江苏省2014年高考数学二轮专题复习素材:训练21
专题12 正余弦定理妙解三角形问题和最值问题(11大核心考点)-2024年高考数学二轮复习讲练测

5.(2021•浙江)在中,∠ = °, = ,是的中点, = ,则 = ;
∠ = .
6.(2022•甲卷)已知中,点在边上,∠ = °, = , = .当 取得最小值时,
,得 = 2或 =
∈ 0, ,得sin = 1
7
− 2(舍),
− cos 2
2
2
15
4
=
=
2sin⋅cos
3 15
.
4
3
3
= sin,所以 = 6cos.
在 △ 中,再由余弦定理得 cos =
所以 6 =
15
,
4
所以△ 的面积 = 1 sin = 1 × 3 × 2 ×
2
=
3
= 0, ∴ ∠ = , =
2
2
3
7
1+4−2
7
,解得AD为
9
1
+
16
3
2
− )=
=
3
,cos∠
3
129
12
4
3 3
,sin∠ =
,
43
43
3
1
, sin∠ = ,
2
2
7 3
+ ∠) = 2 43,
cos∠ = −cos∠ = −
cos∠ = cos(
(2)在△ 中,由正弦定理得sin = sin ⇒ sin2 = sin ⇒
16+2 −9
2×4×
,解得 = 21.
2 + 2 − 2
2⋅
2014年江苏高考数学试题及详细答案(含附加题)

2014年江苏高考数学试题及详细答案(含附加题)D(1)求()sin 4απ+的值; (2)求()cos 26α5π-的值. 【答案】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能 力. 满分14分. (1)∵()5sin 2ααπ∈π=,,, ∴225cos 1sin αα=-()210sin sin cos cos sin sin )444αααααπππ+=+=+=;(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=, ∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=. 16.(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =. (1)求证:直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥PA ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴PA ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴132DE PA ==∵E F ,为AC AB ,中点 ∴142EF BC == ∴222DE EF DF += ∴90DEF ∠=°,∴DE ⊥EF ∵//DE PA PA AC ⊥,,∴DE AC ⊥∵AC EF E = ∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC . 17.(本小题满分14 分)如图,在平面直角坐标系xOy中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC .(1)若点C 的坐标为()4133,,且22BF =求椭圆的方程; (2)若1FC AB ⊥,求椭圆离心率e 的值.【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运 算求解能力. 满分14分.(1)∵()4133C ,,∴22161999a b +=∵22222BFb c a =+=,∴22(2)2a==,∴21b =∴椭圆方程为2212x y +=(2)设焦点12(0)(0)()F c F c C x y -,,,,, ∵A C ,关于x 轴对称,∴()A x y -,∵2B F A ,,三点共线,∴b yb c x+=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即2xc by c -+=②①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b cb c --,∵C 在椭圆上,∴()()222222222221a c bc b c b c a b --+=,化简得225ca =,∴5c a = 5 18.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大? 解:本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分. 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=- 解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即|3680|680355d d r --==.因为O 和A 到圆M 上任意一点的距离均不少于80 m, 所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035d r -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =3,68053MD MD rMF OF OM d ===--所以68035d r -=.因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035d r -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.19.(本小题满分16分)已知函数()e e xxf x -=+其中e 是自然对数的底数.(1)证明:()f x 是R 上的偶函数; (2)若关于x 的不等式()e 1xmf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得30()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明你的结论.【答案】本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想 方法分析与解决问题的能力.满分16分.(1)x ∀∈R ,()e e ()x xf x f x --=+=,∴()f x 是R 上的偶函数 (2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x xm --+--≤∵(0)x ∈+∞,,∴e e10xx-+->,即e 1e e 1xxx m ---+-≤对(0)x ∈+∞,恒成立令e (1)xt t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立 ∴13m -≤(3)'()e e xxf x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增 令3()(3)h x a x x =-+,'()3(1)h x ax x =-- ∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减∵存在0[1)x ∈+∞,,使得30()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即()11e 2ea >+ ∵e-1e 111ln ln ln e (e 1)ln 1ea a a a a a ---=-=--+设()(e 1)ln 1m a a a =--+,则()e 1e 111'()1e 2e a m a a aa ---=-=>+, 当()11e e 12ea +<<-时,'()0m a >,()m a 单调增; 当e 1a >-时,'()0m a <,()m a 单调减因此()m a 至多有两个零点,而(1)(e)0m m == ∴当e a >时,()0m a <,e 11e a a --<;当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=.20.(本小题满分16分)设数列{}na 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得nmS a =,则称{}na 是“H 数列”. (1)若数列{}na 的前n 项和2()nnS n *=∈N ,证明:{}na 是“H 数列”;(2)设{}na 是等差数列,其首项11a =,公差0d <.若{}na 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()nnna b c n *=+∈N 成立.【答案】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力, 满分16分. (1)当2n ≥时,111222nn n nnn a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1n n S a += ∴{}na 是“H 数列”(2)1(1)(1)22nn n n n Sna d n d --=+=+对n *∀∈N ,m *∃∈N 使nmSa =,即(1)1(1)2n n n d m d -+=+-取2n =得1(1)d m d +=-,12m d =+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =- (3)设{}na 的公差为d令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=- 1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+ 则1(1)n n n b c a n d a +=+-=,且{}{}n nb c ,为等差数列{}n b 的前n 项和11(1)()2nn n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}nb 为“H 数列”.{}n c 的前n项和1(1)()2nn n R a d -=+,令1(1)()n mc m ad R =-+=,则(1)12n n m -=+∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得nmR c =成立,即{}nc 为“H 数列”因此命题得证.数学Ⅱ(附加题)21.【选做题】本题包括A, B,C,D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,C 、 D 是圆O 上位于AB 异侧的两点证明:∠OCB =∠D .本小题主要考查圆的基本性质,考查推理论证能力.满分10分.证明:因为B , C 是圆O 上的两点,所以OB =OC . 故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D . 因此∠OCB =∠D .B.【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值.【答案】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分.222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=, C.【选修4-4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程为12x y ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24yx=交于A B ,两点,求线段AB 的长.【答案】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力.满分10分. 直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+= ∴交点(12)A ,,(96)B -,,故||AB =D.【选修4-5:不等式选讲】(本小题满分10分) 已知x >0, y >0,证明:(1+x +y 2)( 1+x 2+y )≥9xy.本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分.证明:因为x >0, y >0, 所以1+x +y 2≥0>,1+x 2+y ≥0>,所以(1+x +y 2)( 1+x 2+y )≥=9xy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,,中的最大数,求X 的概率分布和数学期望()E X .22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况∴取出的2个球颜色相同的概率1053618P == (2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===3131453639C C C C 13(3)C 63P X +===11(2)1(3)(4)14P X P X P X ==-=-== ∴X 的概率分布列为故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯= 23.(本小题满分10分)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n fx -的导数,n *∈N .(1)求()()122222f f πππ+的值; (2)证明:对任意的n *∈N ,等式()()1444n nnff -πππ+成立. 23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.(1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (2)证明:由已知,得0()sin ,xf x x =等式两边分别对x 求导,得0()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得 122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nfx xf x x π-+=+对所有的n ∈*N 都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kfx xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()kk k f x fx +++(1)sin[]2k x π+=+.所以当n=k +1时,等式也成立. 综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+(n ∈*N ).。
2014高考数学二轮专题复习Word版 专题提升训练13

常考问题13 圆锥曲线的基本问题(建议用时:50分钟)1.(2013·陕西卷)双曲线x 216-y 2m =1(m >0)的离心率为54,则m 等于________.解析 由题意得c =16+m ,所以16+m 4=54,解得m =9. 答案 92.已知双曲线C ∶x 2a 2-y 2b21(a >0,b >0)的实轴长为2,离心率为2,则双曲线C的焦点坐标是________.解析 ∵2a =2,∴a =1,又ca =2,∴c =2,∴双曲线C 的焦点坐标是(±2,0).答案 (±2,0)3.(2013·徐州质检)已知双曲线C :x 2a 2y 2b2=1(a >0,b >0)的右顶点,右焦点分别为A ,F ,它的左准线与x 轴的交点为B ,若A 是线段BF 的中点,则双曲线C 的离心率为________.解析 ∵A 是B ,F 的中点,∴2a =-a 2c +c .∴e 2-2e -1=0,∵e >1,∴e =2+1. 答案2+14.(2013·新课标全国Ⅰ卷改编)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为________.解析 直线AB 的斜率k =0+13-1=12设A (x 1,y 1),B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b21 ①x 22a 2+y 22b 2=1, ②①-②得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.又x 1+x 2=2,y 1+y 2=-2,所以k =-b 2a 2×2-2,所以b 2a 2=12,③ 又a 2-b 2=c 2=9,④由③④得a 2=18,b 2=9.故椭圆E 的方程为x 218+y 29=1.答案 x 218+y 29=15.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为________.解析 由于抛物线y 2=4x 的焦点为F (1,0),即c =1,又e =c a =5,可得a =55,结合条件有a 2+b 2=c 2=1,可得b 2=45,又焦点在x 轴上,则所求的双曲线的方程为5x 2-54y 2=1.答案 5x 2-54y 2=16.(2013·福建卷)椭圆T :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆T 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析 直线y =3(x +c )过点F 1,且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2,在Rt △MF 1F 2中,|MF 1|=c ,|MF 2|=3c ,所以该椭圆的离心率e =2c 2a =2cc +3c=3-1. 答案3-17.已知双曲线C 与椭圆x 216+y 212=1有共同的焦点F 1,F 2,且离心率互为倒数.若双曲线右支上一点P 到右焦点F 2的距离为4,则PF 2的中点M 到坐标原点O 的距离等于________.解析 由椭圆的标准方程,可得椭圆的半焦距c =16-12=2,故椭圆的离心率e 1=24=12,则双曲线的离心率e 2=1e 1=2.因为椭圆和双曲线有共同的焦点,所以双曲线的半焦距也为c =2.设双曲线C 的方程为x 2a -y 2b =1(a >0,b >0),则有a =c e 2=22=1,b 2=c 2-a 2=22-12=3,所以双曲线的标准方程为x 2-y 23=1.因为点P 在双曲线的右支上,则由双曲线的定义,可得|PF 1|-|PF 2|=2a =2,又|PF 2|=4,所以|PF 1|=6.因为坐标原点O 为F 1F 2的中点,M 为PF 2的中点. 所以|MO |=12|PF 1|=3.答案 38.(2012·南京、盐城模拟)设椭圆C ∶x 2a +y 2b=1(a >b >0)恒过定点A (1,2),则椭圆的中心到准线的距离的最小值________.解析 由题设知1a 2+4b 2=1,∴b 2=4a 2a 2-1,∴椭圆的中心到准线的距离d =a 2c ,由d 2=a 4c 2=a 4a 2-b 2=a 4a 2-4a 2a 2-1=a 2(a 2-1)a 2-5,令a 2-5=t (t >0)得d 2=(t +5)(t +4)t =t +20t +9≥9+45(当且仅当t =25时取等号)∴d ≥2+5即椭圆的中心到准线的距离的最小值2+ 5. 答案 2+ 59.在平面直角坐标系xOy 中,已知对于任意实数k ,直线(3k +1)x +(k -3)y -(3k +3)=0恒过定点F .设椭圆C 的中心在原点,一个焦点为F ,且椭圆C 上的点到F 的最大距离为2+ 3. (1)求椭圆C 的方程;(2)设(m ,n )是椭圆C 上的任意一点,圆O :x 2+y 2=r 2(r >0)与椭圆C 有4个相异公共点,试分别判断圆O 与直线l 1:mx +ny =1和l 2:mx +ny =4的位置关系.解 (1)由(3k +1)x +(k -3)y -(3k +3)=0整理 得(3x +y -3)k +(x -3y -3)=0,解方程组⎩⎨⎧3x +y -3=0,x -3y -3=0得F (3,0).设椭圆C 的长轴长、短轴长、焦距分别为2a,2b,2c ,则由题设知⎩⎨⎧c =3,a +c =2+ 3.于是a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)因为圆O :x 2+y 2=r 2(r >0)与椭圆C 有4个相异公共点,所以b <r <a ,即1<r <2.因为点(m ,n )是椭圆x 24+y 2=1上的点,所以m 24+n 2=1,且-2≤m ≤2. 所以m 2+n 2=34m 2+1∈[1,2]. 于是圆心O 到直线l 1的距离d 1=1m 2+n2≤1<r ,圆心O 到直线l 2的距离d 2=4m 2+n2≥2>r .故直线l 1与圆O 相交,直线l 2与圆O 相离.10.已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1. (1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的一点,OPOM =λ,求点M 的轨迹方程,并说明轨迹是什么曲线.解 (1)设椭圆长半轴长及半焦距分别为a ,c ,由已知得⎩⎨⎧a -c =1,a +c =7,解得⎩⎨⎧a =4,c =3.又∵b 2=a 2-c 2,∴b =7, 所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),其中x ∈[-4,4],由已知OP 2OM 2=λ2及点P 在椭圆C 上可得9x 2+11216(x 2+y 2)=λ2,整理得(16λ2-9)x 2+16λ2y 2=112,其中x ∈[-4,4].①当λ=34时,化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4).轨迹是两条平行于x 轴的线段.②当λ≠34时,方程变形为x 211216λ2-9+y 211216λ2=1,其中x ∈[-4,4].当0<λ<34时,点M 的轨迹为中心在原点、实轴在y 轴上的双曲线满足-4≤x ≤4的部分;当34<λ<1时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆满足-4≤x ≤4的部分;当λ≥1时,点M 的轨迹为中心在原点,长轴在x 轴上的椭圆.11.(2013·南京、盐城模拟)在平面直角坐标系xOy 中,过点A (-2,-1)椭圆C ∶x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,短轴端点为B 1、B 2,FB 1→·FB 2→=2b 2.(1)求a 、b 的值;(2)过点A 的直线l 与椭圆C 的另一交点为Q ,与y 轴的交点为R .过原点O 且平行于l 的直线与椭圆的一个交点为P .若AQ ·AR =3OP 2,求直线l 的方程. 解 (1)因为F (-c,0),B 1(0,-b ),B 2(0,b ),所以FB 1→=(c ,-b ),FB 2→=(c ,b ).因为FB 1→·FB 2→=2b 2, 所以c 2-b 2=2b 2.① 因为椭圆C 过A (-2,-1),代入得,4a 2+1b 2=1.②由①②解得a 2=8,b 2=2. 所以a =22,b = 2.(2)由题意,设直线l 的方程为y +1=k (x +2).由⎩⎪⎨⎪⎧y +1=k (x +2),x 28+y 221得(x +2)[(4k 2+1)(x +2)-(8k +4)]=0.因为x +2≠0,所以x +2=8k +44k 2+1,即x Q +2=8k +44k 2+1.由题意,直线OP 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,x 28+y 221,得(1+4k 2)x 2=8.则x 2P =81+4k 2, 因为AQ ·AR =3OP 2.所以|x Q -(-2)|×|0-(-2)|=3x 2P . 即⎪⎪⎪⎪⎪⎪8k +44k 2+1×2=3×81+4k 2.解得k =1,或k =-2.当k =1时,直线l 的方程为x -y +1=0, 当k =-2时,直线l 的方程为2x +y +5=0. 备课札记:。
专题16妙解离心率问题(12大核心考点)(课件)-2025年高考数学二轮复习讲练测(新教材新高考)

在Rt △ 中,由∠ = ,得 = sin =
2sin, = cos = 2cos,
1
所以2sin + 2cos = 2,所以 = sin+cos =
)
π
ቁ
4
∈
,
,
12 3
6
,
2
所以 =
π
,所以 + 4 ∈
= ( > , > )的左、右焦点,为双曲线上的任一点,
≥ �� − .
3、利用角度长度的大小建立不等关系. , 为椭圆 + = 的左、右焦点,为椭圆上的动点,若
∠ = ,则椭圆离心率的取值范围为 ≤ < .
4、利用题目不等关系建立不等关系.
+ = 的离心率分别为 , .若 = ,则
D.
= ( > , > )的离心率为 ,的一条渐近线与圆( − ) + ( − ) =
交于,两点,则|| = ( D )
A.
B.
C.
3.(2022•甲卷)椭圆: + = ( >
2sin(+ 4 )
,∴ sin( + 4 ) ∈
∴∈
3 − 1,
6
3
2+ 6,46 1+ 3, 2
2
.
.故选:A.
考点题型二:焦点三角形顶角范围与离心率
2
【例2】(2024·辽宁葫芦岛·高三统考期末)已知点1 ,2 分别是椭圆 2
+
2014年江苏高考数学真题及答案

2014年江苏高考数学真题及答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲.2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为▲.3. 右图是一个算法流程图,则输出的n 的值是▲.4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲.5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),zxxk 它们的图象有一个横坐标为3π的交点,则ϕ的值是▲.6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有▲株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是▲.8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是▲.9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为▲.10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是▲.11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数) zxxk 过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是▲.12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是▲.202>n组距13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是▲.14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分zxxk 别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .(第16题)PD C EFB A17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,学科网求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,学科网总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3} .2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21 .3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是 5 .4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.P=.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.的交点,可得.根据的交点,.,∴,+,..6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24 株树木的底部周长小于100cm.=7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是 4 .,=8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.=,,它们的侧面积相等,==..9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.=,=2=10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).,,解得﹣(﹣11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .(,(,,解得:12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22 .=3,=+,=﹣,=3,=2解:∵=3=+,=﹣,•=+)•(﹣|•﹣|••=22=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).|的图象如图:由图象可知,)14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.b=2c(bcosC==≥=≤cosC<的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.(﹣,=﹣=+cos+cos sin=∴sin(+.,.,∴cos(﹣=cos cos2+sin sin2=(.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.的中点,∴DE=PA=3的中点,∴EF=BC=417.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.的坐标为(,,即,(则椭圆的方程为x+b+﹣x=∵A(∴C()==×(.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?.,∴CE=OP=m∴PC=PQ=∴R=MQ=m=∴136﹣﹣x≥80.19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a ﹣1与a e﹣1的大小,并证明你的结论.m≤m≤,当且仅当.=e+﹣>)﹣,﹣=0①a∈(()20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.,,即,解得,则,三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.=BA=,向量==B,,∴x=﹣∴x+y=【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.的参数方程为∴|AB|==8【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.≥3,+y≥≥3(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).P=,P26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.代入式子求值;代入所给的式子求解验证.,∴xf代入上式得,)f))x+)对任意成立,则上式成立;,=,x+代入上式得,(f)(+=±,(f)都成立.。
高考数学二轮复习教案

高考数学二轮复习教案【篇一:高考数学二轮专题复习教案共23讲精品专题】专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. 理解集合中元素的意义是解决集合问题的关键:弄清元素是函数关系式中自变量的取值?还是因变量的取值?还是曲线上的点??2. 数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.3. 已知集合a、b,当a∩b=?时,你是否注意到“极端”情况:a=?或b=??求集合的子集时是否忘记??分类讨论思想的建立在集合这节内容学习中要得到强化.4. 对于含有n个元素的有限集合m, 其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.5. ?是任何集合的子集,是任何非空集合的真子集.2. 已知命题p:n∈n,2n>1 000,则p为________.3. 条件p:a∈m={x|x2-x0},条件q:a∈n={x||x|2},p是q的______________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4. 若命题“?x∈r,x2+(a-1)x+10”是假命题,则实数a的取值范围为________.【例1】已知集合a={x|x2-3x-10≤0},集合b={x|p+1≤x≤2p-1}.若b?a,求实数p的取值范围.【例2】设a={(x,y)|y2-x-1=0},b={(x,y)|4x2+2x-2y+5=0},c={(x,y)|y=kx+b},是否存在k、b∈n,使得(a∪b)∩c =??若存在,求出k,b的值;若不存在,请说明理由.则下列结论恒成立的是________.a. t,v中至少有一个关于乘法封闭b. t,v中至多有一个关于乘法封闭 c. t,v中有且只有一个关于乘法封闭 d. t,v中每一个关于乘法封闭【例4】已知a0,函数f(x)=ax-bx2.(1) 当b0时,若?x∈r,都有f(x)≤1,证明:0a≤b; (2) 当b1时,证明:?x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤b.①2 011∈[1];②-3∈[3];③z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是________个.1解:由f(x)为二次函数知a≠0,令f(x)=0解得其两根为x1=a12+a由此可知x10,x20,(3分)①当a0时,a={x|xx1}∪{x|xx2},(5分) 1a∩b≠?的充要条件是x2<3,即a②当a0时, a={x|x1xx2},(10分) 1a∩b≠?的充要条件是x21,即+a2+1,解得a-2,(13分) a62+3,解得a(9分) a712,x2=+aa6?.(14分) 综上,使a∩b≠?成立的实数a的取值范围为(-∞,-2)∪??7?一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语a. 57b. 56c. 49d. 8【答案】 b 解析:集合a的所有子集共有26=64个,其中不含4,5,6,7的子集有23=8个,所以集合s共有56个.故选b.m2y≤2m+1,x,y∈r}, 若a∩b≠?,则实数m的取值范围是________.1m12+2? 解析:由a∩b≠?得,a≠?,所以m2≥,m≥m≤0.【答案】 ??2?22|2-2m||2-2m-1|2当m≤0=22m>-m,且=2m>-m,又2+0=2>2m222|2-2m|1+1,所以集合a表示的区域和集合b表示的区域无公共部分;当m≥时,只要≤m22|2-2m-1|22或m,解得22≤m≤2+2或1-m≤1,所以实数m的取值范围222122?. 是??2?点评:解决此类问题要挖掘问题的条件,并适当转化,画出必要的图形,得出求解实数m的取值范围的相关条件.基础训练1. (-∞,3) 解析:a=(-∞,0]∪[3,+∞),b=(0,+∞),a∪b=(-∞,+∞),a∩b=[3,+∞).2. ?n∈n,2n≤1 0003. 充分不必要解析:m=(0,1)?n=(-2,2).例1 解:由x2-3x-10≤0得-2≤x≤5. ∴ a=[-2,5].①当b≠?时,即p+1≤2p-1?p≥2.由b?a得-2≤p+1且2p-1≤5.得-3≤p≤3.∴ 2≤p≤3.②当b=?时,即p+12p-1?p<2.b?a成立.综上得p≤3.点评:从以上解答应看到:解决有关a∩b=?,a∪b=a,a∪b=b 或a?b等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中全方位、多角度审视问题.变式训练设不等式x2-2ax+a+2≤0的解集为m,如果m?[1,4],求实数a的取值范围.??f?1?≥0且f?4?≥0,[x1,x2],m?[1,4]?1≤x1<x2≤4??-a+3≥0,??18-7a≥0,即?1≤a≤4,??a<-1或a>2,1818-1. 解得:2<a≤,综上实数a的取值范围是?7?7例2 解:∵ (a∪b)∩c=?,∵a∩c=?且b∩c=?,2??y=x+1,由 ? 得k2x2+(2bk-1)x+b2-1=0, ?y=kx+b?∴ 4k2-4bk+10,此不等式有解,其充要条件是16b2-160,即b21,①2??4x+2x-2y+5=0,∵ ? ?y=kx+b,?∴ 4x2+(2-2k)x+(5-2b)=0,∴ k2-2k+8b-190, 从而8b20,即b2.5,②?4k2-8k+1<0,??2 ?k-2k-3<0,?∴ k=1,故存在自然数k=1,b=2,使得(a∪b)∩c=?.点评:把集合所表示的意义读懂,分辨出所考查的知识点,进而解决问题.???1-y=3变式训练已知集合a=??x,y???x+1?????,b={(x,y)|y=kx+3},若a∩b=?,??求实数k的取值范围.解:集合a表示直线y=-3x-2上除去点(-1,1)外所有点的集合,集合b表示直线y=kx+3上所有点的集合,a∩b=?,所以两直线平行或直线y=kx+3过点(-1,1),所以k=2或k=-3.例3 【答案】 a 解析:由于t∪v=z,故整数1一定在t,v两个集合中的一个中,不妨设1∈t,则?a,b∈t,另一方面,当t={非负整数},v={负整数}时,t关于乘法封闭,v关于乘法不封闭,故d不对;当t={奇数},v={偶数}时,t,v显然关于乘法都是封闭的,故b,c不对.从而本题就选a.例4 证明:(1) ax-bx2≤1对x∈r恒成立,又b>0, ∴a2-4b≤0,∴ 0<a≤b. (2) 必要性,∵ ?x∈[0,1],|f(x)|≤1恒成立,∴ bx2-ax≤1且bx2-ax≥-1,显然x=0时成立,111对x∈(0,1]时a≥bx-且a≤bx+f(x)=bxx∈(0,1]上单调增,f(x)最大值xxxf(1)=b-1.1111函数g(x)=bx+在?0,?上单调减,在?1?上单调增,函数g(x)的最小值为g?x?b????b?=2,∴ b-1≤a≤2b,故必要性成立;a2a2aa1122b4b2b2a2f(x)max=1,又f(x)是开口向下的抛物线,f(0)=0,f(1)=a-b,4bf(x)的最小值从f(0)=0,f(1)=a-b中取最小的,又a-b≥-1,∴-1≤f(x)≤1,故充分性成立;综上命题得证.变式训练命题甲:方程x2+mx+1=0有两个相异负根;命题乙:方程4x2+4(m-2)x+1=0无实根,这两个命题有且只有一个成立,求实数m的取值范围.2解:使命题甲成立的条件是: ??m>2.?x1+x2=-m<0?∴集合a={m|m2}.【篇二:高三数学二轮复习教案】高三数学二轮复习教案学校:寿县迎河中学汇编:龙如山第一部分:三角问题的题型与方法一、考试内容1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
江苏省2014年高考数学二轮专题复习素材:训练13

常考问题13 圆锥曲线的综合问题(建议用时:50分钟)1.(2013·济南模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与直线y =3x 无交点,则离心率e 的取值范围是________.解析 因为双曲线的渐近线为y =±b a x ,要使直线y =3x 与双曲线无交点,则直线y =3x 应在两渐近线之间,所以有ba ≤3,即b ≤3a ,所以b 2≤3a 2,c 2-a 2≤3a 2,即c 2≤4a 2,e 2≤4,所以1<e ≤2. 答案 (1,2]2.P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则PM -PN 的最大值为________.解析 设双曲线的两个焦点分别是F 1(-5,0)与F 2(5,0),则这两点正好是两圆的圆心,当且仅当点P 与M 、F 1三点共线以及P 与N 、F 2三点共线时所求的值最大,此时PM -PN =(PF 1+2)-(PF 2-1)=6+3=9 答案 93.已知椭圆x 24+y 2b 2=1(0<b <2)与y 轴交于A ,B 两点,点F 为该椭圆的一个焦点,则△ABF 面积的最大值为________.解析 不妨设点F 的坐标为(4-b 2,0),而|AB |=2b ,∴S △ABF =12×2b ×4-b 2=b 4-b 2=b 2(4-b 2)≤b 2+4-b 22=2(当且仅当b 2=4-b 2,即b 2=2时取等号),故△ABF 面积的最大值为2. 答案 24.设F 1是椭圆x 24+y 2=1的左焦点,O 为坐标原点,点P 在椭圆上,则PF 1→·PO →的最大值为________.解析 设P (x 0,y 0),依题意可得F 1(-3,0),则PF 1→·P O →=x 20+y 20+3x 0=x 2+1-x 204+3x 0=3x 204+3x 0+1=34⎝⎛⎭⎪⎫x 0+2332. 又-2≤x 0≤2,所以当x 0=2时,PF 1→·P O →取得最大值4+2 3. 答案 4+2 35.(2012·南通、泰州、扬州模拟)如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,B ,C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一个交点为D ,若cos ∠F 1BF 2=725,则直线CD 的斜率为________. 解析 由cos ∠F 1BF 2=725得cos ∠OBF 2=45=ba,进一步求得直线BD 的斜率为-43,由⎩⎪⎨⎪⎧y =-43x +b ,x 2a 2+y 2b 2=1⇒916(y -b )2a 2=b 2-y 2b 2⇒y +b y -b=-925,∴直线CD 的斜率为y +b x=y +b -34(y -b )=⎝ ⎛⎭⎪⎫-925×⎝ ⎛⎭⎪⎫-43=1225.答案 12256.在平面直角坐标系xOy 中,以椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点A 为圆心的圆与x 轴相切于椭圆的一个焦点,与y 轴相交于B 、C 两点,若△ABC 是锐角三角形,则该椭圆的离心率的取值范围是________.解析 由题意得,圆半径r =b 2a ,因为△ABC 是锐角三角形,所以cos 0>cos A 2=c r >cos π4,即22<c r <1,所以22<ac a 2-c 2<1,即22<e 1-e 2<1,解得e ∈⎝ ⎛⎭⎪⎫6-22,5-12. 答案 e ∈⎝ ⎛⎭⎪⎫6-22,5-127.(2013·镇江模拟)已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是________. 解析 由题意知,△ABE 为等腰三角形.若△ABE 是锐角三角形,则只需要∠AEB 为锐角.根据对称性,只要∠AEF <π4即可.直线AB 的方程为x =-c ,代入双曲线方程得y 2=b 4a 2,取点A ⎝ ⎛⎭⎪⎫-c ,b 2a ,则|AF |=b 2a ,|EF |=a +c ,只要|AF |<|EF |就能使∠AEF <π4,即b 2a <a +c ,即b 2<a 2+ac ,即c 2-ac -2a 2<0,即e 2-e -2<0,即-1<e <2.又e >1,故1<e <2. 答案 (1,2)8.已知A 、B 是椭圆x 2a 2+y 2b 2=1(a >b >0)和双曲线x 2a 2-y 2b 2=1(a >0,b >0)的公共顶点.P 是双曲线上的动点,M 是椭圆上的动点(P 、M 都异于A 、B ),且满足AP→+BP →=λ(AM →+BM →),其中λ∈R ,设直线AP 、BP 、AM 、BM 的斜率分别记为k 1、k 2、k 3、k 4,k 1+k 2=5,则k 3+k 4=________.解析 设P (m ,n )、M (s ,t ),则m 2a 2-n 2b 2=1,m 2-a 2=a 2n 2b 2,s 2a 2+t 2b 2=1,s 2-a 2=-a 2t 2b2,由AP →+BP →=λ(AM →+BM →). 得OP →=λOM →,即n m =t s .k 1+k 2=n m +a +n m -a =2mn m 2-a 2=2mnb 2n 2a 2=5,∴n m =2b 25a 2,k 3+k 4=t s +a +t s -a =2st s 2-a 2=-2stb 2a 2t 2=-2b 2a 2·s t =-2b 2a 2·5a 22b 2=-5. 答案 -59.(2013·苏锡常镇模拟)在直角坐标系xOy 中,中心在原点O ,焦点在x 轴上的椭圆C 上的点(22,1)到两焦点的距离之和为4 3. (1)求椭圆C 的方程;(2)过椭圆C 的右焦点F 作直线l 与椭圆C 分别交于A ,B 两点,其中点A 在x 轴下方,且AF→=3FB →.求过O ,A ,B 三点的圆的方程.解 (1)由题意,设椭圆C :x 2a 2+y 2b 2=1(a >b >0),则2a =43,a =2 3. 因为点(22,1)在椭圆x 2a 2+y 2b 2=1上,所以812+1b 2=1,解得b = 3. 所以所求椭圆的方程为x 212+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2)(y 1<0,y 2>0).点F 的坐标为F (3,0).则AF →=3FB →,得⎩⎨⎧3-x 1=3(x 2-3),-y 1=3y 2,即⎩⎨⎧x 1=-3x 2+12,y 1=-3y 2. ①又点A ,B 在椭圆C 上,所以⎩⎪⎨⎪⎧(-3x 2+12)212+(-3y 2)23=1,x 2212+y 223=1,解得⎩⎪⎨⎪⎧x 2=103,y 2=23.所以B ⎝ ⎛⎭⎪⎫103,23,代入①,得点A 的坐标为(2,-2).因为OA →·AB→=0,所以OA ⊥AB .所以过O ,A ,B 三点的圆就是以OB 为直径的圆. 其方程为x 2+y 2-103x -23y =0.10.(2013·浙江卷)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程. 解 (1)由题意得⎩⎨⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4, 故点O 到直线l 1的距离 d =1k 2+1, 所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0. 由⎩⎨⎧x +ky +k =0,x 2+4y 2=4.消去y ,整理得(4+k 2)x 2+8kx =0, 故x 0=-8k4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12|AB |·|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号.所以所求直线l 1的方程为y =±102x -1.11.(2013·郑州模拟)已知椭圆的焦点坐标为F 1(-1,0),F 2(1,0),过F 2垂直于长轴的直线交椭圆于P ,Q 两点,且|PQ |=3. (1)求椭圆的方程;(2)过F 2的直线l 与椭圆交于不同的两点M ,N ,则△F 1MN 的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.解 (1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 由焦点坐标可得c =1.由|PQ |=3,可得2b 2a =3. 又a 2-b 2=1,得a =2,b = 3. 故椭圆方程为x 24+y 23=1. (2)设M (x 1,y 1),N (x 2,y 2), 不妨令y 1>0,y 2<0,设△F 1MN 的内切圆的半径R ,则△F 1MN 的周长为4a =8,S △F 1MN =12(|MN |+|F 1M |+|F 1N |)R =4R , 因此要使△F 1MN 内切圆的面积最大,则R 最大,此时S △F 1MN 也最大. S △F 1MN =12|F 1F 2||y 1-y 2|=y 1-y 2,由题知,直线l 的斜率不为零,可设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1,得(3m 2+4)y 2+6my -9=0,得y 1=-3m +6m 2+13m 2+4,y 2=-3m -6m 2+13m 2+4,则S △F 1MN =y 1-y 2=12m 2+13m 2+4,令t =m 2+1,则t ≥1,则S △F 1MN =12m 2+13m 2+4=12t 3t 2+1=123t +1t .令f (t )=3t +1t ,则f ′(t )=3-1t 2, 当t ≥1时,f ′(t )>0,所以f (t )在[1,+∞)上单调递增, 有f (t )≥f (1)=4,S △F 1MN ≤124=3,当t =1,m =0时,S △F 1MN =3,又S △F 1MN =4R , ∴R max =34.这时所求内切圆面积的最大值为916π.故△F 1MN 内切圆面积的最大值为916π,且此时直线l 的方程为x =1. 备课札记:。
高考数学第二轮复习的构建与思考

( )过 0 作 0M ∥ 5
PA 交 PF 于 M .
I
l
0 = . 膜米 14 4 F : . 礴 M 14 、 4 米
如图 7 度量 出 0 , F
图6
图 7
( ) 合 . 当增 强 知识 的联 接 点 、 目的综 3综 适 题
合性 和灵 活性 . 重点 、 考题 型进 一步 强化 解法 对 常
定模 、 化 基 本 思 维 模 式 , 可 能 地 形 成 思 维 模 强 尽
块 , 进 思 维 的 集 约 化 , 而 完 成 能 力 的 “ 体 促 从 立
教.
们 时 的准 确性 和快 捷性 ; 二是 通过 练 习 、 测试 、 评 等活 动 内化 以至熟 讲
化 基本 的解 题 规 律 和 方法 , 以促 进 思 维 的 敏捷 性
和严谨 性 ;
使 用 时段 : 二轮 复 习 中后 期 ( 与单 元 基础 训练
对 接 ) 每周 2 3 训 练. . ~ 次
FPC 一 C PD , 以 APF — A BPD , 以 所 所 M 0F — A 0M F , 0l 一 故 F .
线 Y =2 x( p 户> 0 上有 点 P的切线 交 z轴 于A , ) 过 0作 OM ∥ P 交 PF 于 M , O = M . A 则 F= F = 通 过几何 画 板作 出 图形 :
综 合 训 练 材 料 及 使 用
规 律 的单一 的起点 高 、 合 性强 的传 统 复 习模式 , 综 积 极 推 行符 合 学 生 认 知 规律 , 阶段 、 阶梯 、 有 有 有
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常考问题21 坐标系与参数方程
1.在极坐标系中,已知圆C 的圆心坐标为C ⎝ ⎛
⎭⎪⎫2,π3,半径R =5,求圆C 的极
坐标方程.
解 将圆心C
⎝ ⎛
⎭⎪⎫2,π3化成直角坐标为(1,3),半径R =5,故圆C 的方程为(x -1)2+(y -3)2=5.
再将C 化成极坐标方程,得(ρcos θ-1)2+(ρsin θ-3)2=5, 化简得ρ2
-4ρcos ⎝ ⎛⎭
⎪⎫
θ-π3-1=0.
此即为所求的圆C 的极坐标方程.
2.(2011·江苏卷)在平面直角坐标系xOy 中,求过椭圆⎩⎨⎧
x =5cos φ,
y =3sin φ(φ为参数)
的右焦点,且与直线⎩⎨⎧
x =4-2t ,
y =3-t
(t 为参数)平行的直线的普通方程.
解 由题意知,椭圆的长半轴长为a =5,短半轴长b =3,从而c =4,所以右焦点为(4,0),将已知直线的参数方程化为普通方程得x -2y +2=0,故所求的直线的斜率为12,因此所求的方程为y =1
2(x -4),即x -2y -4=0. 3.(2010·江苏卷)在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值.
解 将极坐标方程化为直角方程,得圆的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,直线的方程为3x +4y +a =0.
由题设知,圆心(1,0)到直线的距离为1,即有|3×1+4×0+a |
32+4
2
=1, 解得a =-8或a =2, 故a 的值为-8或2.
4.已知曲线C 1:⎩⎨⎧ x =-4+cos t ,y =3+sin t (t 为参数),C 2:⎩
⎨⎧
x =8cos θ,y =3sin θ
(θ为参数).
(1)化C 1、C 2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C 1上的点P 对应的参数为t =π
2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎨⎧
x =3+2t ,
y =-2+t (t 为参数)距离的最小值.
解 (1)C 1:(x +4)2
+(y -3)2
=1,C 2:x 264+y 2
9=1.
C 1为圆心是(-4,3),半径是1的圆.
C 2为中心是坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π
2时,P (-4,4),Q (8cos θ,3sin θ), 故M ⎝ ⎛⎭
⎪⎫
-2+4cos θ,2+32sin θ.
C 3为直线x -2y -7=0,M 到C 3的距离 d =5
5|4cos θ-3sin θ-13|.
从而当cos θ=45,sin θ=-35时,d 取得最小值85
5
.
5.(2013·新课标全国Ⅰ卷)已知曲线C 1的参数方程为⎩⎨⎧
x =4+5cos t ,
y =5+5sin t (t 为参数),
以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.
(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). 解 (1)∵C 1的参数方程为⎩
⎨⎧
x =4+5cos t ,
y =5+5sin t ,
∴⎩⎨⎧
5cos t =x -4,
5sin t =y -5,∴(x -4)2+(y -5)2=25(cos 2t +sin 2t )=25, 即C 1的直角坐标方程为(x -4)2+(y -5)2=25, 把x =ρcos θ,y =ρsin θ代入(x -4)2+(y -5)2=25, 化简得:ρ2-8ρcos θ-10ρsin θ+16=0.
(2)C 2的直角坐标方程为x 2+y 2=2y ,
解方程组⎩⎨⎧ (x -4)2+(y -5)2
=25,x 2+y 2=2y ,得⎩⎨⎧ x =1,y =1或⎩⎨⎧
x =0,
y =2.
∴C 1与C 2交点的直角坐标为(1,1),(0,2). ∴C 1与C 2交点的极坐标为⎝ ⎛
⎭⎪⎫2,π4,⎝ ⎛⎭
⎪⎫2,π2.
6.(2013·辽宁卷)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝ ⎛⎭⎪⎫
θ-π4=2 2.
(1)求C 1与C 2交点的极坐标;
(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪
⎧
x =t 3+a ,y =b 2
t 3
+1(t ∈R 为参数),求a ,b 的值.
解 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.
解⎩⎨⎧ x 2+(y -2)2
=4,x +y -4=0,得⎩⎨⎧ x 1=0,y 1=4,⎩⎨⎧
x 2=2,y 2=2.
所以C 1与C 2交点的极坐标为⎝ ⎛
⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4,
注:极坐标系下点的表示不唯一.
(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0, 由参数方程可得y =b 2x -ab
2+1, 所以⎩⎪⎨⎪⎧
b 2=1,-ab
2+1=2,解得⎩
⎨⎧
a =-1,
b =2.
备课札记:。