角为θ_1,折射角为θ_2。
则根据光学公式可以得到如下关系:
n_1 × sin(θ_1) = n_2 × sin(θ_2)
n_1和n_2分别是两个介质的折射率,sin(θ_1)和sin(θ_2)分别是入射角和折射角
的正弦值。
高斯公式(公式二):
高斯公式是光学中用于计算薄透镜成像的一种公式,由哥特弗里德·威廉·莱布尼茨
与约翰内斯·凯普勒设计。
设一个物体与薄透镜之间的距离为u,物体到透镜的焦距为f,则像到透镜的距离为v。
根据高斯公式,我们可以得到如下关系:
1/v - 1/u = 1/f
v为像的位置,u为物体的位置。
此公式的表达方式是光学中常用的一种方法,用于定性描述薄透镜成像的情况。
这两个公式在光学研究中具有重要的作用,能够描述光线在传播和成像过程中的行为,为我们解释和预测光学现象提供了基础。
高中光学公式汇总

高中光学公式汇总
光学是物理学的一个分支,研究光的传播和性质。
高中阶段的光学内容主要包括光的反射、折射、透镜等方面的知识。
在学习光学时,学生们需要掌握一系列的光学公式,这些公式可以帮助我们计算光的传播和与物体相互作用的过程。
以下是一些常见的高中光学公式的汇总:
1. 光的速度公式:
光在真空中的速度为光速c,即c = 3.0 × 10^8 m/s。
2. 光的传播公式:
光在某介质中的传播速度v与在真空中的速度c之间满足折射定律:
nsinθ = nsinθ
其中,n和n分别代表光线入射介质和折射介质的折射率,θ和θ分别为入射角和折射角。
3. 光的反射公式:
光在光滑表面上的反射角等于入射角,即θ = θ。
4. 薄透镜的公式:
薄透镜的成像公式为:
1/f = 1/v + 1/u
其中,f为透镜的焦距,v为像距,u为物距。
5. 放大率公式:
薄透镜的放大率公式为:
M = -v/u
其中,M为放大率,v为像距,u为物距。
6. 透镜公式:
透镜公式将焦距、物距和像距联系在一起:
1/f = (n-1)(1/R - 1/R)
其中,f为透镜焦距,n为透镜的折射率,R和R为透镜的曲率半径。
除了以上列举的光学公式外,还有一些其他的公式在光学学习中也会用到,比如光的干涉公式、光的衍射公式等等。
通过掌握这些公式,学生们可以更好地理解光的传播和与物体相互作用的过程,从而解决与光学相关的问题。
总而言之,高中阶段的光学公式是学生们在学习光学时必备的工具,通过这些公式的应用,学生们可以更好地理解和应用光学知识,解决
与光学相关的问题。
光学常用公式范文

光学常用公式范文光学是研究光的传播和相互作用的科学领域,涉及到许多光学常用公式。
下面是一些光学领域常见的公式:1.光速公式:光在真空中的速度为c=299,792,458m/s。
2. 折射定律:当光从一种介质射入另一种介质时,入射角θ1、折射角θ2和两种介质的折射率n1、n2之间满足康斯特定律:n1sinθ1 =n2sinθ23.球面镜成像公式:对凸透镜和凹透镜而言,成像公式为1/f=1/v+1/u,其中f为焦距,v为像距,u为物距。
4.薄透镜公式:对于无限薄的透镜,成像公式可以简化为1/f=(n2-n1)(1/R1-1/R2),其中n1、n2为透镜两侧的折射率,R1、R2为曲率半径。
5. 光谱衍射公式:在光通过一个狭缝或光栅时,光的衍射现象遵循衍射公式:mλ = d sinθ,其中m为衍射级次,λ为波长,d为狭缝或光栅的间距,θ为衍射角。
6.杨氏双缝干涉公式:当光通过两个间距为d的狭缝时,干涉现象满足干涉公式:y=mλL/d,其中y为干涉条纹的位置,m为干涉级次,λ为波长,L为狭缝到屏幕的距离。
7. 薄膜干涉公式:当光在薄膜上反射和折射时,干涉现象满足薄膜干涉公式:2nt = mλ,其中n为薄膜的折射率,t为薄膜的厚度,m为干涉级次,λ为波长。
8.瑞利判据:用于判断两个光源是否可以被分辨为两个点光源。
根据瑞利判据,两个光源的最小可分辨角度为θ=1.22λ/d,其中λ为波长,d为光路的孔径直径。
9. 空气中的大气折射公式:当光穿过大气层时,受大气折射的影响,光线在水平方向上会发生弯曲。
大气折射公式可以用来计算偏折角度:tanδ ≈ V / d,其中V为大气折射率变化率,d为光线传播距离。
10. 斯涅尔定律:当光从一种介质射入另一种介质时,入射角θ1、折射角θ2和两种介质的折射率n1、n2之间满足斯涅尔定律:n1sinθ1= n2sinθ2这只是光学中的一小部分常用公式,实际上光学是一个非常广泛且复杂的科学领域,在不同的光学现象和应用中还有许多其他的公式和定律。
光学公式总结

光学公式总结光学是研究光的传播、偏振、反射、折射和干涉等现象的科学领域。
在光学研究中,有许多重要的公式被使用,这些公式帮助我们理解和描述光的行为。
本文将对常见的光学公式进行总结,以便读者更好地理解和运用这些公式。
1. 光的速度公式:光的速度(v)在真空中是一个恒定值,通常用c表示,其数值为299,792,458米/秒。
2. 光的传播公式:光线按照直线传播,并且在真空中以光速传播。
光线传播距离(d)等于速度(v)乘以时间(t),即d = v × t。
3. 焦距公式:当光线通过一块薄透镜时,它会被聚焦在焦点上。
薄透镜的焦距(f)与物体距透镜的距离(do)和像距离(di)之间存在如下关系:1/f =1/do + 1/di。
4. 折射定律:当光线从一种介质折射到另一种介质中时,它会发生折射。
折射定律指出入射角(θ1)、折射角(θ2)和两种介质的折射率(n1和n2)之间满足如下关系:n1*sin(θ1) = n2*sin(θ2)。
5. 牛顿环公式:牛顿环是干涉现象的一种,常见于透明薄片与平面介质接触时形成的环形彩色条纹。
牛顿环半径(R)与光的波长(λ)、透明薄片与平面介质之间的距离(d)之间满足如下关系:R = (√(n * λ * d)) / 2。
6. 球面镜成像公式:当光线通过球面镜时,会发生折射和反射,形成像。
球面镜成像的关系由下列公式描述:1/f = (n - 1) * (1/R1 - 1/R2),其中f是焦距,R1和R2分别是球面镜的曲率半径。
7. 力学公式:在光学实验中,一些力学公式也被应用。
例如,力(F)可以通过牛顿第二定律表示为F = m * a,其中m表示质量,a表示加速度。
8. 干涉条纹公式:干涉现象中的条纹间距(d)与光的波长(λ)、光程差(ΔL)之间存在关系:d = λ / 2 * (ΔL)。
9. 各向异性介质的折射率:各向异性介质的折射率通常用一个张量来表示。
这个张量可以通过一个矩阵来描述,其中的元素被称为折射率的主值。
光学公式总结范文

光学公式总结范文光学公式是用于描述光学现象和光的传播行为的数学关系式。
它们是基于光学定律和几何关系得出的,能够帮助我们理解光的折射、反射、干涉、衍射等现象,并应用于光学器件的设计和光学实验的分析。
下面是一些常见的光学公式的总结:1. 反射定律:入射角等于反射角。
即sin(θi) = sin(θr),其中θi是入射角,θr是反射角。
2. 折射定律:折射角的正弦与入射角的正弦和折射率的比例相等。
即sin(θi)/sin(θr) = n,其中θi是入射角,θr是折射角,n是折射率。
3.光程差定理:光程差等于两个波面之间的几何距离差乘以介质的折射率。
即Δr=n*Δl,其中Δr是光程差,n是折射率,Δl是几何距离差。
4.光的干涉条件:当两个波源的相干波面相交时,两波的光程差等于(2m+1)*λ/2,其中m是整数,λ是波长。
5. 双缝干涉光强分布:双缝干涉的光强分布可由Young公式表示:I = I1 + I2 + 2√(I1 * I2) * cos(2π * Δr/λ),其中I1和I2是单缝的光强,Δr是两缝之间的光程差,λ是波长。
6. 衍射公式:衍射的光强分布可以由Fresnel-Kirchhoff衍射公式表示:I = [A * (sinc(φ/2))^2]^2,其中A是入射光的振幅,Φ是衍射角,sinc(x) = sin(x)/x是sinc函数。
7.薄透镜公式:薄透镜的公式可以表示为1/f=1/v-1/u,其中f是透镜的焦距,v是像距离,u是物距离。
8.放大倍率公式:显微镜和望远镜的放大倍率可分别表示为M=-v/u和M=v/u,其中v是像距离,u是物距离。
9.折射球面的公式:折射球面的公式可以表示为n1/v+n2/u=(n2-n1)/R,其中n1和n2是两个介质的折射率,v是像距离,u是物距离,R 是球面的曲率半径。
10. 偏振光公式:偏振器通过的光强可以由马吕斯定律表示:I = I0 * cos^2(θ),其中I0是入射光的强度,θ是光的偏振角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息光学公式 1·矩形函数⎪⎩⎪⎨⎧≤-=⎪⎭⎫ ⎝⎛-其它,021,100a x x a x x rectF { a sinc(a x ) } = rect(f /a )F ⎪⎭⎫ ⎝⎛Λ=b f b 1(bx)}{sinc22·inc s 函数()()a x x a x x a 000sin x x sinc --=⎪⎭⎫ ⎝⎛-ππ 3·三角形函数 ⎪⎩⎪⎨⎧≤-=⎪⎭⎫ ⎝⎛Λ其它,0,1a x a xa x4·符号函数()⎪⎩⎪⎨⎧<-=>=0,10,00,1sgn x x x x5·阶跃函数()⎩⎨⎧<>=0,00,1x x x step6·圆柱函数⎪⎩⎪⎨⎧<+=⎪⎪⎭⎫⎝⎛+其它,0,12222ayx a y x circ极坐标内⎩⎨⎧><=⎪⎭⎫ ⎝⎛ar o a r a r ,,1circ7·δ函数的定义 普通函数形式的定义()()⎪⎪⎭⎪⎪⎬⎫=⎩⎨⎧==∞≠≠=∞∞-⎰⎰1,0,0,0,0,dxdy y x y x y x y x δδ广义函数形式的定义()()()0,0,,φφδ=∞∞-⎰⎰dxdy y x y x其中()y x ,φ在原点处连续 δ函数的性质设函数()y x f ,在()00,y x 点出连续,则有 筛选性质()()()y x f dxdy y y x x y x f ,,,00=--∞∞-⎰⎰δ坐标缩放性质 ()()y x abby ax ,1,δδ=可变性 ()()()y x y x δδδ=, 8·梳状函数性质()()()∑∑∞-∞=∞∞-=-=m nx j m x x πδ2exp comb()∑∞∞-∆-∆=⎪⎭⎫ ⎝⎛∆x m x x x x δcomb()∑∞-∞=⎪⎭⎫⎝⎛∆-∆=∆m xm x x δ1xx comb ()()ξcomb x comb −−→←ℑ()ξx comb x x comb ∆∆−−→←⎪⎭⎫ ⎝⎛∆ℑx ()()()y x comb comb y x,comb =9·傅里叶变换()()(){}dxdy y x j y x f F ηξπηξ+-=∞∞-⎰⎰2exp ,, ()()()[]ηξηξπηξd d y x j F y x f +=∞∞-⎰⎰2exp ,,10·阶跃函数step(x)的傅里叶变换(){}(){}()⎭⎬⎫⎩⎨⎧-=+=ℑℑπξξδj 21x sgn 121x step11·卷积的定义()()()()()x h x f d x h f x g *=-=⎰∞∞-ααα定义()x f 和()x h 的二维卷积:()()()()()y x h y x f d d y x h f y x g ,*,,,,=--=⎰⎰∞∞-βαβαβα卷积的几个重要性质: 线性性质:{),(),(),(),(),()},(),(y x g y x bh y x g y x af y x g y x bh y x af *+*=*+卷积符合交换律:,(),(),(),(y x f y x h y x h y x f *=*卷积符合结合律:[][]),(),(),(),(),(),(y x g y x h y x f y x g y x h y x f **=**卷积的坐标缩放:若),(),(),(y x g y x h y x f =*,则),(1),(),(by ax g abby ax h by ax f =*(a,b 均不等于0)卷积位移不变性:若),(),(),(),(y x f y x h y x h y x f *=*,则),(),(),(),(),(000000y y x x g y y x x h y x f y x h y y x x f --=--*=*--函数),(y x f 与δ函数的卷积: ),(),(),(0000y y x x f y y x x y x f --=--*δ12·米尔对称性()()ηξηξ--=*,,FF13·卷积定理()()()x rect x rect *=Λx(){}(){}(){}()ξ2sinc x rect x rect ==Λℑℑℑx()(){}()()()ξξξrect rect rect sin x sinc ==*ℑx c()()(){}()x sinc rect sinc sinc 1==*-ℑξx x14·线性平移不变系统()()()()()y x h y x f d d y x h f y x g ,,,,,*=--=∞∞-⎰⎰βαβαβα15·函数变换输入函数 ()()y x y x f 002cos ,ηξπ+= 其频谱函数()()()[]0000,,21,ηηξξδηηξξδηξ-++--=F16·单色光波场的复振幅复振幅 ()()r k j ra P U *=exp 0光强 *==UU UI 217·X 方向的空间频率的相关公式等相线位方程 c kx =αcos λπ2=k αλc o s =X X 方向的空间频率λαξcos 1==X 18·整个空间的空间频率()()[]z y x j a Z Y X U ζηξπ++=2exp ,, 221λζηξ=++2219·泰伯效应()()jkz d n c n nG exp ⎪⎭⎫ ⎝⎛-=∑∞-∞=ξδξ 泰伯距离 λ22dz T =20·相干截止频率 f D λρ2c =非相干截止频率 f D λρρ22c oc == 21·相干面积 ()()SSC A Z A Ω≈=λλ2第二章2·1夫琅禾费近似()()()()⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡+=y y x x z k j y x z k j zj jkz y x y x h 002200exp 2exp exp ,,λ; 2·2菲涅尔衍射()()()()()0020200002exp ,exp ,dy dx z y y x x jk y x U zj jkz y x U ⎥⎥⎦⎤⎢⎢⎣⎡-+-=∞∞-⎰⎰λ傅里叶变换()()()()()()00002020000222exp 2exp ,2expexp1,dy dx y y xx z jy x z k j y x Uy x z k j jkz zj y x U ⎥⎦⎤⎢⎣⎡+-⨯⎥⎦⎤⎢⎣⎡+⨯⎥⎦⎤⎢⎣⎡+=∞∞-⎰⎰λπλ2·3透镜系统(1)输入平面位于透镜前焦面 这时f d =0得 ()()000000exp ,,dy dx f y y x x jk y x t c y x U ⎪⎪⎭⎫⎝⎛+-'=∞∞-⎰⎰ (2)输入面紧贴透镜 这时00=d 得 ()()00000022exp ,2exp ,dy dx q y y x x jk y x t qy x jk c y x U ⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+'=∞∞-⎰⎰ (3)物在透镜后方()()()0000000022exp ,2exp ,dy dx d q y y x x jk y x t d q y x jk c y x U ⎪⎪⎭⎫⎝⎛-+-⎥⎦⎤⎢⎣⎡-+'=∞∞-⎰⎰ 4·1希尔伯特变换可看成是一个线性平移不变系统,该系统的脉冲响应为t t h π1)(-= 而 )()()(t u t j t t u r *⎥⎦⎤⎢⎣⎡+=πδ脉冲响应对应的传递函数为()()νπνn j t F H sg 1=⎭⎬⎫⎩⎨⎧-=4·2互相干函数时间的平均值⎰-∞→=TTT dt t f Tt f )(21lim)(光场的互相干函数())(,),(),(),(12**2*12211ττΓ=+--t P u t P u t t P u t t P u *=光场的自相干函数)(),(),(111*1ττΓ+=t P u t P u复相干度()()()()()21122/122111212]00[I I τττγΓ=ΓΓΓ=Q 点的光强为()()()()(){}τγ122121Re 2)(I Q I Q I Q I Q I Q ++=干涉条纹的可见度为min ma x m i n m a x I I I I +-=V ()()()()()τγ1221212Q I Q I Q I Q I +=Imax 和Imin 是Q 点附近干涉条纹的极大值和极小值()()()()()()()()Q I Q I Q I Q I I Q I Q I Q I Q I I 2121min 2121max 22-+=++=光源的光谱密度分布 ()()()()⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∞→∞→2T 2T2*,lim ,,lim v P v P v P v T T TTT U U UG相干时间vc ∆=1τ 相干长度c c c l τ= 时间延迟t =2h/c4·3确定像点坐标:i z 为正表示发散球面波,i z 为负表示会聚球面波1012121-⎪⎪⎭⎫ ⎝⎛±=z z z z r p i λλλλ p pi r i i i x z zx z z x z z x +±=2120012λλλλp pi r i i i y z z y z z y z z y +±=2120120λλλλ4.4)⎪⎪⎭⎫⎝⎛--=-±-⎰∞∞-A B AC A dx C Bx Ax 22exp 2exp π积分公式:4·5 范西泰特——策尼克定理()()()()[]()()()()βαβαβαβαλπβαψd d I d d y x z j I j y x I y x I y xy x y xy x J u ,2exp ,exp ,,,;,,;,221122112211∞∞-∞∞-⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡∆+∆-==4·6 傅里叶透镜的截止频率、空间带宽积和视场 1. 截止频率 传播方向角u 最大为 ()()fD D fD D u 22211-=-≈相应的空间频率 f D D uuλλλξ2sin 1-=≈=传播方向角u 最小为 ()()fD D f D D v 22211+=+≈相应的空间频率 fD D v vλλλξ2sin 1+=≈=2.空间带宽积δξξ单频线宽频带宽度信息容道∆=NfD D λξξ12-==∆11D =δξ SW N =∆=δξξSW 就是空间带宽积3.视场 21DD =4正弦条件 ηλf u f h ==sin。