船速、水流速度公式
流水行船问题的公式和例题(完整版)

流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式( 1 )表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式( 1 )可得:水速=顺水速度- 船速(3)船速=顺水速度- 水速(4)由公式(2)可得:水速=船速- 逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度- 逆水速度)÷ 2 (8)*例1 一只渔船顺水行25 千米,用了5小时,水流的速度是每小时 1 千米。
此船在静水中的速度是多少(适于高年级程度)解:此船的顺水速度是:25÷ 5=5(千米/小时)5-1=4(千米/小时)综合算式:25÷ 5-1=4(千米/小时)答:此船在静水中每小时行 4 千米。
* 例 2 一只渔船在静水中每小时航行 4 千米,逆水4 小时航行12 千米。
水流的速度是每小时多少千米(适于高年级程度)解:此船在逆水中的速度是:12÷ 4=3(千米/小时)因为逆水速度=船速- 水速,所以水速=船速-逆水速度,即:4-3=1 (千米/ 小时)答:水流速度是每小时 1 千米。
七年级关于学习数学流水行船问题的公式和例题

七年级关于学习数学流水行船问题的公式和例题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2关于学习数学流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
流水行船问题公式

流水行船问题公式流水行船问题是一种常见的物理问题,它涉及到船在流动水中行驶的问题。
在解决这类问题时,我们需要考虑船的速度、水流的速度和方向、船相对于水的速度以及最终船的速度和方向等因素。
本文将介绍流水行船问题的公式和解题方法。
首先,我们需要了解一些基础概念。
相对速度是指一个物体相对于另一个物体的速度,可以用来描述船相对于水的速度。
流速是指水的速度,可以通过流速计或其他测量设备来测量。
船速是指船在静水中行驶的速度,可以通过船上的测速仪器来测量。
在流水行船问题中,我们需要用到以下几个公式:1.相对速度公式:相对速度=船速-水流速度这个公式用来计算船相对于水的速度。
如果水流与船行驶方向相同,那么船速减去水流速度即为相对速度;如果水流与船行驶方向相反,那么船速加上水流速度即为相对速度。
2.时间=路程/速度这个公式用来计算行驶的时间。
在流水行船问题中,我们可以根据速度和距离得到时间。
3.距离=速度×时间这个公式用来计算行驶的距离。
在流水行船问题中,我们可以根据速度和时间得到距离。
通过运用这些公式,我们可以解决一些实际问题。
以下是一个例子:假设船的速度为20千米/小时,河流的流速为5千米/小时,河流的方向与船的行驶方向相同。
我们需要计算船从A点到B点所需的时间。
首先,我们可以使用相对速度公式计算出船相对于水的速度:相对速度=船速-水流速度=20-5=15千米/小时接下来时间=距离/速度假设A点到B点的距离为60千米,代入公式中得:时间=60/15=4小时所以,船从A点到B点所需的时间为4小时。
通过这个例子,我们可以看到如何运用相对速度和时间公式来解决流水行船问题。
在解决实际问题时,我们需要仔细分析问题的条件,正确运用公式,最终得出准确的答案。
除了上述公式,还有一些其他的公式可以用于解决不同类型的流水行船问题,如通过改变已知条件来求解未知条件、计算两段行程的速度和时间等。
但无论问题有多复杂,我们都可以通过使用正确的公式和运用合适的数学方法来解决。
路程问题之水流和火车过桥问题

路程速度问题之水流问题常用公式:(1)顺水速度=静水速度(船速)+水流速度(2)逆水速度=静水速度(船速)-水流速度(3)静水速度(船速)=顺水速度-水流速度(4)静水速度(船速)=逆水速度+水流速度(5)水流速度=顺水速度-静水速度(船速)(6)水流速度=静水速度(船速)-逆水速度(7)水流速度=21×(顺水速度-逆水速度)(8)静水速度(船速)=21×(顺水速度+逆水速度 )。
在解决水流速度问题是一定要牢牢抓住上面八个公式。
1.两码头相距360千米,一艘汽艇顺水航行完全程要9小时,逆水航行完全程要12小时。
这艘船在静水中的速度是多少千米?这条河水流速度是多少千米?2.甲、乙两个码头相距336千米。
一艘船从乙码头逆水而上,行了14小时到达甲码头。
已知船速是水速的13倍,这艘船从甲码头返回乙码头需要多少小时?3.A 、B 两个码头相距180千米。
甲船逆水行全程用18小时,乙船逆水行全程用15小时。
甲船顺水行全程用10小时。
乙船顺水行全程用几小时?4.船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。
由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?5.甲乙两个码头相距300千米,A,B 两只客船分别从甲乙两个港口同时出发,相向而行,A 船顺水航行,B 船逆水航行。
已知A 船在静水中的速度为18千米/小时,B 船在静水中的速度为12千米/小时,水流速度为3千米/小时。
问:两船出发几小时后相遇?路程问题之火车过桥系列问题火车过桥问题是行程问题的一种,也有路程、速度与时间之间的数量关系,同时还涉及车长、桥长等问题。
公式一:火车速度×过桥的时间=车长+桥长公式二:两车速度和1.一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?2.一列火车速度是每秒行20米,若现在火车以50秒的时间过完长800米的大桥,那么火车的长度是多少?3.一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。
(完整版)流水行船问题的公式和例题(含答案)

流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)十2 (7)水速=(顺水速度-逆水速度)十2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1 千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25 - 5=5 (千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/ 小时)综合算式:25 - 5-仁4 (千米/小时)答:此船在静水中每小时行 4 千米。
* 例2 一只渔船在静水中每小时航行4 千米,逆水4 小时航行12 千米。
水流的速度是每小时多少千米?解:此船在逆水中的速度是:12 -4=3 (千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1 (千米/ 小时)答:水流速度是每小时 1 千米。
流水行船问题的公式和例题含答案

流水行船问题的公式和例题含答案LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
航行问题

航行问题-顺水速度-逆水速度顺水速度=船速(船在静水中的速度)+水流速度逆水速度=船速-水流速度船速=顺水速度+逆水速度/2水流速度=顺水速度-逆水速度/2平方和公式 n(n+1)(2n+1)/6平方差公式 a2-b2=(a+b)乘(a-b)【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
经典题;平方和:1的平方+2的平方+……+10的平方=?平方差:2000 的平方-1998 的平方=?(199+176)X(199-176)=()的平方-()的平方这个只要记住公式就行行程问题:例1:甲乙两车同时从A、B两地相向开出,甲车每小时行55千米,乙车每小时行50千米,2小时相遇,A、B两地相距多少千米?例2:A、B两地相距210千米,甲乙两车同时从A、B两地相向开出,2小时相遇,甲车每小时行55千米,乙车每小时多少千米?例3:环形跑道周长是400米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是400米/分,乙的速度是375米/分。
流水行船问题的公式和例题(含答案)

流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和.公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度—船速(3)船速=顺水速度—水速(4)由公式(2)可得:水速=船速—逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个.另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度—逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速—逆水速度,即:4—3=1(千米/小时)答:水流速度是每小时1千米。