三视图课件1

合集下载

高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A

高考数学一轮复习-81-空间几何体的三视图-直观图-表面积与体积课件-新人教A
设球的半径为 R,则 R2=AO22=AO2+OO22=13a2+14a2
=172a2.所以 S 球=4πR2=4π×172a2=73πa2.
(2)这个几何体是一个圆台被轴截面割出来的一半.
根据图中数据可知圆台的上底面半径为 1,下底面半径为 2,高为 3,母线长为 2,几何体的表面积是两个半圆的面 积、圆台侧面积的一半和轴截面的面积之和,故这个几何 体的表面积为 S=12π×12+12π×22+12π×(1+2)×2+12 ×(2+4)× 3=112π+3 3. 答案 (1)B (2)112π+3 3
可能是圆柱,排除选项C;又由俯视图可知,该几何体
不可能是棱柱或棱台,排除选项A,B,故选D.
(2)如图,在原图形OABC中, 应有 OD=2O′D′=2×2 2 =4 2(cm), CD=C′D′=2 cm. ∴OC= OD2+CD2 = (4 2)2+22=6(cm), ∴OA=OC, 故四边形 OABC 是菱形. 答案 (1)D (2)C
诊断自测
1.判断正误(在括号内打“√”或“×”) 精彩PPT展示
(1)有两个面平行,其余各面都是平行四边形的几何体是
棱柱.
(×)
(2)有一个面是多边形,其余各面都是三角形的几何体是
棱锥.
( ×)
(3)正方体、球、圆锥各自的三视图中,三视图均相同.
(×)
(4)圆柱的侧面展开图是矩形.
(√)
2.(2014·福建卷)某空间几何体的正视图是三角形,则该几
(2)画出坐标系 x′O′y′,作出△OAB 的 直观图 O′A′B′(如图).D′为 O′A′的中 点.易知 D′B′=12DB(D 为 OA 的中点), ∴S△O′A′B′=12× 22S△OAB= 42× 43a2= 166a2.

29.2三视图(第1课时)教案

29.2三视图(第1课时)教案
例1画出下图2所示的一些基本几何体的三视图.面观察它们.具体画法为:
1.确定主视图的位置,画出主视图;
2.在主视图正下方画出俯视图,注意与主视图“长对正”。
3.在主视图正右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”.
解:
练习:
1、
2、你能画出下图1中几何体的三视图吗小明画出了它们的三种视图(图2),他画的对吗请你判断一下.
四、小结
1、画一个立体图形的三视图时要考虑从某一个方向看物体获得的平面图形的形状和大小,不要受到该方向的物体结构的干扰。
2、在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
作业
设计
必做
教科书P116:1
选做
练习册
教学重点
从投影的角度加深对三视图的理解和会画简单的三视图
教学难点
对三视图概念理解的升华及正确画出三棱柱的三视图
教学准备
教师
多媒体课件
学生
“预习课文、学习袋、学习用具”
课堂教学程序设计
设计意图
(一)创设情境,引入新课
这个水平投影能完全反映这个物体的形状和大小吗?如不能,那么还需哪些投影面?
物体的正投影从一个方向反映了物体的形状和大小,为了全面地反映一个物体的形状和大小,我们常常再选择正面和侧面两个投影面,画出物体的正投影。
教学时间
课题
29.2三视图(一)
课型
新授课




知 识

能 力
1、会从 投影的角度理解视图的概念会画简单几何体的三视图
过 程

方 法
通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位 置关系、大小关系

人教版初中数学《三视图》优秀课件1

人教版初中数学《三视图》优秀课件1

解:下图是组合体的三视图.
主视图
左视图
俯视图
巩固新知
3.画出图中简单组合体的三视图:
(2)加权平均数: =(xf+xf+…….+xf) (2)根据“油箱内剩余油量=汽车油箱容量﹣汽车耗油量”解答即可;
解:三视图如下: (2)点M为“等轴距点”,B,M两点的“轴距长方形”为周长等于8的正方形,求M点的坐标;
_____S_1>__S_3_>__S_2_____.(用“>”号连接)
6.(易错题)三棱柱的三视图如图所示,在△EFG中,FG=18cm, EG=14cm,∠EGF=30°,则AB的长为____7cm.
7.如图是一个直四棱柱及其主视图和俯视图(等腰梯形). (1)根据图中所给数据,可求出俯视图(等腰梯形)的高为___4__; (2)在虚线框内画出左视图,并标出各边的长. 解:如图所示
8.(数学建模思想)如图是一个粮仓,其顶部是一个圆锥,底部是一个圆 柱.
(1)画出粮仓的三视图; (2)若这个圆锥的底面周长为32 m,母线长为7 m,为防雨水需要在粮仓 顶部铺上油毡,则需要油毡的面积是多少?(油毡接缝重合部分不计) (3)若这个圆柱的底面半径为4 m,高为5 m,粮食最多只能装至与圆柱同 样高,则最多可以存放多少体积的粮食?
俯视图 宽
正三棱柱 (2)
球 (3)
归纳:
主视图 左视图
三视图的具体画法为:

1. 确定主视图的位置,画出主视图; 长

2. 在主视图正下方画出俯视图,注

意与主视图“长对正”;
俯视图
3. 在主视图正右方画出左视图,注意与主视图“高平齐”,
与俯视图“宽相等”;
4. 为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线

推荐-高中数学人教B版必修2课件1.1.5 三视图(1)

推荐-高中数学人教B版必修2课件1.1.5 三视图(1)
1.1.5 三视图
1.了解空间图形的不同表示形式,理解正投影的概念和性质. 2.能画出简单空间图形的三视图,并能识别三视图所表示的立体模 型. 3.会画某些建筑物或零件的三视图.
(1)定义. 在物体的平行投影中,如果投射线与投射面垂直,则称这样的平 行投影为正投影. (2)性质. 正投影除具有平行投影的性质外,还具有下列性质: ①垂直于投射面的直线或线段的正投影是点; ②垂直于投射面的平面图形的正投影是直线或直线的一部分.
1.下列说法中正确的是( ) A.任何物体的三视图都与物体的摆放位置有关 B.任何物体的三视图都与物体的摆放位置无关 C.有的物体的三视图与物体的摆放位置无关 D.正方体的三视图一定是三个全等的正方形 解析:球的三视图与它的摆放位置无关,从任何方向看都是圆. 答案:C
2.图(1)是一个组合体,在①②③④四个图形中,是这个组合体的俯视 图的是( )
通过剖析可知,一个空间几何体摆放的位置不同,可 能会得到不同的三视图,有相同的三视图的空间几何体不一定相同.
2.教材中的“思考与讨论” 在平面上表示立体图形有哪些方法? 剖析:在平面上表示立体图形有斜二测画法直观图、三视图等, 其画法规则各自不同.
3.教材中的“探索与研究” 问题:旋转体放置在怎样的位置时,它的三视图比较简单?这时 它的三视图有什么特征? 过程:实践并观察圆柱、圆锥和圆台的生成,研究这三种简单旋 转体的三视图,并回答以下问题: (1)旋转体的三视图有哪些特征? (2)检验一下球的三视图是否符合你发现的特征. 剖析:(1)当旋转体底面水平放置即轴线为铅垂线时,其三视图比 较简单,此时主视图与左视图相同(圆柱、圆锥、圆台分别为矩形、 等腰三角形、等腰梯形),圆柱的俯视图为圆,圆锥的俯视图为带圆心 的圆,圆台的俯视图为两个同心圆,有时为了方便一般只画出它们的 主视图和俯视图(二视图). (2)球的三视图也符合上述特征.

高中数学人教B版必修二第一章1.1.5三视图课件(共30张PPT)

高中数学人教B版必修二第一章1.1.5三视图课件(共30张PPT)
1.画组合体的三视图的“四个步骤” (1)析:分析组合体的组成形式.
(2)分:把组合体分解成简单几何体. (3)画:画分解后的简单几何体的三视图. (4)拼:将各个三视图拼合成组合体的三视图.
探究一
探究二
探究三
探究四
探究五
【例 1】某几何体的主视图和左视图均如图所示,则该几何体的俯视图
不可能是( )
探究一
探究二
探究三
探究四
探究五
探究三 三视图的还原问题
1.由三视图还原几何体的三个步骤.
探究一
探究二
探究三
探究四
探究五
2.在还原过程中,下列常见几何体的三视图要熟记,以方便还原.
几何体
主视图
左视图 俯视图
正方体
长方体
圆柱
圆锥 圆台
画组合体的三视图的“四个步骤”
能将三视图还原成几何体;
探究二 简单组合体的三视图 能将三视图还原成几何体;
1.1.5 三视图
温故知新:结合图形说出平行投影的定义及性质
探究一
探究二
探究三
探究四
探究五
探究一 正投影问题
作物体的正投影,一般是按照这样的过程: 如图所示,把要作投影的物体放在投射面和观 察者中间,按观察者—物体—投射面的顺序摆 好.由观察者的眼睛假想发出一束平行的投射
线,这些投射线经过物体轮廓线上的顶点后,与
(3)画出如图所示几何体的三视图.
解:三视图如图所示.
1234
1234
(4)若某几何体的三视图如图所示,则这个几何体的直观图 可以是( )
1234
解析:由题意知,A,C 中所给几何体的主视图、俯视图不符合要求,D 中所给 几何体的左视图不符合要求. 答案:B

三视图(第1课平行、中心、正投影)资料

三视图(第1课平行、中心、正投影)资料
练习:1、四边形的正投影形状可能是:四边形或一条线段
2、同一时刻阳光下的影子长的物体比影子短的物体 高。对吗?
3、太阳光下转动一个正方体,它的投影最多是 边形,最少是 边形
9
你能指出这些图形分别从哪个角度观察得到的吗?
视图
三视图法:从正面、上面和侧面 (左面或右面)三个不同的方向 看一个物体,然后描绘三张所看
左视图:
第二列的方块有 2 个,
动手设计
请画出下面立体图形的三视图。 俯视方向 注意:根据“长对正,高平齐,宽相等” 画 三视图必须遵循的法则作图.
挑战中考
2008年中招试题
4.如图(1)是一些大小相同的小正方体组 成的几何体,其主视图如图(2)所示,则 其俯视图是( B)
图(1)
图(2)
A
B
C A
B
D
3
3、中心投影规律及画法:
灯光下,不同物体的影子 方向可能同也可能不同; 等高物体垂直地面,离光 源近影子短,离光源远影 子长;等长物体平行地面, 离光源近影子长,离光源 远影子短。影长与物长不 一定成比例。
例:如图根据小明和小红的影子确定路灯的位置,并画 出塔的影子。
4
二、正投影(特殊的平行投影)
中的数字表示在该位置小正方
1
体的个数。
你能摆出这个几何体吗?
试画出这个几何体的主 视图与左视图。
主视图:
左视图:
21 2
21
不用摆出这个几何体,你能画出 这个几何体的主视图与左视图吗?
12
思考方法
先根据俯视图确定主视图有 列,
主视图:
再根据数字确定每列的方块有 个,
主视图有 3 列,第一列的方块有 1 个, 第二列的方块有 2 个,第三列的方块有 1 个, 左视图有 2 列, 第一列的方块有 2 个,

从正面、上面和侧面(左面或右面)三个不同的方向看一个

从正面、上面和侧面(左面或右面)三个不同的方向看一个
从正面、上面和侧面(左面或右面) 三个不同的方向看一个物体,然后描 绘三张所看到的图,即视图,这样就 把一个物体转化为平面的图形。
从正面看到的图形,称为正视图;
从上面看到的图形,称为俯视图;
从侧面看到的图形,称为侧视图,依 观看方向不同,有左视图、右视图。
俯视图方向
三视图的作图步骤
左视图方向
四棱柱


四棱柱
(高)
(长)
(宽)
(宽)
(长)
(高)
四棱柱
例3.画出如图所示的圆柱的三视图。
圆柱


圆柱
Φ Φ
Φ
(高) (高)
圆柱
例4.画出如图所示的圆锥的三视图。
圆锥 俯

圆锥
(高)
Φ
圆锥
Φ
例5.画出如图所示的球体的三视图。





四棱锥
例7.画出如图所示的六棱柱的三视图。
1.确定主视图方向
2.布置视图
3.先画出能反映物体真实形 状的一个视图
主视图方向
4.运用长对正、高平齐1、原宽相等 则画出其它视图
主视图 左视图
5.检查
6.加深
俯视图
例1.画出如图所示的三通管的三视图。
俯视图方向 左视图方向
主视图方向
正视图 (从正面看)
左视图 (从左面看)
俯视图 (从上面看)
例2.画出如图所示的四棱柱的三视图。
六棱柱


六棱柱
例8.画出如图所示的零件的三视图。


画出教师出示的立体图形的三视图。
归纳:三视图的作图步骤
1.确定主视图方向 2.布置视图 3.先画出能反映物体真实形状的一个视图 4.运用长对正、高平齐、宽相等1 原则画出其它视图 5.检查 6.加深

2024年华师大七年级数学上册 3.2.1 第2课时 三视图(课件)

2024年华师大七年级数学上册 3.2.1 第2课时 三视图(课件)

合作探究 不同物体的视图可能相同.
同一物体从不同的方向观 察,得到的视图可能不同.
合作探究
探究2:三视图是一种特殊的视图,是指哪三个方向
看到的视图?
我们用三个互相垂直
正面
的平面(例如:墙角处的
三面墙面)作为投影面.
主视图
正面
俯视图
主视图 左视图
左 视




宽 俯视图
将三个投影面展开在一个平面内,得到该物体的三视图.
第三章 图形的初步认识
3.2 立体图形的视图
1 由立体图形到视图
第2课时 三视图
华师版七年级(上)
教学目标
1. 会从投影的角度理解视图的概念,明确视图与投影 的关系.
2. 能识别物体的三视图,会画简单几何体的三视图. 重点:会从投影的角度理解视图的概念,明确视图与
投影的关系 难点:能识别物体的三视图,会画简单几何体的三视
从正面看
从左面看
从上面看
几何体

观察
个 形


主视图 左视图 俯视图
1. 找出下列物品所对应的主视图.
A
B
C
D
2. 如图是一个由 9 个大小相同的正方体组成的立体 图形,分别从前面、左面、上面观察这个图形,各 能得到什么平面图形?
前面
左面
上面
3. 下图是一根钢管的直观图,画出它的三视图. 解:下图是钢管的三视图,其中的虚线表示钢管
的内壁.






俯 视 图
俯视图
如图,正方体的三视 图都是正方形.
俯视图
如图,圆柱的主视图和左视 图都是长方形,俯视图是圆.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:如图是钢管的三视图,其中的虚线表示 钢管的内壁.
小结
反馈
三视图
1、三视图:主视图——从正面看到的图 左视图——从左面看到的图 俯视图——从上面看到的图
2、画物体的三视图时,要符合如下原则:
位置:主视图 左视图
俯视图
大小:长对正,高平齐,宽相等.
虚实:在画图时,看的见部分的轮廓通常画 成实线,看不见部分的轮廓线通常画成虚线.
圆台——有两个视图是等腰梯形 棱台——有两个视图是梯形 4.球——三个视图都是圆
主 视 图
图1
主 视 图
图2
主 视 图
图3
⒉根据图4、图5的视图,你能分别想像出物 体的大致形状吗?
主 视 图
俯 视 图
图4






图5
下列是一个物体的三视图,请描述出它的形状
主视图 左视图 俯视图
三棱锥
小结4:基本几何体的三视图
1.柱体——有两个视图是矩形. 2.锥体——有两个视图是三角形. 3.台体
12.如下图,是由一些相同的小正方 体构成的几何体的三视图,请问这几 何体小正方体中的个数是——A —。
A. 4
主视图
11 2
俯视图
左视图
B. 5 C. 6 D. 7
我思我进步
2.下列命题正确的是【 C 】 A、三视图是中心投影 B、小华观察牡丹花,牡丹花就是视点 C、球的三视图均是半径相等的圆 D、阳光从矩形窗子里照射到地面上得到的光区仍是矩形
13 2
用小正方体搭一个几何体,它的主视图
和俯视图如图所示,最多要多少个小正方体? 最少呢?
主视图
11 1111
23
俯视图
∴最小为11
由物知图——利用正方体组合提升空间想象力
如图都是由7个小立方体搭成的几何体,从不 同方向看几何体,分别画出它们的主视图、左视 图与俯视图,并在小正方形内填上表示该位置的 小正方体的个数.
我们用三个互相垂直 的平面(例如:墙角处 的三面墙面)作为投影面
其中:正对着我们的叫正面, 正面下方的叫水平面, 右边的叫做侧面。
正面
一个物体在三个投影面内同时进行 正投影,分别:
在正面得到的由前向后观察物体 的视图,叫主视图(从前面看);
在水平面内得到的由上向下观察物 体的视图,叫俯视图(从上面看) ;
C
考考你
正视图( A ) 左视图 ( A ) 俯视图 ( B )
A
B
C
试一试:
• 1、如下图几何体,请画出这个物体的三种视图。
主主视主主视图视视图图图
左左左左视视视视图图图图
俯俯俯俯视视视视图图图图
第二课时
9.下面所给的三视图表示什么几何体? 圆锥
例4 根据三视图说出立体图形的名称
例5 根据物体的三视图,描述物体的形状.
密封罐的高为50mm,店面正六边形的直径为100mm,边长为 50mm,图是它的展开图. 由展开图可知,制作一个密封罐所需钢板的面积为
65050 2 6 1 5050sin 60 2
6 502 1
3 2
27990 (mm2)
练习
根据几何体的三视图画出它的表面展开图:
实 物
展 开 图
课堂练习
• ⒉由三视图描述几何体(或实物原型),一
般步骤为: • ① 想象:根据各视图想象从各个方向看到
的几何体形状; • ② 定形:综合确定几何体(或实物原型)
的形状; • ③ 定大小位置:根据三个视图“长对正,
高平齐,宽相等”的关系,确定轮廓线的位 置,以及各个方向的尺寸.
例6 某工厂要加工一批密封罐,设计者给出了密封 罐的三视图,请你按照三视图确定制作每个密封罐 所需钢板的面积.
50
50
100
100
分析:对于某些立体图形,沿着其中一些线(例如棱柱的棱) 剪开,可以把立体图形的表面展开成一个平面图形——展开 图.在实际的生产中,三视图和展开图往往结合在一起使 用.解决本题的思路是,由三视图想象出密封罐的立体形状, 再进一步画出展开图,从而计算面积.
解:由三视图可知,密封罐的现状是正六棱柱.
在侧面内得到由左向右观察物体的 视图,叫左视图(从左面看)
一起来学习简单物体的三视图吧!
1.三视图
从左面看
主视图
从上面看
正面
主视图
左视图
俯视图
如将物右 三体图 个的将: 投一三影张个面三投展视影开图面在.展一开个在平从一正面面个看内平,面得内到,一得张到三这视个图。
2、三视图的位置规定:
主视图
A.5
B.6
C.7
D.8
11
122 1
用小立方块搭出符合下列三视图的几何体:
主视图
左视图
俯视图
下列是一个物体的三视图,请描述出它的形状
主视图
俯视图
左视图
主视图
俯视图
左视图
探究 根据三视图摆出它的立体图形
主视图 左视图
俯视图
做一做:由几个相同的小立方块搭成的几何体的 俯视图如图所示。方格中的数字表示该位置的小 方块的个数.请画出这个几何体的三视图。
5.一个几何体的主视图和左视图如图所示,它是什么 几何体?请补画这个几何体的俯视图.
(第5题) 直三棱柱
(第6题)
6.一个直棱柱的主视图和俯视图如图所示.描述这 个直棱柱的形状,并补画它的左视图.
直五棱柱,底面是五边形
试一试
视图反映了物体形状的某些特征,因此 通过视图我们可以想像物体的大致形状.
⒈根据图1、图2、图3的视图,你能分别想 像出物体的大致形状吗?
29.2 三视图
பைடு நூலகம்
你能指出这些图形分别从哪个角度观察得到的吗?
看一看
看一看
聪明的同学,你发现了吗?我们总是从哪几个角度来展示的.
你能说出这三个 视图分别是从哪 个方向观察这本
书得到的吗?
当我们从某一个角度观察一个物体时, 所看到的图象叫做物体的一个视图
为了全面反映物体形状,在生活中我们应从不同 角度,多个视图去反映物体的形状。
左视图
主视图要在左上边
它的下方应是俯视图
俯视图
左视图坐落在右边
3.三视图的对应规律
主视图和俯视图 ----长对正
主视图和左视图 ----高平齐
长对正
俯视图和左视图 ----宽相等
高平齐
主视图
左视图 高


宽 俯视图
宽相等
试一试:你能画出正方体和的三视图吗?
想一想,再动手画一画:
高平齐
长对正
主视图
1.某两个物体的三视图如图所示.请分别说出它们的形状.
直三棱柱
正四棱锥
2.由几个相同的小立方块搭
成的几何体的俯视图如图所 1 3
示.方格中的数字表示该位置
的小方块的个数.请画出这个
2
几何体的三视图.
3.一个几何体的三个视图都是全等的正方形, 则这 个几何体是_立__方__体_.
4.一个几何体的三视图都是半径相等的圆,则这个几 何体是___球____.
正三菱柱 (2)
球 (3)
你会画圆柱的三视图吗?试一试吧!
演示
圆柱的三视图:
主视图
左视图
俯视图
三菱柱的三视图:
可见轮廓线用 粗实线绘制
球的三视图:
主视图
左视图
俯视图
例2:画出下图支架的三视图(支架的两 个台阶的高度和宽度都是同一长度.)
解: 如图是支架的三视图
例3:右图是一根钢管的直 观图,画出它的三视图.
(1)
(2)
(3)
(4)
由图想物——利用正方体组合提升空间想象力
用小正方体搭一个几何体,它的主视图 和俯视图如图所示,最多要多少个小正方体 最少呢?
主视图
俯视图
6、右图是由一些相同的小正方体构成的几何 体的 三视图,则构成这个几何体的小正方体 的个数是【 】
A.5 B.6 C.7 D.8
课内练习
俯视图
左视图
宽相等
4、三视图的画法:
(1)先画主视图;
(2)在主视图正下方画出俯视图,注意与 主视图“长对正”;
(3)在主视图正右方画出左视图,注意 与主视图“高平齐”,与俯视图“宽相等”;
(4)看得见部分的轮廓线画成实线,而 看不见部分的轮廓线画成虚线.
例1:
画出下面一些基本几何体的三视图:
圆柱 (1)
3.右图是由一些相同的小正方体构成的几何体的三视图,则
构成这个几何体的小正方体的个数是【 D 】
A.5
B.6
C.7
D.8
11
122 1
下列是一个物体的三视图,请描述出它的形状
主视图 左视图
俯视图
我思我进步
(2).右图是由一些相同的小正方体构成的几何
体的三视图,则构成这个几何体的小正方体的
个数是【 D 】
圆锥的三视图:
主视图
左视图
点不要漏画哦!
俯视图
挑战自我
画出如图所示四棱锥的三视图。
四菱锥的三视图:
正视图
左视图
俯视图
我相信你一定能 画出这个复杂几 何体的三视图!
随堂练习
• 1找出图中每一物品所对应的主视图。
(A)
(B)
(C)
(D)
正视图( B ) 左视图( B ) 俯视图( C )
A
B
相关文档
最新文档