钟表上的追及问题
五年级钟表问题之相遇与追及奥数拓展

钟表问题之相遇与追及奥数拓展知识点1.钟表问题时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。
2.我们通常把研究时钟上时针和分针的问题称为时钟问题,其中包括时钟的快慢,时钟的周期,时钟上时针与分针所成的角度等等。
3.时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
①对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。
②分针速度:每分钟走1小格,每分钟走6度③时针速度:每分钟走 1/12 小格,每分钟走0.5度4.注意:但是在许多时钟问题中,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。
简单的分类:①环形时钟的时针和分针的追及和相遇的问题,具体体现的就是路程转换为角度问题。
②时间标准问题和闹钟问题,这类问题是因为问题闹钟的原因导致时钟比标准钟快或者慢,引发的时间问题。
解决这类问题需要的就是十字交叉法。
典型例题例1、三点钟到四点钟之间,分针与时针在什么时候重合?【练习1】有一座时钟现在显示10时整。
那么,经过多少分钟,分针与时针第一次重合;再经过几分钟分针与时针第二次重合?(答案写成假分数的格式)【练习2】钟表的时针与分针在4点几分第一次重合?(答案写成假分数的形式)【练习3】现在是3点,几分钟之后时针与分针第一次重合?(答案写成假分数的形式)例2、七点钟到八点钟之间,分针与时针在什么时候成直线?【练习4】4点钟到5点钟之间,分针与时针在什么时候成直线?A、4点600/11分B、4点600/13分C、4点45分D、4点47分【练习5】1点钟到2点钟之间,分针与时针在什么时候成直线?A、1点420/11分B、1点420/13分C、1点35分D、1点37分【练习6】8点钟到9点钟之间,分针与时针在什么时候成直线?A、8点120/13分B、8点120/11分C、8点13分D、8点10分例3、一点钟到两点钟之间,分针与时针在什么时候成直角?【练习7】2点钟到3点钟之间,分针与时针在2点____分时第一次成直角?(答案写成假分数的形式)【练习8】5点钟到6点钟之间,分针与时针在什么时候成直角?A、5点120/11分B、5点480/11分C、两个都对D、两个都不对【练习9】8点钟到9点钟之间(不包含9点钟),分针与时针在8点______分成直角?(答案写成假分数的形式)例4、一只闹钟每小时慢4分钟,标准钟三点半时,此钟与标准钟对准,现在标准时间是十点半。
经典奥数时钟问题

四、时钟问题解法与算法公式解题关键:时钟问题属于行程问题中的追及问题。
钟面上按“时”分为12大格,按“分”分为60小格。
每小时,时针走1大格合5小格,分针走12大格合60小格,时针的转速是分针的,两针速度差是分针的速度的,分针每小时可追及。
1、二点到三点钟之间,分针与时针什么时候重合?分析:两点钟的时候,分针指向12,时针指向2,分针在时针后5×2=10(小格)。
而分针每分钟可追及1-=(小格),要两针重合,分针必须追上10小格,这样所需要时间应为(10÷)分钟。
解:(5×2)÷(1-)=10÷=10(分)答:2点10分时,两针重合。
2、在4点钟至5点钟之间,分针和时针在什么时候在同一条直线上?分析:分针与时针成一条直线时,两针之间相差30小格。
在4点钟的时候,分针指向12,时针指向4,分针在时针后5×4=20(小格)。
因分针比时针速度快,要成直线,分针必须追上时针(20小格)并超过时针(30小格)后,才能成一条直线。
因此,需追及(20+30)小格。
解:(5×4+30)÷(1-)=50÷=54(分)答:在4点54分时,分针和时针在同一条直线上。
3、在一点到二点之间,分针什么时候与时针构成直角?分析:分针与时针成直角,相差15小格(或在前或在后),一点时分针在时针后5×1=5小格,在成直角,分针必须追及并超过时针,才能构成直角。
所以分针需追及(5×1+15)小格或追及(5×1+45)小格。
解:(5×1+15)÷(1-)=20÷=21(分)或(5×1+45)÷(1-)=50÷=54(分)答:在1点21分和1点54分时,两针都成直角。
4、星期天,小明在室内阳光下看书,看书之前,小明看了一眼挂钟,发现时针与分针正好处在一条直线上。
钟表上的数学问题

追及问题:
速度差x时间=追及路程 (6-0.5)t=30n
综合问题:
例1. 在3点到4点之间的什么时刻,时 针与分针重合?
练习: 在9点到10点之间的什么时刻,时针与 分针重合?
夹角问题:
速度差x时间=追及路程 (6-0.5)t=30n + m
模型解题法 :
模型其实就是一种最简单的图形,是 由学科中最基本、最核心的知识点提炼而 成。它的解题原理就是掌握简单的知识模 块,通过套用这些简单的知识模块,来解 决各种各样复杂的问题。让大家掌握“模 型思维”,就是要大幅升每一位同学提学 习效率!
有趣的时钟问题 :
热身运动:
时针:每小时(60分)走一大格( 度),那么它 的速度是每分钟走 度
(图1)
(图2)
2,时钟所表示的时间为3点,此时钟面角为90°,在4点前,经过多少
分钟,钟面角为35°? 活动创新: (4) 一天中午,小明在12:00到13:00之间打开电视看少儿节目,看完节目后
,他发现这段时间钟面上的时针和分针正好对调了位置.请问小明是在12: _____开始看电视的.(填时刻即可)
时钟的时针、分针24小时内成多少次 平角?
时钟的时针、分针24小时内成多少次 直角?
阅读理解:
在时钟上,每个大格对应360°÷12=30°的角, 每个小格对应360°÷60=6°的角.这样,时针每走1小时对应30°的角, 即时针每走1分钟对应30°÷60=0.5°的角,分针每走1分钟对应6°的角. 初步感知: (1) 如图1,时钟所表示的时间为2点30分,则钟面角为_____________°; (2) 若某个时刻的钟面角为60°,请写出一个相应的时刻:____________;
钟表快慢问题经典例题

钟表快慢问题经典例题模块一、时针与分针的追及与相遇问题【例1】王叔叔有一只手表,他发现手表比家里的闹钟每小时快30 秒.而闹钟却比标准时间每小时慢30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?【解析】闹钟比标准的慢那么它一小时只走(3600-30)÷3600个小时,手表又比闹钟快那么它一小时走(3600+30)/3600个小时,则标准时间走1小时手表则走(3600-30)÷3600X(3600+30)÷3600个小时,则手表每小时比标准时间慢1—【(3600-30)÷3600X(3600+30)÷3600】=1—14399÷14400=1÷14400个小时,也就是1÷14400X3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒【巩固】小强家有一个闹钟,每时比标准时间快3分。
有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?【解析】6:24【巩固】小翔家有一个闹钟,每时比标准时间慢3分。
有一天晚上8:30,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。
这个闹钟响铃的时间是标准时间的几点几分?【解析】7点【巩固】当时钟表示1点45分时,时针和分针所成的钝角是多少度?【解析】142.5度【例2】有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【解析】分针每小时走一圈12格,时针走1格,分针每小时比时针多走12-1=11格,每分钟多走11/60格。
10时整的时候,时针与分针相距10格,第一次重合,分针要在相同的时间里比时针多走10格,所用时间是:10÷11/60=54又6/11(分钟)第二次重合,分针要比时针多走12格,所用时间是:12÷11/60=65又5/11(分钟)【巩固】钟表的时针与分针在4点多少分第一次重合?【解析】此题属于追及问题,追及路程是20格,速度差是12/60-1/60 ,所以追及时间是:20/(12/60-1/60 )(分)。
怎样解决钟表上的追及问题

 ̄ x - ( 5 × 5 + 古x ) = 1 5
) 【 = 4 3 吾
所 以, 当 5时 1 1 1 0
1, ,
( 图 Ⅲ )
分时厢 针垂直。
x : 1 0 ( 单位长度 )
ll
即 : 两 针 在2 时1 0 粤 l l 分重 合。
引述 : 根据上题 的解法可推出以上两个结论 : 1 .在 t 到t + l 小 时之 内两针 重合 时可 以用 t + 5 t ÷( 1 一
lZ
) =1 0
为了解 决钟表上追及 问题 的方便 ,我们不妨将钟表面 的圆周平均分成 6 0份 , 每一份为一个单位 长度 。 显然 , 一个 单位 长度所用 的时间正好是一分钟 。下面 以实例讲解钟表 上 的追及 问题 的解法和规律。 例1 : 在2 - 3 时之间 , 分针和时针何时重合?
时, 如t = l , 2 , 应 用( 5 t + 6 0  ̄ 1 5 ) ÷( 1 - ) 计算, 如当 5 t + 1 5> 6 0 ( 即t = l l , 1 2时) , 应用( 5 t + 1 5 — 6 0 ) ÷( 1 - ) 来计算 。 2 、 此题思路可 以推广到求某两个时刻之 间两针在一条 直线上或两针夹角若干度数时 的单位长度 ,得到更为一般 的结论。如 : 求在 8 —9点之 间, 何时两针的夹角为 2 0 o, 用
一
种追及问题。2 ~ 3时之 内 , 分钟 追上时针 , 应 追 的距 离是
应 追距离 为 ( 5×5 + 1 5 ) , 由两 针 的速度差 , 求
1 0个单位长度。 时针的速度是分 针速度 的 1 / 1 2 。 而分针的速 度 是每分钟一个 单位长度 , 则时针每分钟走 1 / 1 2个单位长
钟表问题

答案:C 解析:这是一道非常典型的快慢表问题,这里面涉及两块表,一块好表,一块坏表(慢表)。好表分针速度为60分格/小时,而我们的坏表每小时比好表慢3分钟,也就是说坏表的分针每小时只走57分格,即坏表分针速度为57分格/小时。根据题意,坏表从早晨4点30分走到上午10点50分,实际上分针走了380分格,即坏表分针的路程为380分格。不管好表还是坏表,他们所经历的标准时间是相同的,所以根据时间相等可以列出以下方程,设好表分针的路程为X,则X/60=380/57,解得X=400,也就是说好表的分针比坏表多走(400-380)分格,也就是说标准时间应该比坏表所显示的时间快20分钟,所以标准时间应该是11点10分。本题有很多考生容易得到错误答案(11点09分),这主要就是由于没有分清楚每块表分针各自对应的速度与路程。
钟面追及问题
此类问题通常是研究时针、分针之间的位置的问题,如“分针和时针的重合、垂直、成一直线、成多少度角”等。时针、分针朝同一方向运动,但速度不同,类似于行程问题中的追及问题。解决此类问题的关键在于:
1、确定时针、分针的速度(或速度差)
①分格方法:时钟的钟面圆周被均匀分成60小格,每小格我们称为1分格。分针每小时走一圈,即60分格,而时针每小时只走5分格,因此分针每分钟走1分格,时针每分钟走1/12分格。速度差为11/12分格。
题型二:快慢表问题
解答快慢表问题的关键是分清楚每有一只钟,每小时慢3分钟,早晨4点30分的时候,把钟对准了标准时间,则钟走到当天上午10点50分的时候,标准时间是( )
A、11点整 B、11点5分 C、11点10分 D、11点15分
②度数方法:从角度观点看,钟面圆周一周是360°,分针每分钟转360/60度,即分针速度为6°/min,时针每小时转360/12=30度,所以每分钟的速度为30°/60,即0.5°/min。分针与时针的速度差为5.5°/min。
小学六年级数学讲义:钟面上的数学

钟面上的数学知识要点我们每天都会看到家里、学校里墙上的挂钟,以及自己手腕上戴的手表。
你可曾想过这些钟表上的数学问题吗?运用所学的数学知识,研究钟表面上时针和分针关系的问题,叫做钟表上的数学问题。
钟面上的数学问题主要有两种,先做重点介绍:第1种:钟面上的追及问题:如:在一只钟(表)面内时针和分针的关系如重合;成反向一直线或两针夹角为特定的角度解答思路和方法:1.钟面上一圈是360度,上面有12个大格,每个大格30度;每个大格又5个小格,每个小格6度。
2.时针每小时走1个大格,即每小时走30度,每分走0.5度;分针每小时走一圈,即每小时走360度,每分走6度。
相当于当分针走60格时,时针正好走5格,所以时针的速度是分针的156012÷=。
分针每走156********⎛⎫÷-= ⎪⎝⎭(分),与时针重合一次。
即有基本公式:初始时刻需追赶的格数1112⎛⎫÷-= ⎪⎝⎭追及时间(分钟)。
其中,1112⎛⎫- ⎪⎝⎭为分针每分钟比时针多走的格数。
第2种:两只钟的钟点比较或两只钟上标准时间的比较:解答思路和方法:用比列解先算出不标准钟与标准钟经过的时间比例,再按照该比例将不标准钟经过的时间换算成标准钟经过的时间。
再依题意具体分析。
例1(基础)四点钟的时候时针和分针夹角是多少度?(提高、尖子)下面是反射在镜子中的钟面时针和分针的位置,原来钟面的时刻是几时几分?例2(基础、提高)钟面上4点10分时,时针与分针的夹角是多少度?(尖子)6点20分时,时针与分针的夹角是多少度?例3(基础、提高)钟面上5点到6点之间,分针与时针夹角是直角的是什么时候?(尖子)2点几分时,分针与时针的夹角是150°?例4(基础、提高)(北京市第11届迎春杯小学数学竞赛决赛试题)有一座时钟现在显示10时整,那么,经过多少分钟,分针与时针第一次重合?再经过多少分钟,分针与时针第二次重合?(尖子)(第七届中环杯中小学生思维能力训练活动)下图为小芳从镜子中看到的时钟的成像,再经过()分钟,时针将与分针互相垂直。
时间问题

解题方法一、追及计算法追及计算法,就是将钟表问题看做是行程问题里面的相遇追及问题,将时针和分针作为运动的物体,将时间差作为路程差,从而得到追及的时间。
这类“相遇追及问题”的特殊之处在于:(1)钟面被分成12个大格,每个大格又分为5个小格,即整个钟面共有60个小格;(2)分针每分钟走1个小格,时针每分钟走1/12小格;分针每小时走60个小格,即12个大格,时针每小时走5个小格,即1个大格;(3)钟面一圈为360°,时针每小时走30°,分钟每小时走360°,时针每分钟走0.5°,分针每分钟走6°;(4)分钟与时针的速度比是已知的,分针的速度是时针的12倍,时针的速度是分针的1/12,分针和时针的速度差是11/12小格,也就是6-0.5=5.5度。
钟表问题的基本公式:相差的小格数÷(分针速度-时针速度)=运动所需时间或者相差的角度数÷(分针速度-时针速度)=运动所需时间。
【注】不论是从“格”的角度,还是从“角度”的角度分析,分钟和时针的速度差都包含有11,这个约数,所以在精确计算的时候,正确选项往往会是含有11作为分母的分数。
********************************************************************* *********【真题示例1】张某下午六时多外出买菜,出门时看手表,发现表的时针和分针的夹角为110°,七时前回家时又看手表,发现时针和分针的夹角仍是110°,那么张某外出买菜用了多少分钟?A.20分钟 B.30分钟C.40分钟 D.50分钟【思路点拨】由于张某在下午六点多出门,在七时前回家,则刚开始分针与时针形成110°的夹角时,时针在前,分针在后,回家时分针与时针仍形成110°的夹角,则此时应为时针在后,分针在前。
【答案】C【解析一】本题考查的是钟表问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钟表上的追及问题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】
钟表上的追及问题
例如:在3点和4点之间的哪个时刻,钟表的时针与分针:(1)重合;(2)成平角;(3)成直角。
解析:分针旋转的速度快,时针旋转的速度慢,而旋转的方向却是一致的。
因此上面这类问题也可看做追及问题。
通常有以下两种解法:
一. 格数法
钟表面的外周长被分为60个“分格”,时针1小时走5个分格,所以时针一分钟转
1 12
分格,分针一分钟转1个分格。
因此可以利用时针与分针旋转的“分格”数来解决这个问题。
解析(1)设3点x分时,时针与分针重合。
则分针走x个分格,时针走
x
12
个分格。
因为在3点这一时刻,时针在分针前15分格
处,所以当分针与时针在3点与4点之间重合时,分针比时针多走15个分格,于是得方
程x
x
-=
12
15,解得x=16
4
11。
所以3点16
4
11
分时,时针与分针重合。
(2)设3点x分时,时针与分针成平角。
因为在3点这一时刻,时针在分针前15分格处,而在3点到4点之间,时针与分针
成一平角时,分针在时针前30分格处,此时分针比时针多走了45分格,于是得方程
x
x
-=
12
45,解得x=49
1
11。
所以3点49
1
11
分时,时针与分针成平角。
(3)设3点x分时,时针与分针成直角。
此时分针在时针前15分格处,所以在3点到4点之间,时针与分针成直角时,分针
比时针多走了30分格,于是得方程x
x
-=
12
30,解得x=32
8
11。
所以3点32
8
11
分时,时
针与分针成直角。
二. 度数法
对钟表而言,时针12小时旋转一圈,分针1小时旋转一圈,转过的角度都是360°,所以时针1分钟转过的角度是°,分针1分钟转过的角度是6°。
故也可以利用时针与分针转过的度数来解决这道题。
解析(1)设3点x分时,时针与分针重合,则时针旋转的角度是°,分针旋转的角度是6x°。
整3点时,时针与分针的夹角是90°,当两针重合时,分针比时针多转了90°,
于是得方程60590
x x
-=
.,解得x=164
11。
(2)设3点x分时,时针与分针成平角。
此时分针比时针多转了90°+180°=270°,于
是得方程605270
x x
-=
.,解得x=491
11。
(3)设3点x分时,时针与分针成直角。
此时分针比时针多转了9090180
︒+︒=︒,于
是得方程605180
x x
-=
.,解得x=328
11。
练一练
1. 钟表上9点到10点之间,什么时刻时针与分针重合
2. 钟表上5点到6点之间,什么时刻时针与分针互相垂直
3. 钟表上3点到4点之间,什么时刻时针与分针成40°的角
4. 钟表上2点到3点之间,什么时刻时针与分针成一直线练一练答案
1. 钟表上9点到10点之间,什么时刻时针与分针重合
2. 钟表上5点到6点之间,什么时刻时针与分针互相垂直
3. 钟表上3点到4点之间,什么时刻时针与分针成40°的角
4. 钟表上2点到3点之间,什么时刻时针与分针成一直线
(参考答案:1. 9点491
11
分; 2. 5点43
7
11
或5点10
10
11
分;
3. 3点91
11
分或3点23
7
11
分; 4. 2点43
7
11
分。
)。