高中数学易错易忽视的37个知识点

合集下载

高中数学最容易忽视的三十七条知识点

高中数学最容易忽视的三十七条知识点

高中数学最容易忽视的三十七条知识点1.在应用条件A∪B=B,A∩B=A 时,易忽略A是空集Φ的情况。

2.求解与函数有关的问题易忽略定义域优先的原则,尤其是在与实际生活相联系的应用题中,判断两个函数是否是同一函数也要判断函数的定义域,求三角函数的周期时也应考虑定义域。

3.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称,优先考虑定义域对称。

4.解对数不等式时,易忽略真数大于0、底数大于0且不等于1这一条件。

5.用判别式法求最值(或值域)时,需要就二次项系数是否为零进行讨论,易忽略其使用的条件,应验证最值。

6.用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0。

尤其是直线与圆锥曲线相交时更易忽略。

7.用均值定理求最值(或值域)时,易忽略验证“一正(几个数或代数式均是正数)二定(几个数或代数式的和或者积是定值)三等(几个数或代数式相等)”这一条件。

8.用换元法解题时,易忽略换元前后的等价性。

9.求反函数时,易忽略求反函数的定义域。

10.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示,而应用逗号连接多个区间。

11.用等比数列求和公式求和时,易忽略公比q=1的情况。

12.已知Sn求a n时, 易忽略n=1的情况。

13.用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况;题目告诉截距相等时,易忽略截距为0的情况。

14.求含系数的直线方程平行或者垂直的条件时,易忽略直线与x轴或者y轴平行的情况。

15.用到角公式时,易将直线L1、L2的斜率k1、k2的顺序弄颠倒;使用到角公式或者夹角公式时,分母为零不代表无解,而是两直线垂直。

16.在做应用题时, 运算后的单位要弄准,不要忘了“答”及变量的取值范围;在填写填空题中的应用题的答案时, 不要忘了单位。

应用题往往对答案的数值有特殊要求,如许多时候答案必须是正整数。

17.在分类讨论时,分类要做到“不重不漏、层次分明,进行总结”。

高考数学最易丢分的20个知识点

高考数学最易丢分的20个知识点

高考数学最易丢分的20个知识点高考数学是很多学生头疼的问题,尤其是一些易丢分的知识点更是需要我们特别关注。

以下是高考数学中最易丢分的20个知识点:知识点一:函数的定义域和值域在理解函数的定义域和值域时,很多学生容易混淆,导致在选择答案时出现错误。

知识点二:直线与平面的交点在求直线与平面的交点时,很多学生容易出现计算错误或者解方程错误的情况。

知识点三:函数的奇偶性在判断函数的奇偶性时,很多学生容易忽视符号取值规律,从而出现判断错误的情况。

知识点四:平移、旋转和对称变换在进行平移、旋转和对称变换时,很多学生容易出现计算错误的情况,尤其是在计算坐标时容易混淆。

知识点五:函数的极值与最值在求函数的极值和最值时,很多学生容易出现求导错误、计算错误等问题。

知识点六:数列的通项公式在推导数列的通项公式时,很多学生容易出现计算错误或者漏项的情况。

知识点七:平方根和立方根的计算在进行平方根和立方根的计算时,很多学生容易出现计算错误的情况,尤其是多次开根时更容易出错。

知识点八:二次函数的图像在画出二次函数的图像时,很多学生容易忽略平移和缩放的特征,从而导致图像绘制错误。

知识点九:概率与统计在概率与统计中的概念理解和计算中,很多学生容易出现混淆和计算错误的情况。

知识点十:数列与函数的综合应用在数列与函数的综合应用题中,很多学生容易迷失在繁杂的信息中,导致无法理清思路。

知识点十一:复数的运算在进行复数的加减乘除运算时,很多学生容易出现计算错误或者混淆实部与虚部的概念。

知识点十二:立体几何题在解立体几何题时,很多学生容易出现计算错误或者对几何图形的性质理解不透彻的情况。

知识点十三:勾股定理和余弦定理在运用勾股定理和余弦定理解决三角形问题时,很多学生容易出现运算错误或者无法正确应用相应的定理。

知识点十四:解三角函数的方程在解三角函数的方程时,很多学生容易出现计算错误或者解方程错误的情况。

知识点十五:圆与圆的位置关系在判断圆与圆的位置关系时,很多学生容易出现计算错误或者判断错误的情况,尤其是在应用相切和相交的性质时更容易出错。

高中数学易错点盘点

高中数学易错点盘点

高中数学易错点盘点考试临近,对于考点知识都清楚了?结合练习整理一下自己解题时的易错点以便考试时能做到尽可能少错。

以下是我整理的易错点供同学们参考,重要的是找出自身的易错点。

1. 集合中元素的特征认识不明元素具有确定性,无序性,互异性三种性质。

要看清楚集合的描述对象,到底是数集,还是点集,是求x范围呢,还是求y的范围。

2. 遗忘空集A包含于B时求集合A,容易遗漏A可以为空集的情况。

比如A 为(x-1)的平方>0,x=1时A为空集,也属于B.求子集或真子集个数时容易漏掉空集。

3. 忽视集合中元素的互异性一般检验的时候要检查元素是否互异。

4. 充分必要条件颠倒致误必要不充分和充分不必要的区别——:比如p可以推出q,而q 推不出p,就是充分不必要条件,p不可以推出q,而q却可以推出p,就是必要不充分。

还容易错的是语序错误,例如,“p的充分条件是q”等价于“q 是p的充分条件”,q推出p,很多学生一看到充分条件就“前推后”,导致错误,要注意题目的措辞。

5. 对含有量词的命题否定不当比如说“至少有一个”的否定是“一个都没有”,“至少有两个”的否定是“至多有一个”,“至多有三个”的否定是“至少有四个”。

诸如此类。

6. 求函数定义域忽视细节致误根号内≥0,真数大于零,分母不为零,比较容易出错的是忽视分母。

7. 函数单调性的判断错误这个就得注意函数的符号,比如f(-x)的单调性与原函数相反。

8. 函数奇偶性判定中常见的两种错误判定主要注意:1,定义域必须关于原点对称,2,注意奇偶函数的判断,化简要小心负号。

9. 求解函数值域时忽视自变量的取值范围总之有关函数的题,不管是要你求什么,第一步先看定义域,这个是关键。

如果用了换元法求函数值域,一定要先求出“新元”的范围。

10. 抽象函数中推理不严谨致误注意赋值法的运用,一般赋0,±1,-x,1/x等。

11. 函数,方程和不等式的转换不熟练二次函数令y为0→方程→看题目要求是什么→要么方程大于小于0,要么△=b的平方-4ac大于等于小于0种种。

高中数学66个易混易错点总结

高中数学66个易混易错点总结

高中数学66个易混易错点总结1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2.在应用条件时,易忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别。

6.求解与函数有关的问题易忽略定义域优先的原则。

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。

10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。

这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。

19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。

高中数学37个易错点

高中数学37个易错点

易错点1遗忘空集致误由于空集是任何非空集合的真子集,因此B=∅时也满足B⊆A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况.易错点2忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求.易错点3混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.易错点4充分条件、必要条件颠倒致误对于两个条件A,B,如果A⇒B成立,则A是B的充分条件,B是A的必要条件;如果B⇒A成立,则A是B的必要条件,B是A的充分条件;如果A⇔B,则A,B互为充分必要条件.解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断.易错点5“或”“且”“非”理解不准致误命题p∨q真⇔p真或q真,命题p∨q假⇔p假且q假(概括为一真即真);命题p∧q真⇔p 真且q真,命题p∧q假⇔p假或q假(概括为一假即假);綈p真⇔p假,綈p假⇔p真(概括为一真一假).求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解.易错点6函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可.易错点7判断函数的奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数.易错点8函数零点定理使用不当致误如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点.函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题.易错点9导数的几何意义不明致误函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条件列方程(组)求解.因此解题中要分清是“在某点处的切线”,还是“过某点的切线”.易错点10导数与极值关系不清致误f′(x0)=0只是可导函数f(x)在x0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f′(x)在x0两侧异号.另外,已知极值点求参数时要进行检验.易错点11三角函数的单调性判断致误对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sin x的单调性相反,就不能再按照函数y=sin x的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决.对于带有绝对值的三角函数应该根据图像,从直观上进行判断.易错点12图像变换方向把握不准致误函数y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的图像可看作由下面的方法得到:(1)把正弦曲线上的所有点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度;(2)再把所得各点横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1ω倍(纵坐标不变);(3)再把所得各点的纵坐标伸长(当A>1时)或缩短(当0<A<1时)到原来的A倍(横坐标不变).即先作相位变换,再作周期变换,最后作振幅变换.若先作周期变换,再作相位变换,应左(右)平移|φ|ω个单位.另外注意根据φ的符号判定平移的方向.易错点13忽视零向量致误零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线.它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视.易错点14向量夹角范围不清致误解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况.易错点15an与Sn关系不清致误在数列问题中,数列的通项an与其前n项和Sn之间存在下列关系:an=S1,n=1,Sn-Sn-1,n≥2.这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点.易错点16对等差、等比数列的定义、性质理解错误等差数列的前n项和在公差不为零时是关于n的常数项为零的二次函数;一般地,有结论“若数列{an}的前n项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列.易错点17数列中的最值错误数列问题中其通项公式、前n项和公式都是关于正整数n的函数,要善于从函数的观点认识和理解数列问题.数列的通项an与前n项和Sn的关系是高考的命题重点,解题时要注意把n=1和n≥2分开讨论,再看能不能统一.在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴的远近而定.易错点18错位相减求和时项数处理不当致误错位相减求和法的适用条件:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和.基本方法是设这个和式为Sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,就把问题转化为以求一个等比数列的前n项和或前n-1项和为主的求和问题.这里最容易出现问题的就是错位相减后对剩余项的处理.易错点19不等式性质应用不当致误在使用不等式的基本性质进行推理论证时一定要准确,特别是不等式两端同时乘以或同时除以一个数式、两个不等式相乘、一个不等式两端同时n次方时,一定要注意使其能够这样做的条件,如果忽视了不等式性质成立的前提条件就会出现错误.易错点20忽视基本不等式应用条件致误利用基本不等式a+b≥2ab以及变式ab≤a+b22等求函数的最值时,务必注意a,b为正数(或a,b非负),ab或a+b其中之一应是定值,特别要注意等号成立的条件.对形如y=ax+bx(a,b>0)的函数,在应用基本不等式求函数最值时,一定要注意ax,bx的符号,必要时要进行分类讨论,另外要注意自变量x的取值范围,在此范围内等号能否取到.易错点21解含参数的不等式时分类讨论不当致误解形如ax2+bx+c>0的不等式时,首先要考虑对x2的系数进行分类讨论.当a=0时,这个不等式是一次不等式,解的时候还要对b,c进一步分类讨论;当a≠0且Δ>0时,不等式可化为a(x-x1)(x-x2)>0,其中x1,x2(x1<x2)是方程ax2+bx+c=0的两个根,如果a>0,则不等式的解集是(-∞,x1)∪(x2,+∞),如果a<0,则不等式的解集是(x1,x2).易错点22不等式恒成立问题处理不当致误解决不等式恒成立问题的常规求法是:借助相应函数的单调性求解,其中的主要方法有数形结合法、变量分离法、主元法.通过最值产生结论.应注意恒成立与存在性问题的区别,如对任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立问题,但对存在x∈[a,b],使f(x)≤g(x)成立,则为存在性问题,即f(x)min≤g(x)max,应特别注意两函数中的最大值与最小值的关系.易错点23忽视三视图中的实、虚线致误三视图是根据正投影原理进行绘制,严格按照“长对正,高平齐,宽相等”的规则去画,若相邻两物体的表面相交,表面的交线是它们的原分界线,且分界线和可视轮廓线都用实线画出,不可见的轮廓线用虚线画出,这一点很容易疏忽.易错点24面积、体积的计算转化不灵活致误面积、体积的计算既需要学生有扎实的基础知识,又要用到一些重要的思想方法,是高考考查的重要题型.因此要熟练掌握以下几种常用的思想方法.(1)还台为锥的思想:这是处理台体时常用的思想方法.(2)割补法:求不规则图形面积或几何体体积时常用.(3)等积变换法:充分利用三棱锥的任意一个面都可作为底面的特点,灵活求解三棱锥的体积.(4)截面法:尤其是关于旋转体及与旋转体有关的组合问题,常画出轴截面进行分析求解.易错点25随意推广平面几何中的结论致误平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”“垂直于同一条直线的两条直线平行”等性质在空间中就不成立.易错点26对折叠与展开问题认识不清致误折叠与展开是立体几何中的常用思想方法,此类问题注意折叠或展开过程中平面图形与空间图形中的变量与不变量,不仅要注意哪些变了,哪些没变,还要注意位置关系的变化.易错点27空间点、线、面位置关系不清致误关于空间点、线、面位置关系的组合判断类试题是高考全面考查考生对空间位置关系的判定和性质掌握程度的理想题型,历来受到命题者的青睐,解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,但要注意定理应用准确、考虑问题全面细致.易错点28忽视斜率不存在致误在解决两直线平行的相关问题时,若利用l1∥l2⇔k1=k2来求解,则要注意其前提条件是两直线不重合且斜率存在.如果忽略k1,k2不存在的情况,就会导致错解.这类问题也可以利用如下的结论求解,即直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0平行的必要条件是A1B2-A2B1=0,在求出具体数值后代入检验,看看两条直线是不是重合从而确定问题的答案.对于解决两直线垂直的相关问题时也有类似的情况.利用l1⊥l2⇔k1·k2=-1时,要注意其前提条件是k1与k2必须同时存在.利用直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,就可以避免讨论.易错点29忽视零截距致误解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式.因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况.易错点30忽视圆锥曲线定义中的条件致误利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.易错点31忽视特殊性、误判直线与圆锥曲线位置关系过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系.在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性.易错点32两个计数原理不清致误分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决.对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理.易错点33排列、组合不分致误为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题.易错点34混淆项的系数与二项式系数致误在二项式(a+b)n的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,…,n项的二项式系数分别是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而项的系数是二项式系数与其他数字因数的积.易错点35循环结束的条件判断不准致误控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件.在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束.易错点36条件结构对条件的判断不准致误条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值.易错点37复数的概念不清致误对于复数a+bi(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数.解决复数概念类试题要仔细区分以上概念差别,防止出错.另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错.。

高中数学易错知识点汇总

高中数学易错知识点汇总

高中数学易错知识点汇总高中数学易错知识点汇总在学习高中数学的过程中,我们常常会遇到一些易错的知识点,这些知识点往往容易被忽视或误解。

下面是一些高中数学易错知识点的汇总,希望能帮助大家避免犯错。

一、函数1. 定义域和值域定理:一个函数的定义域是什么,其值域是什么,这是函数完全由自己决定的。

当然,有时候也可以从定义域和值域来推测函数的表达式。

易错点:有时我们在求定义域或值域时,可能会忽略掉一些限制条件,导致结果计算错误。

2. 函数的奇偶性定理:奇偶函数和常规的函数一样,满足函数真值表,即满足定义域,且运算正确。

易错点:在判断奇偶性时,容易忽略绝对值符号的作用,导致判断错误。

3. 函数的求导定理:求导是函数的基本运算,它表示了函数在某一点的斜率(变化率)。

易错点:在求导时,很容易犯错。

常见的错误有:1) 没有注意链式法则的运用;2) 运用错误的导数公式;3) 对自然对数和指数函数的导数不够熟练。

二、解析几何1. 直线和平面的交点定理:两个不平行的平面必有一条直线与它们相交。

易错点:在求直线和平面的交点时,我们常常会忽略平面的方程中的某些项,导致求解错误。

2. 垂直和平行关系定理:两直线垂直的充要条件是它们的斜率之积为-1;两直线平行的充要条件是它们的斜率相等。

易错点:在判断两直线垂直或平行的时候,容易出现计算错误,比如计算斜率时忘记乘以正负号,导致结果错误。

3. 点、直线和平面的位置关系定理:一个点离直线的距离是离直线上任意一点的距离的最小值;一个点离平面的距离是离平面上任意一点的距离的最小值。

易错点:在计算距离时,有时候我们容易忽略绝对值符号的作用,导致计算错误。

三、三角学1. 弧度和角度的转换定理:一个三角函数的角度和弧度是相互对应的,它们之间的转换关系是:$2\pi$ 弧度等于 $360$ 度。

易错点:在角度和弧度的转换上,我们容易混淆 $\pi$ 和$180$ 等值之间的关系,导致转换错误。

2. 正弦、余弦和正切的值范围定理:正弦和余弦函数的值范围是$[-1,1]$;正切函数的值范围是 $R$(实数集)。

高中数学常考易错知识点整理

高中数学常考易错知识点整理

高中数学常考易错知识点整理
1. 乘法与除法的运算顺序:在一个算式中,乘法和除法的运算优先级高于加法和减法。

容易错的点在于没有按照运算顺序进行计算,导致结果错误。

2. 分式的运算:分式的运算需要注意分母不能为0的情况,同时需要注意约分的步骤,避免最终结果没有化简到最简形式。

3. 平方根的性质:平方根在运算中常常需要使用到一些性质,例如:$\\sqrt{a^2} =
a$、$\\sqrt{ab} = \\sqrt{a} \\cdot \\sqrt{b}$等。

容易错的点在于没有正确应用平方
根的性质,导致计算错误。

4. 直角三角形的勾股定理:直角三角形的勾股定理指出,直角三角形的两直角边的平
方和等于斜边的平方。

容易错的点在于直角边和斜边的位置搞反,导致计算错误。

5. 数列的继续规律:数列的继续规律是指根据已知的一部分数列成员,推出数列的下
一个成员。

容易错的点在于没有找到数列成员之间的规律,导致求解错误。

6. 因式分解:因式分解是将一个多项式表示为几个不可再约的乘积的形式。

容易错的
点在于没有找到多项式的因式或者错误地分解多项式,导致分解结果错误。

7. 函数的性质:在函数的题目中,需要注意函数的定义域、值域和图像等性质,并且
要根据题意正确应用函数的性质进行求解。

以上只是一些可能的易错知识点,具体还要根据个人的学习情况和考试内容进行整理
和准备。

建议多做一些习题和练习,熟悉常见的易错点,提高解题的准确性。

高中数学最易混淆知识点

高中数学最易混淆知识点

高中数学最易混淆知识点在高中数学中,学生们经常会遇到一些易混淆的知识点。

这些知识点可能在数学考试中产生错解或者笔误,给成绩带来不利影响。

以下是我总结的高中数学中最易混淆的知识点。

一、平方与二次方平方和二次方是经常被高中学生混淆的概念。

平方是一个数自己与自己相乘的结果,而二次方是一个数乘以自己两次的结果。

例如,2的平方是4,2的二次方是4。

一个常见的错误就是把平方和二次方的符号混淆,例如将一个负数的平方写成一个正数的二次方。

二、代数式和方程式代数式和方程式也是高中数学中常见的混淆点。

代数式只包含变量、常数和运算符号,而方程式则包含一个等号。

代数式是一个数学表达式,它没有等号,而方程则是等式,包含等号。

举例来说,2x - 3是一个代数式,但2x - 3 = 0是一个方程式。

三、整式和分式整式和分式也是混淆的常见概念。

整式是系数与变量幂次的乘积的和,而分式则是一个整数除以另一个整数。

整式一般包含加法、减法和乘法,但不包含除法。

而分式则包含对数学运算中除法的运用,分子和分母之间的符号是除号。

举例来说,2x^2 + 3x是一个整式,但(2x + 3)/(x - 1)是一个分式。

四、函数和方程函数和方程也常常被高中学生混淆。

一个函数是一个集合,它的输入是一个或多个变量,它的输出是一个或多个结果。

一个方程是两个或多个表达式之间的相等关系。

虽然函数可以被描述为一个方程,但这不是它的本质。

函数与方程不同之处在于其定义域和值域的范围。

函数通常用f(x)表示,而方程则用x表示。

五、复合函数和逆函数复合函数和逆函数也是易混淆的概念。

复合函数指的是将一个函数的输出作为另一个函数的输入。

逆函数是一个与给定函数相对应的反函数。

虽然这些概念都涉及到函数的性质和函数之间的关系,但它们的定义和运用是不同的。

复合函数通常用符号f(g(x))表示,而逆函数则用x的倒数表示。

六、直线和平面直线和平面也是高中数学中常见的混淆点。

直线是由无数个连续的点组成的轨迹,它只有一个维度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学易错易忽视的37个知识点
知道了数学考试再难丢分!
数学中有很多容易被忽视的知识,这里总结了高中数学易犯易忽视错误,能帮助大家减少不必要的丢分。

1、注意在应用条件A∪B=B,A∩B=A 时,易忽略A是空集Φ的情况,因为空集是任意集合的子集。

2、求解与函数有关的问题易忽略定义域优先的原则,尤其是在与实际生活相联系的应用题中,判断两个函数是否是同一函数也要判断函数的定义域,求三角函数的周期时也应考虑定义域,求奇偶性也要优先判断定义域是否关于原点对称。

3、判断函数奇偶性时(第二点已经指出,这里着重说明),易忽略检验函数定义域是否关于原点对称,优先考虑定义域对称。

4、解对数不等式时,易忽略真数大于0、底数大于0且不等于1这一条件。

5、用判别式法求最值(或值域)时,需要首先就二次项系数是否为零进行讨论,易忽略其使用的条件,应验证最值。

6、用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0。

尤其是直线与圆锥曲线相交时更易忽略,此时可能有斜率不存在情况。

7、用均值定理求最值(或值域)时,易忽略验证“一正(几个数或代数式均是正数)二定(几个数或代数式的和或者积是定值)三等(几个数或代数式相等)”这一条件。

8、用换元法解题时,易忽略换元前后的等价性,即不放大或缩小定义域。

9、求反函数时,不要忘记求反函数的定义域。

10、求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示,而应用逗号连接多个区间,分别阐述各区间单调性。

11、用等比数列求和公式求和时,易忽略公比q=1的情况。

12、已知Sn求an时,易忽略n=1的情况。

13、用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况;题目告诉截距相等时,易忽略截距为0的情况。

14、求含系数的直线方程平行或者垂直的条件时,易忽略直线与x轴或者y 轴平行的情况。

15、用到角公式时,易将直线L1、L2的斜率k1、k2的顺序弄颠倒;使用到角公式或者夹角公式时,分母为零不代表无解,而是两直线垂直。

16、在做应用题时,运算后的单位要弄准,不要忘了“解,设,列,解,答”及变量的取值范围;在填写填空题中的应用题的答案时,不要忘了单位。

应用题往往对答案的数值有特殊要求,如许多时候答案必须是正整数,价格不能为非正数等。

17、在分类讨论时,分类要做到“不重不漏、层次分明,进行总结”。

18、在解答题中,如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明,如使用函数y=x+1/x的单调性求某一区间的最值时,应先证明函数y=x+1/x的单调性。

19、在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

20、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,0<1/a<1/b 。

21、分组问题要注意区分是平均分组还是非平均分组,平均分成n组问题易忘除以n!。

同时还要注意区分是定向分组还是非定向分组;分配问题也注意区分是平均分配还是非平均分配,同时还要注意区分是定向分配还是非定向分配。

22、已知△ABC中的两个角A、B的正余弦值,求第三个角C的正余弦值,
易忘第三个角C有解的充要条件是cosA+cosB>0,这是由三角形内角和为180°决定的。

23、如果直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,只有一个交点。

此时两个方程联立,消元后为一次方程。

即直线与双曲线或者抛物线只有一个交点时,包括相切和上述情况。

24、求直线与圆、圆锥曲线相交弦问题用韦达定理时,求出字母系数后,应代入判别式中检验。

25、求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。

26、二项式(A+B)n展开式的通项公式中A与B的顺序不变。

27、使用正弦定理时易忘比值还等于2R,即a/sinA=b/sinB=c/sinC=2R 。

28、恒成立问题不要忘了主参换位以及验证等号是否成立。

29、概率问题要注意变量是否服从二项分布,从而使用二项分布的期望和方差公式求期望和方差。

30、面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大,正确的判定方法是:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

31、函数的图象的平移、方程的平移以及点的平移公式易混:
(1)函数的图象的平移为“左+右-,上+下-”;如函数y=2x+4的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3。

即y=2x+5。

(2)方程表示的图形的平移为“左+右-,上-下+”;如直线2x-y+4=0左移2个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0。


y=2x+5。

(3)点的平移公式:点P(x,y)按向量=(h,k)平移到点P’(x’,y’),则x’=x+ h,y’=y+ k。

32、椭圆、双曲线A、B、C之间的关系易记混。

对于椭圆应是A2-B2=C2,对于双曲线应是A2+B2=C2。

33、“属于关系”与“包含关系”的符号易用混,元素与集合的关系用a∈A,集合与集合的关系用A⊂B。

34、“点A在直线A上”与“直线A在平面α上”的符号易用混,如:A∈A,A⊂α 。

35、椭圆和双曲线的焦点在x轴上与焦点在y轴上的焦半径公式易记混;椭圆和双曲线的焦半径公式易记混。

它们都可以用其第二定义推导,建议不要死记硬背,用的时候再根据定义推导。

36、两个向量平行与与两条直线平行易混,两个向量平行(也称向量共线)包含两个向量重合,两条直线平行不包含两条直线重合。

37、各种角的范围:
两条异面直线所成的角0°<α≤90°
直线与平面所成的角0°≤α≤90°
斜线与平面所成的角0°<α< 90°
二面角0°≤α≤180°
两条相交直线所成的角(夹角,交角中较小的角) 0°<α≤90°
l1到l2的角0°<α< 180°(到角是有方向的,一条直线逆时针旋转到另外一条直线的角度)
倾斜角0°≤α< 180°
两个向量的夹角0°≤α≤180°
锐角0°<α< 90°。

相关文档
最新文档