江苏高考数学模拟试卷
高考数学全国统一模拟考试江苏卷、参考答案与评分标准

高考数学全国统一模拟考试数 学(江苏卷)第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,恰.有一项...是符合题目要求的。
1. 已知集合}11log |{2+-==x xy x M ,]}1,0[,|{3∈+==x x x y y N 且,M ∩N = A.]2,1(B.)1,1(-C.)1,0[D.)1,0(2. 数列}{n a (*N n ∈)中,1231,3,5a a a ===,且1237n n n n a a a a +++⋅⋅⋅=,则99a =A.1B.3C.5D.无法确定3. nxx )1(+的展开式中常数项等于20,则n 等于A.4B.6C.8D.104. 空间直线b a ,是成060的异面直线,分别过b a ,作平面βα,,使βα,也成060.这样的平面βα,A.有无穷对B.只有5对C.只有3对D. 只有1对5. 如图AOB ∆,MN 是边AB 的垂直平分线,交OB 于点N ,设b OB a OA ==,,且OB ON λ=,则=λA .b b a 2+B .)(222b a b b a -⋅-C .bb a 2-D .)(222a b b b a -⋅-注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1、本试卷共4页,包含选择题(第1题~第10题,共10题)、填空题(第11题~第16题,共6题)、解答题(第17题~第21题,共5题)三部分。
本次考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2、答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在试卷及答题卡上。
3、请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符。
4、作答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效。
作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。
江苏省南京市(新版)2024高考数学人教版模拟(自测卷)完整试卷

江苏省南京市(新版)2024高考数学人教版模拟(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知函数是定义在上的奇函数,是的导函数,且,当时,,则使得成立的的取值范围是()A.B.C.D.第(2)题已知点为圆上的动点,则直线与圆的位置关系为()A.相交B.相离C.相切D.相切或相交第(3)题过点作斜率为的直线,若光线沿该直线传播经轴反射后与圆相切,则()A.B.C.2D.第(4)题已知复数的共轭复数为,且,则()A.B.1C.2D.3第(5)题定义在正整数上的函数满足,则()A.B.C.D.第(6)题为更好地满足民众个性化、多元化、便利化的消费需求,丰富购物体验和休闲业态,某市积极打造夜间经济.为不断创优夜间经济发展环境、推动消费升级,有关部门对某热门夜市开展“服务满意度调查”,随机选取了100 名顾客进行问卷调查,对夜市服务进行评分(满分100 分),根据评分情况绘制了如图所示的频率分布直方图,估计这组数据的第55 百分位数为()A.65B.72C.72.5D.75第(7)题已知,则()A.B.C.2D.4第(8)题已知集合A=,B=,则()A.A=B B.A B=C.A B D.B A二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题双曲线具有如下光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线平分该点与两焦点连线的夹角.已知,分别为双曲线的左,右焦点,过右支上一点作直线交轴于点,交轴于点,则()A.的渐近线方程为B.C.过点作,垂足为,则D.四边形面积的最小值为第(2)题已知直线和平面与所成锐二面角为.则下列结论正确的是()A.若,则与所成角为B.若,则与所成角为C.若,则与所成角最大值为D.若,则与所成角为第(3)题已知在边长为2的等边中,向量满足,则下列式子正确的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数,则曲线在点处的切线方程为 __.第(2)题已知向量,向量,则的最大值是____________.第(3)题设是数列的前n项和,,则____________;若不等式对任意恒成立,则正数k的最小值为____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在三棱锥中,侧面是等边三角形,.(1)证明:平面平面;(2)若,则在棱上是否存在动点,使得平面与平面的夹角为?若存在,试确定点的位置;若不存在,说明理由.第(2)题已知(1)当时,求曲线在处的切线方程;(2)设,若当时,有三个不同的零点,求实数的最小值.第(3)题近几年,在缺“芯”困局之下,国产替代的呼声愈发高涨,在国家的政策扶持下,国产芯片厂商呈爆发式增长.为估计某地芯片企业的营业收入,随机选取了10家芯片企业,统计了每家企业的研发投入(单位:亿)和营业收入(单位:亿),得到如下数据:样本号i12345678910研发投入224681014161820营业收入1416303850607090102130并计算得,,,,.(1)求该地芯片企业的研发投入与营业收入的样本相关系数r,并判断这两个变量的相关性强弱(若,则线性相关程度一般,若,则线性相关程度较高,r精确到0.01);(2)现统计了该地所有芯片企业的研发投入,并得到所有芯片企业的研发投入总和为268亿,已知芯片企业的研发投入与营业收入近似成正比.利用以上数据给出该地芯片企业的总营业收入的估计值.附:相关系数,.第(4)题口袋中有大小、形状、质地相同的两个白球和三个黑球.现有一抽奖游戏规则如下:抽奖者每次有放回的从口袋中随机取出一个球,最多取球2n+1(n)次.若取出白球的累计次数达到n+1时,则终止取球且获奖,其它情况均不获奖.记获奖概率为.(1)求;(2)证明:.第(5)题已知函数.(1)求函数在点处的切线方程;(2)若对于任意,都有恒成立,求实数的取值范围.。
江苏省泰兴市第一高级中学2025届高考仿真模拟数学试卷含解析

江苏省泰兴市第一高级中学2025届高考仿真模拟数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( ) A .12种B .24种C .36种D .72种2.已知抛物线C :214y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于A ,B 两点,若2PA AF =,则AB 为( )A .409B .40C .16D .1633.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2eB .4eC .2ee - D .4ee- 4.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,D 是AB 的中点,若1CD =,且1sin 2a b A ⎛⎫-⎪⎝⎭()()sin sin c b C B =+-,则ABC 面积的最大值是( ) A .155B .15C .1510D .21555.已知集合{}2lgsin 9A x y x x ==+-,则()cos22sin f x x x x A =+∈,的值域为( ) A .31,2⎡⎤⎢⎥⎣⎦B .31,2⎛⎤ ⎥⎝⎦C .11,2⎛⎤- ⎥⎝⎦D .2,22⎛⎫⎪⎪⎝⎭6.已知数列满足,且,则数列的通项公式为( ) A .B .C .D .7.函数()()ln 12f x x x=+-的定义域为( )A .()2,+∞B .()()1,22,-⋃+∞C .()1,2-D .1,28.已知椭圆22y a +22x b =1(a >b >0)与直线1y a x b -=交于A ,B 两点,焦点F (0,-c ),其中c 为半焦距,若△ABF 是直角三角形,则该椭圆的离心率为( ) A .5-12B .3-12C .314+ D .514+ 9.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .810.若函数()222y sin x ϕϕπ⎛⎫< ⎪⎝+⎭=的图象经过点012π⎛⎫⎪⎝⎭,,则函数()()()22f x sin x cos x ϕϕ=-+-图象的一条对称轴的方程可以为( ) A .24x π=-B .3724x π=C .1724x π=D .1324x π=-11.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( )A .0B .1C .673D .67412.如图,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )A .22B 3C .212D 31+ 二、填空题:本题共4小题,每小题5分,共20分。
江苏省淮安市2024高三冲刺(高考数学)苏教版模拟(提分卷)完整试卷

江苏省淮安市2024高三冲刺(高考数学)苏教版模拟(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题设,是正实数,则“”是“”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件第(2)题设等比数列的前项和为,设甲:,乙:是严格增数列,则甲是乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件第(3)题等腰直角内接于抛物线,其中为抛物线的顶点,,的面积为16,为的焦点,为上的动点,则的最大值为A .B .C .D .第(4)题函数的图象可能是( )A .B .C .D .第(5)题若,则( )A.1B .2C .D .第(6)题设,则A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数第(7)题定义轴截面为正方形的圆柱为正圆柱.某正圆柱的一个轴截面是四边形,点P 在母线上,且.一只蚂蚁从圆柱底部的A 点出发沿着圆柱体的表面爬行到点P ,则这只蚂蚁行走的最短路程为( )A.213B .C .D .第(8)题设复数,,则( )A .1B .-1C .D .二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题某学校为了调查学生某次研学活动中的消费支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在50元到60元之间的学生有60人,则( )A.样本中消费支出在50元到60元之间的频率为0.3B.样本中消费支出不少于40元的人数为132C.n的值为200D.若该校有2000名学生参加研学,则约有20人消费支出在20元到30元之间第(2)题在棱长为的正四面体中,过点且与平行的平面分别与棱交于点,点为线段上的动点,则下列结论正确的是()A.B.当分别为线段中点时,与所成角的余弦值为C.线段的最小值为D.空间四边形的周长的最小值为第(3)题已知抛物线的焦点为F,直线与抛物线交于A,B两点,O为坐标原点,则下列结论正确的是()A.若直线OA,OB的斜率之积为,则直线过定点B.若直线OA,OB的斜率之积为,则面积的最大值是C.若,则的最大值是D.若,则当取得最大值时,三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知直线恒过定点A,则该定点A的坐标为________,若直线l与曲线和都相切,则a=________.第(2)题若直线交椭圆于,两点,则线段的中垂线在轴上的截距的取值范围是________.第(3)题根据国家“乡村振兴战略”提出的“推动城乡义务教育一体化发展,高度重视农村义务教育”,某师范大学4名毕业生主动申请到某贫困山区的乡村小学工作,若将这4名毕业生分配到该山区的3所乡村小学,每所学校至少分配1人,则不同分配方案的种数为_______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题的内角的对边分别为已知.(1)求角的大小;(2)若边上的高等于,求的值.第(2)题已知等差数列满足.(1)若,求数列的通项公式;(2)若数列满足,,且是等差数列,记是数列的前项和.对任意,不等式恒成立,求整数的最小值.第(3)题已知数列满足恒成立.(1)若且,当成等差数列时,求的值;(2)若且,当、时,求以及的通项公式;(3)若,,,,设是的前项之和,求的最大值.第(4)题已知函数.求:(I)函数的最小正周期;(II)函数的单调增区间.第(5)题已知函数,其导函数为,函数,对任意,不等式恒成立.(1)求实数的值;(2)若,求证:.。
江苏省南通市(新版)2024高考数学人教版模拟(评估卷)完整试卷

江苏省南通市(新版)2024高考数学人教版模拟(评估卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知定义在上的函数满足,当时,,则()A.1B.2C.D.-2第(2)题已知函数与的图象上存在两组关于x轴对称的点,则实数t的取值范围是( )(参考数据:ln2≈0.7,ln3≈1.1)A.B.C.D.第(3)题已知函数在上有且仅有4个零点,则实数的取值范围是()A.B.C.D.第(4)题已知集合,,则()A.B.C.D.第(5)题=ax3+b sin x+4(a,b∈R),f(lg(log 210))=5,则f(lg(lg2))=( )A.﹣5B.﹣1C.3D.4第(6)题若为实数,且,则A.B.C.D.第(7)题执行如图的程序框图,如果输出i的值是5,那么在空白矩形框中可以填入的语句为()A.B.C.D.第(8)题已知是所在平面外一点,分别是的中点,若,则异面直线与所成角的大小是A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知曲线,则下列结论正确的是()A.曲线可能是直线B.曲线可能是圆C.曲线可能是椭圆D.曲线可能是双曲线第(2)题已知函数的相邻两对称轴的之间的距离为,函数为偶函数,则()A.B .为其一个对称中心C.若在单调递增,则D.曲线与直线有7个交点第(3)题已知函数是定义在R上的偶函数,且,当时,,则下列说法正确的是()A.是奇函数B.在区间上有且只有一个零点C .在区间上单调递增D.在区间上有且只有两个极值点三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设函数,则______.第(2)题已知函数的图象过点,且相邻两个零点的距离为.若将函数的图象向左平移个单位长度得到的图象,则函数的解析式为___________.第(3)题已知△ABC的顶点坐标分别为,则内角的角平分线所在直线方程为________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在中,是的平分线,,求:(1)的长;(2)的面积.第(2)题已知函数.(1)求函数的极值;(2)若为整数,且函数有4个零点,求的最小值.第(3)题如图,三棱台中,侧面四边形为等腰梯形,底面三角形为正三角形,且.设为棱上的点.(1)若为的中点,求证:;(2)若三棱台的体积为,且侧面底面,试探究是否存在点,使直线与平面所成角的正弦值为?若存在,确定点的位置;若不存在,说明理由.第(4)题我国南北朝时期的数学家祖冲之(公元429年-500年)计算出圆周率的精确度记录在世界保持了千年之久,德国数学家鲁道夫(公元1540年-1610年)用一生精力计算出了圆周率的35位小数,随着科技的进步,一些常数的精确度不断被刷新.例如:我们很容易能利用计算器得出函数的零点的近似值,为了实际应用,本题中取的值为-0.57.哈三中毕业生创办的仓储型物流公司建造了占地面积足够大的仓库,内部建造了一条智能运货总干线,其在已经建立的直角坐标系中的函数解析式为,其在处的切线为,现计划再建一条总干线,其中m为待定的常数.注明:本题中计算的最终结果均用数字表示.(1)求出的直线方程,并且证明:在直角坐标系中,智能运货总干线上的点不在直线的上方;(2)在直角坐标系中,设直线,计划将仓库中直线与之间的部分设为隔离区,两条运货总干线、分别在各自的区域内,即曲线上的点不能越过直线,求实数m的取值范围.第(5)题如图,在三棱柱中,D是的中点,E是CD的中点,点F在上,且.(1)证明:平面;(2)若平面ABC,,,求平面DEF与平面夹角的余弦值.。
2024年江苏省连云港市灌云高级中学高考数学模拟试卷

2024年江苏省连云港市灌云高级中学高考数学模拟试卷一、单项选择题:本题共8小题,每小题5分,共40分。
1.(★)(5分)已知集合A={(x,y)|y=x},B={(x,y)|x2+y2=1},则A∩B中元素的个数是() A.3B.2C.1D.02.(★)(5分)已知(1+i5+i10)•z=2+i,则=()A.1+2i B.1-2i C.2+i D.2-i3.(★)(5分)已知,则与的夹角为()A.B.C.D.4.(★★)(5分)口袋里有红黄蓝绿的小球各四个,这些球除了颜色之外完全相同,现在从口袋里任意取出四个小球,则不同的方法有()种.A.48B.77C.35D.395.(★★★)(5分)在正项等比数列{a n}中,S n为其前n项和,若S30=13S10,S10+S30=140,则S20的值为()A.10B.18C.36D.406.(★★★)(5分)已知函数的图象与g(x)的图象关于x 轴对称,若将f(x)的图象向左至少平移个单位长度后可得到g(x)的图象,则()A.g(x)的图象关于原点对称B.C.g(x)在上单调递增D.g(x)的图象关于点对称7.(★★★)(5分)已知函数若存在唯一的整数x,使得成立,则所有满足条件的整数a的取值集合为()A.{-2,-1,0,1}B.{-2,-1,0}C.{-1,0,1}D.{-2,1}8.(★★★)(5分)已知f(x)是定义在R上的奇函数,f(1-2x)为偶函数,且f(x)在[-2024,-2023]上单调递增,设a=f(-log32),b=f(ln(2e4)),c=f(2024),则a,b,c的大小关系是()A.c<b<a B.a<c<b C.c<a<b D.b<a<c二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.(★★)(5分)如图,在四面体P-ABC中,,BA⊥BC,PA=PB=PC=4,O为AC的中点,点M是棱BC的中点,则()A.PO⊥平面ABCB.C.四面体P-ABC的体积为D.异面直线PM与AB所成角的余弦值为10.(★★)(5分)若,且,则()A.B.C.D.11.(★★★)(5分)若函数在x=c处取得极值,则() A.b2-4ac>0B.ac+b为定值C.当a<0时,f(x)有且仅有一个极大值D.若f(x)有两个极值点,则是f(x)的极小值点12.(★★★)(5分)双曲线具有如下光学性质:如图F1,F2是双曲线的左、右焦点,从右焦点F2发出的光线m交双曲线右支于点P,经双曲线反射后,反射光线n的反向延长线过左焦点F1.若双曲线C的方程为,则()A.双曲线的焦点F2到渐近线的距离为B.若m⊥n,则|PF1||PF2|=42C.当n过点Q(3,6)时,光线由F2→P→Q所经过的路程为8D.反射光线n所在直线的斜率为k,则三、填空题:本题共4小题,每小题5分,共20分。
江苏省南京市2024年数学(高考)统编版真题(评估卷)模拟试卷

江苏省南京市2024年数学(高考)统编版真题(评估卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题三位四进制数中的最大数333等于十进制数的是()A.63B.83C.189D.252第(2)题已知平面向量满足,与的夹角为120°,若,则()A.1B.2C.3D.4第(3)题已知某圆锥的高为,体积为,则该圆锥的侧面积为()A.B.C.D.第(4)题等差数列的首项为1,公差不为0.若成等比数列,则的前5项和为()A.B.C.5D.25第(5)题如图,在三棱锥中,,,为的中点,,与平面所成的角为,则三棱锥外接球的表面积为()A.B.C.D.第(6)题4个产品中有3个正品,1个次品.现每次取出1个做检查(检查完后不再放回),直到次品被找到为止,则经过3次检查恰好将次品找到的概率是()A.B.C.D.第(7)题若函数有4个零点,则正数的取值范围是()A.B.C.D.第(8)题若,则在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知函数,则下列说法正确的是()A.的最小正周期为B.的定义域为C.的图象关于点对称D.在上单调递增第(2)题掷骰子5次,分别记录每次骰子出现的点数,根据这5次的统计结果,下列选项中有可能出现点数1的是().A.中位数是3,众数是2B.平均数是4,中位数是5C.极差是4,平均数是2D.平均数是4,众数是5第(3)题近年来,我国人口老龄化持续加剧,为改善人口结构,保障国民经济可持续发展,国家出台了一系列政策,如2016年起实施全面两孩生育政策,2021年起实施三孩生育政策等.根据下方的统计图,下列结论正确的是()2010至2022年我国新生儿数量折线图A.2010至2022年每年新生儿数量的平均数高于1400万B.2010至2022年每年新生儿数量的第一四分位数低于1400万C.2015至2022年每年新生儿数量呈现先增加后下降的变化趋势D.2010至2016年每年新生儿数量的方差大于2016至2022年每年新生儿数量的方差三、填空(本题包含3个小题,每小题5分,共15分。
江苏省徐州市2024高三冲刺(高考数学)人教版模拟(自测卷)完整试卷

江苏省徐州市2024高三冲刺(高考数学)人教版模拟(自测卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在中,则()A.B.C.D.第(2)题当时,执行如图所示的程序框图,输出的S值为( )A.7B.42C.210D.840第(3)题心形代表浪漫的爱情,人们用它来向所爱之人表达爱意.一心形作为建筑立面造型,呈现出优雅的弧度,心形木屋融入山川,河流,森林,草原,营造出一个精神和自然聚合的空间.图是由此抽象出来的一个“心形”图形,这个图形可看作由两个函数的图象构成,则“心形”在轴上方的图象对应的函数解析式可能为()A.B.C.D.第(4)题已知集合,若集合有15个真子集,则实数的取值范围为()A.B.C.D.第(5)题已知,则()A.B.C.D.第(6)题设双曲线的左、右焦点分别为,过的直线与双曲线的右支交于两点,且,则双曲线的离心率为()A.B.C.D.第(7)题历史上数列的发展,折射出许多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233,….即,,此数列在现代物理、准晶体结构及化学等领域有着广泛的应用,若此数列被4整除后的余数构成一个新的数列,又记数列满足,,,则的值为A.4B.-728C.-729D.3第(8)题曲线在点(1,1)处切线的斜率等于().A.B.C.2D.1二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则()A.为偶函数B .是的一个单调递增区间C.D .当时,第(2)题复数满足,则下列说法正确的是()A.在复平面内点落在第四象限B.为实数C.D.复数的虚部为第(3)题如图为2022年全国居民消费价格月度涨跌幅情况,则()A.环比涨跌幅的极差小于同比涨跌幅的极差B.环比涨跌幅的平均数为0.1%C.环比涨跌幅的方差小于同比涨跌幅的方差D.同比涨跌幅的上四分位数为1.55%三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题抛物线的光学性质是:位于抛物线焦点处的点光源发出的每一束光经抛物线反射后的反射线都与抛物线的对称轴平行或重合.设抛物线C:的焦点为F,过点的直线交C于A,B两点,且,若C在A,B处的切线交于点P,Q为的外心,则的面积为______.第(2)题的展开式中的常数项为____.(用数字作答)第(3)题已知函数,下列结论中正确的序号是__________.①的图象关于点中心对称,②的图象关于对称,③的最大值为,④既是奇函数,又是周期函数.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数(e为自然对数底数).(1)判断,的单调性并说明理由;(2)证明:对,.第(2)题2019年12月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为,某位患者在隔离之前,每天有位密切接触者,其中被感染的人数为,假设每位密切接触者不再接触其他患者.(1)求一天内被感染人数为的概率与、的关系式和的数学期望;(2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有位密切接触者,从某一名患者被感染,按第1天算起,第天新增患者的数学期望记为.(i)求数列的通项公式,并证明数列为等比数列;(ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率,当取最大值时,计算此时所对应的值和此时对应的值,根据计算结果说明戴口罩的必要性.(取)(结果保留整数,参考数据:)第(3)题已知函数.(1)判断的单调性;(2)若,求证.第(4)题已知椭圆的右焦点为,且是椭圆上一点.(1)求椭圆的方程;(2)若过的直线(与轴不重合)与椭圆相交于两点,过的直线与轴交于点,与直线交于点(与不重合),记的面积分别为,若,求直线的方程.第(5)题如图,在三棱柱中,侧面是菱形,且与平面垂直,,.(1)证明:平面;(2)棱上是否存在一点,使得直线与平面所成角为?若存在,请确定点的位置;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年江苏高考数学模拟试卷(六)
第1卷(必做题,共160分)
一、填空题:本大题共14小题,每小题5分,共70分.
1. 若复数z 满足i i z +=-1)1((i 是虚数单位),则其共轭复数z = .
2.“m <1”是“函数f (x )=x 2+2x +m 有零点”的 条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一).
3.在△ABC 中,AB =2,AC =3,→AB ·→
BC =1,则BC = .
4.一种有奖活动,规则如下:参加者同时掷两个正方体骰子一次, 如果向上的两个面上的数字相同,则可获得奖励,其余情况不奖励.那么,一个参加者获奖的概率为 . 5.为了在下面的程序运行之后得到输出25=y ,则键盘输入x 的值应该为 .
(第6题图)
6.如图,直线与圆12
2=+y x 分别在第一和第二象限内交于21,P P 两点,若点1P 的横坐标为
3
5,∠21OP P =3
π,则点2P 的横坐标为 . 7.已知不等式组⎩⎪⎨⎪
⎧
x ≤1,x +y +2≥0,kx -y ≥0.表示的平面区域为Ω,其中k ≥0,则当Ω的面积取得最小
值时的k 的值为 . 8.若关于x 的方程2
-|x |
-x 2+a =0有两个不相等的实数解,则实数a 的取值范围是 .
9.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,该长方体的最大体积是___ _____.
10.直线)20(<<±=m m x 和kx y =把圆422=+y x 分成四个部分,则22(1)k m +的最小
值为 .
11.已知双曲线122
22=-b
y a x ()0,1>>b a 的焦距为c 2,离心率为e ,若点(-1,0)和(1,0)到直
Read x
If x <0 Then
y =(x +1)(x +1)
Else
y =(x-1)(x -1) End If Print y End x y
O P 1 3π P 2
线
1=-b y a x 的距离之和为S ≥c 5
4
,则e 的取值范围是 . 12.已知定义在R 上的函数⎩
⎨⎧∉-∈=]1,0[3]1,0[1
)(x x x x f ,则1)]([=x f f 成立的整数x 的取值的
集合为 . 13.定义在[2,4]上的函数x x x x f ln 322
1)(2
++-
=的值域为 . 14.在如右图所示的数表中,第i 行第j 列的数记为a i ,j ,且满足a 1,j =2j -
1,a i ,1=i ,
a i +1,j +1=a i ,j +a i +1,j (i ,j ∈N *);又记第3行的数3,5,8,13,22,39,…. 则第3行第n 个数为 .
二、解答题:本大题共6小题,共90分.
15.(本小题满分14分)如图,在四棱锥S -ABCD 中,底面ABCD 是正方形,四个侧面都是等边三角形,AC 与BD 交于点O ,E 为侧棱SC 上的一点.
(1)求证:平面BDE ⊥平面SAC ; (2)若SA //平面BDE ,求:SE EC 的值。
16.(本小题满分14分)已知向量m =⎪⎪⎭
⎫
⎝⎛+x x 2cos 232sin 21,21与n =(1,y )共线,且有函
数)(x f y =.
(1)求函数)(x f y =的周期及单调增区间; (2)若锐角△ABC ,三内角分别为A ,B ,C ,3)3
(=-
πA f ,边BC =7,7
28cos =
B ,求A
C 的长.
17.(本小题满分14分)某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一
段.已知跳水板AB长为2m,跳水板距水面CD的高BC为3m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4m.规定:以CD为横轴,BC为纵轴建立直角坐标系.
(1)当h=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.
18.(本小题满分16分)已知椭圆E:x2
a2+y2
b2=1(a>b>0)的离心率为
3
2,其长轴长与短轴
长的和等于6.
(1)求椭圆E的方程;
(2)如图,设椭圆E的上、下顶点分别为A1、A2,P是椭圆上异于A1、A2的任意一点,直线PA1、PA2分别交x轴于点N、M,若直线OT与过点M、N的圆G相切,切点
为T.证明:线段OT的长为定值.
19.(本小题满分16分)已知函数f (x )=(a +1a )ln x +1
x -x (a >1). (1)讨论f (x )在区间(0,1)上的单调性;
(2)当a ≥3时,曲线y =f (x )上总存在相异两点P (x 1,f (x 1)),Q (x 2,f (x 2)),使得曲线y =f (x )
在点P ,Q 处的切线互相平行,求证:x 1+x 2>6
5.
20.(本小题满分16分)设数列{}n a ,对任意*n N ∈都有
112()()2()n n kn b a a p a a a +++=++,(其中k 、b 、p 是常数).
(1)当0k =,3b =,4p =-时,求123n a a a a +++
+;
(2)当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式; (3)若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列”
{}n a ,使得对任意*n N ∈,都有0n S ≠,且
123
1111
1111218
n S S S S <++++
<.若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.
第Ⅱ卷(附加题,共40分)
21.[选做题]本题包括A 、B 、C 、D 四小题,每小题10分;请选定其中两题,并在相应的答..............题区域内作答......
. A .(选修4-1:几何证明选讲)如图,A 、B 是⊙O 上的两点,∠AOB =120°,点D 为劣弧AB 的中点.
(1)求证:四边形AOBD 是菱形;
(2)延长线段BO 至点P ,交⊙O 于另一点C ,且BP =3OB ,求证:AP 是⊙O 的切线.
B .(选修4-2:矩阵与变换)在军事密码学中,发送密码时,先将英文字母数学化,对应如下表:
如果已发现发送方传出的密码矩阵为⎥⎦⎤⎢⎣⎡101324114,双方约定可逆矩阵为⎥⎦
⎤
⎢⎣⎡4321,试破解
发送的密码.
C .(选修4-4:坐标系与参数方程)如图,边长为2的正六边形ABCDEO ,以OC 为极轴建立极坐标系,求C
D 边所在直线的极坐标方程.
a b c d … z 1
2
3
4
…
26
C
D
E
x
O
C
D .(选修4-5:不等式选讲)已知a ,b ,c ∈(0,+∞),且23
21=++c
b a ,求证:a +2b +3
c ≥18.
【必做题】第22题、第23题,每题10分,共计20分.
22.如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直,AB ∥CD ,AB ⊥BC ,
AB =2C D =2BC ,EA ⊥EB .
(1)求直线EC 与平面ABE 所成角的正弦值;
(2)线段EA 上是否存在点F ,使EC // 平面FBD ?若存在,求出
EF
EA
;若不存在,说明理由.
23.设二项展开式(
)
1
21
3-+=
n n C (n ∈N *)的小数部分为n B .
(1)计算2211,B C B C 的值;
(2)求证:1
22-=n n n B C .。