第四章 塑性本构关系

合集下载

第四章 塑性本构关系

第四章 塑性本构关系

1 ′ ′ ε ij = λ + σ ij 2G 1 2ν εm = σm E
形式上和广义 形式上和广义Hooke定律相似 但这里的比例系数不是一个常 定律相似, 形式上和广义 定律相似 这是一个非线性关系.下面我们来看一下这个系数等于什么 数.这是一个非线性关系 下面我们来看一下这个系数等于什么 这是一个非线性关系 下面我们来看一下这个系数等于什么?
塑性成形力学基础--韩志仁 塑性成形力学基础--韩志仁 --
简单加载(简单变形):各应力分量按同一比例增加, 简单加载(简单变形):各应力分量按同一比例增加,此时应 ):各应力分量按同一比例增加 力主轴方向固定不变。 力主轴方向固定不变。由于应变增量的主轴方向和应力主轴方 向重合,应变主轴也始终不变。 向重合,应变主轴也始终不变。 1924年汉基提出了不包括硬化的全量关系。 年汉基提出了不包括硬化的全量关系。 年汉基提出了不包括硬化的全量关系
塑性成形力学基础--韩志仁 塑性成形力学基础--韩志仁 --
使用卸载定律要注意两点 使用卸载定律要注意两点: (1) 卸载过程必须是简单加载 即卸载过程中各点的应力分量 卸载过程必须是简单加载, 时按比例减少的; 时按比例减少的 (2) 卸载过程中不发生第二次塑性变形 即卸载不引起应力改 卸载过程中不发生第二次塑性变形, 变符号而达到新的屈服. 变符号而达到新的屈服 由卸载定律可以看出 全部卸载后 在物体内不仅留下残余应 由卸载定律可以看出, 全部卸载后,在物体内不仅留下残余应 而且还有残余应力 残余应力. 变, 而且还有残余应力 4-7 Levy-Mises流动法则和 流动法则和Prandtl-Reuss流动法则 流动法则和 流动法则 塑性应力应变关系的重要特点是它的非线性和不唯一性. 全 塑性应力应变关系的重要特点是它的非线性和不唯一性 量理论则企图直接建立全量形式表示的与加载路径无关的本 构关系, 一般是不正确的. 构关系 一般是不正确的 所以作为描述本构关系应该是它们 的增量之间的关系. 这就是增量理论, 也就是流动法则. 的增量之间的关系 这就是增量理论 也就是流动法则 这里 介绍两个增量理论. 流动法则和Prandtl-Reuss 介绍两个增量理论 即Levy-Mises流动法则和 流动法则和 流动法则. 流动法则

第四章 弹塑性体的本构理论

第四章 弹塑性体的本构理论

第二部分弹塑性问题的有限元法第四章弹塑性体的本构理论第五章弹塑性体的有限元法第四章弹塑性体的本构理论4-1塑性力学的基本内容和地位塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。

塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。

塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。

4-2关于材料性质和变形特性的假定材料性质的假定1)材料是连续介质,即材料内部无细观缺陷;2)非粘性的,即在本构关系中,没有时间效应;3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。

常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类:硬化弹塑性材料理想弹塑性材料弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。

变形行为假定 1)应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。

因此初始屈服面界定了首次屈服的应力组合,可表示为()00=σf(1)2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。

对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。

因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。

只有当应力点再次达到该加载面时,才可能产生新的塑性变形。

第四章 塑性本构关系

第四章 塑性本构关系

一 、理想材料的加卸载准则 理想材料的加载面与初始屈服面是一样的。 由于屈服面不能扩大,所以当应力点达到屈服面上, 应力增量 d 不能指向屈服面外,而只能沿屈服面切线。 d 加载 f ( ij ) 0, 弹性状态
d
n
f ( ij ) 0, f df d ij 0 ij




(4-1)


其中 张量写法:
G E / 2(1 )
ij 3 ij m ij 2G E
1 m kk 为平均正应力。 3
(4-2)
其中
本构关系
将三个正应变相加,得:
kk
3 1 2 m kk kk 2G E E
kk
(5 37)
对理想塑性材料,比例系数d要联系屈服条件来确定。 1 dw sij ( dsij d sij ) 2G 1 dJ 2 2 J 2 d dWe dW p 2G
进入塑性阶段后,应变增量可以分解为弹性部分和塑性部分。
e d ij d ij d ijp
(4-30) (4-31) (4-32)
由Hooke定律, d
e ij
d ij 2G

3 d m ij E
由Drucker公设,d d ij
p ij
其中为加载函数。塑性加载 d 0,中性变载或卸载时 0 时 d
e
注意到(5 - 5)式,We可表示为:
1 1 1 1 1 2 2 W J 2 G 2G 2 2 2 6G
e
本构关系
§4.2 Drucker公设
两类力学量 外变量:能直接从外部可以观测得到的量。如总应变,应力等。 内变量:不能直接从外部观测的量。如塑性应变,塑性功等。 内变量只能根据一定的假设计算出来。 关于塑性应变和塑性功的假设: 1、材料的塑性行为与时间,温度无关。

塑性力学第四章(1)-塑性本构关系

塑性力学第四章(1)-塑性本构关系
第四章
塑性本构关系
加载与卸载关系 全量型本构关系 增量本构关系
加载与卸载关系
理想弹塑性材料的加卸载准则
r r ∂f =0 d σ ⋅ n = d σ ij ∂ σ ij
r r ∂f ∂f d σ ⋅ n = d σ ij <0 ∂ σ ij
加载 卸载
r dσ
r n

r
f (σ ij ) = 0
o
1 εx = σx − µ σ y +σz E 1 εy = σ y − µ (σ z + σ x ) E 1 εz = σz − µ σx +σ y E

[
(
)]
体积应变: 体积应变:
θ = εx +ε y +εz
[ [
(
] )]
体积应力: 体积应力:
Θ =σx +σ y +σz
µε = µσ
形变理论( 理论) 形变理论( Hencky — Iliushin 理论)
体积变化是弹性的,且与平均应力成正比。 1. 体积变化是弹性的,且与平均应力成正比。
E σm = εm (1 − 2 µ )
应变偏量与应力偏量成比例。 2. 应变偏量与应力偏量成比例。
弹性阶段: 弹性阶段: 塑性阶段: 塑性阶段:
∂ϕ ⋅ d σ ij = 0 ⇒ 中性变载 ∂ σ ij
r r dσ ⋅ n > 0 r r dσ ⋅ n < 0
加卸载准则
r r dσ ⋅ n = 0
中性变载: 中性变载:当应力增量沿加载 面切线方向变化, 面切线方向变化, 而加载面并不扩大 时,不产生新的塑 性变形。 性变形。

塑性力学-第四章

塑性力学-第四章

本构关系研究的论文。
因此塑性本构理论吸引了一些优秀的科学家在从事这 方面的研究。
基本假设
本课程介绍的弹塑性本构关系除先前的各向同性假设和 静水应力不影响屈服的假设外,还采用了两个假设
(1)小变形假设 (2)率无关假设(仅考虑等温过程中的率无关材料)
内变量的引入
内变量——用来刻划材料加载历史的宏观参量,可以描述 经历塑性变形后材料内部微观结构的变化。较常见(用得 较多)的内变量是等效塑性应变。
(16)
内变量的演化方程
当产生新的塑性变形时,内变量也会有所改变。假定内 变量演化方程有以下的形式 (17) Z ,

ij

将(17)式代入(16)式,解出
g g Z ij ij
f g ˆij g kl ˆ kl ij

(用到了(23)式)
ˆ g ˆ f
g ˆg ˆij g ˆ ˆ f ij g ˆij 1 ij
(24)
(25)
于是得到应变加载准则描述的应力加载准则。
当按应变加载准则判断为弹塑性加载时
(9)
可以得到 常用的表 达式

E ij 1
ik jl 1 2 ij kl kl 1 ij ij ij kk E E
(10)
从上式,注意到应力偏量和应变偏量的定义还可得
(23)
ij ˆ Z 式中, ij

弹塑性加载时
ˆ g

g g P ij kl kl M ijkl ij ij

弹塑性力学本构关系1资料.

弹塑性力学本构关系1资料.


平面上任取一点,坐标为 (1, 2 , 3 )
它代表一个应力状态,对应的应力张量分量为 ij
相应的平均应力为 m 易见有
m
1 2
3
3
0
将应力张量分解为应力球张量和应力偏张量,即
ij m ij sij sij
上式表明,与此应力状态相应的应力球张量为零,应力张量
等于应力偏张量。 平面上每一点对应的应力张量是应力偏张量。
• Drucker把它引伸到复杂应力 情况,这就是Drucker公设.
0 d p 0
ij
0 ij
d
p ij
0
d d p 0
第二式中的等号适用于理想 塑性材料.
d
ij
d
p ij
0
Drucker公设在塑性力学中有
重要意义.
屈服面的外凸性和塑性应变增量的法向性
•我们如将塑性应变空间与应力空间重合起来,由Drucker公 设的第一式, 把它看成是两个矢量的点积.
在应力空间中代表一曲面,此曲面称为屈服曲面。
屈服曲面内的点满足不等式
f (1, 2,3) c 时,代表弹性状态。 屈服曲面上及屈服曲面外的点满足 f (1, 2,3) c
时,代表塑性状态。因此,屈服曲面是弹、塑性状态的分界面。
4.2.3 等倾线与 平面
1.等倾线 在应力空间中,过坐标原点与三个坐标轴成相同倾角的直线 叫等倾线。
PR线上每一点都代表一个应力状态。 PR线上的点有相同的应力偏张量和不同的应力球张量。
因为应力球张量不影响屈服,所以如果P点在屈服曲面上, 那么PR线上所有点都应该在屈服面上。因此屈服曲面实际上 是一个柱面,并且柱面的母线平行于等倾线OL
P

第4章 弹塑性本构方程


典型的本构关系模型
4-3-1 双曲线(邓肯-张)模型
它属于数学模型的范畴。即它以数学 上的双曲线来模拟土等材料的应力应 变关系曲线并以此进行应力和应变分 析的。由于这种模型是由邓肯和张两 人所提出,所以也叫邓肯-张模型,有 时简称D C模型。


a b
4-3-2 Drucker-Prager模型(D-P模型)
在F点之前,试件处于均匀应变 状态,到达F点后,试件开始出现 颈缩现象。如果再继续加载则变形 将主要集中于颈缩区进行,F点对应 的应力是材料强化阶段的最大应力, 称为强度极限,用 b 表示。
判定物体中某一点是否由弹性状态 转变到塑性状态,必然要满足一定 的条件(或判据),这一条件就称 为屈服条件。在分析物体的塑性变 形时,材料的屈服条件是非常重要 的关系式。
第4章 弹塑性本构方程
§4-1 典型金属材料
曲线分析
大量实验证明,应力和应变之间的 关系是相辅相成的,有应力就会有 应变,而有应变就会有应力。
对于每一种具体的固体材料,在一 定的条件下,应力和应变之间有着 确定的关系,这种关系反映了材料 客观固有的特性。下面以典型的金 属材料低碳钢轴向拉伸试验所得的 应力应变曲线为例来说明。
§4-5 世界上最常用岩土本构模型及土 本构模型剖析

世界上最常用的土本构模型
1.概述 土作为天然地质材料在组成及构 造上呈现出高度的各向异性、非 均质性、非连续性和随机性,在 力学性能上表现出强烈的非线性、 非弹性和粘滞性,土的本构模型 就是反映这些力学性态的数学表 达式。
一般认为,一个合理的土的本构 模型应该具备理论上的严格性、 参数上的易确定性和计算机实现 的可能性。自Roscoe等创建剑桥 模型至今,各国学者已发展数百 个土的本构模型。

塑性力学--第四章 塑性本构关系


向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
(2) 材料是不可压缩的.
(3)应力强度和应变强度之间幂指数关系,
3i 2 i
(3)应力强度是应变强度的函数 i i , 即按单一曲线假
定的硬化条件.
综上所述, 全量型塑性本构方程为
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
注意的是上式只是描述了加载过程中的弹塑性变形规律. 加
载的标志是应力强度 i 成单调增长. i 下降时为卸载过
程, 它时服从增量Hooke定律.
y
些基本未知量的基本方程有
x
Su : ui
平衡方程 ij, j Fi 0
几何方程
ij
1 2
ui. j u j,i
本构方程
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
其中
i
3 2
Sij Sij
i
2 3
eij eij
这就是对于全量 理论的塑性力学
边界条件 S : ijl j pi , Su : ui ui
(1)全量理论, 又称为形变理论, 它认为在塑性状态下仍有应力 和应变全量之间的关系. 有Hencky(亨奇)理论和Il’yushin (伊柳 辛)理论.
(2)增量理论, 又称为流动理论, 它认为在塑性状态下是塑性应 变增量和应力及应力增量之间有关系.有Levy-Mises(莱维-米泽 斯)理论和Prandtl-Reuss(普朗特-罗伊斯)理论.

弹塑性本构关系

பைடு நூலகம்
F p d kk 3d S;deijp d ij e p p d d G K kk ij 2G eij kk mn 2 mn Sij k
(2) Druker-Prager 模型
Druker-Prager模型采用广义的 Mises屈服函数,其表达式为:

m
3K
ij
弹性变形 + 塑性变形 又可写成:
ij Sij m ij K kk ij 2G eij d d d d e d e
K kk d kk ij 2G eij eijp p d d d F F K kk ij 2G eij d 3K ij 2G d d kk Sij
F σ ij J 2 I1 k 0 +

F kk
F Sij 2 Sij J2
得 d ij dSij d m ij d F 2G 3K

F ij Sij kk
Sij m Sij d d d ij 2G 3K ij 2 J2
2G
m为对应于 m体应变
拉梅常数 E (1 )(1 2 )
xy
2
x 3 m 2G x y 3 m 2G y z 3 m 2G z xy 2G xy G xy
yz zx
2 2
2G
G
E 2(1 )
2G
基本方程 yz 2G yz G yz zx 2G zx G zx
张量形式
张量形式
ij ij

4塑性增量本构理论

d ij 的夹角
p

2
即加载面φ必须外凸。

2
如果加载面内凹,如右图,则会使

二、Drucker公设的推论
2. d p 的正交性
参见下图(反证法):如果 d ijp 不与n 重合,就一定可 以找到一点A,使得

ij
A B d ij 0
p
,故而d ijp 必为 的梯度方
d 0 , 加 载 硬化塑性: d 0 , 中 性 变 载 d 0 , 卸 载
§4.2 加载条件与加载准则
二、理想塑性材料的加载准则
1. 正则屈服面上的加载准则
当屈服函数处处可微时,相应的屈服面称正则屈服面。 对于对于理想塑性材料,如果以f(ij)=0表示屈服面,应 力位于极限曲面之内,材料处于弹性状态;应力位于极限曲 面之上,则塑性变形将可无限发展;而应力点不能达到屈服 之外。因此,保证应力不脱离屈服面就是加载准则: f(ij)=0

d d
d d
o

o

§4.3 塑性共设
一、Drucker公设
2. 公设的涵义 德鲁克公设可陈述为:对于处在某一状态下的稳定材料 的质点 ( 试件 ) ,借助于一个外部作用,在其原有应力状态之 上,缓慢地施加并卸除一组附加应力,在附加应力的施加和 卸除循环内,外部作用所作之功是非负的。 即:
d d d
n1
n2
§4.2 加载条件与加载准则
三、硬化材料的加载准则
1. 正则屈服面上的加载准则
( 加载条件:
a
ij
, H a) 0
,则
d

ij
d
ij
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塑性成形力学基础--韩志仁
4-4 全量理论的基本方程及边值问题的提法
设在物体 V 内给定体力 Fi , 在应力边界 S 上给定面
S : pi
力 pi , 在位移边界 Su 上给 定位移为 ui , 要求确定物 体内处于塑性变形状态的各
z
V
Fi
点的应力 ij , 应变 ij 和位
移 ui .按照全量理论,确定这 O
ij
1 E
1
ij
ij kk
• 也可以表示为:
ii
1 2
E
ii
eij
1 2G
Sij
我们来证明一下:
由应力和应变的分解式,即 ij Sij ij m , ij eij ijm
代入上面广义Hooke定律的公式,考虑到 G E / 21
eij
ijm
1 E
1
Sij ij m ij kk
y
些基本未知量的基本方程有
x
Su : ui
平衡方程 ij, j Fi 0
几何方程
ij
1 2
ui. j u j,i
本构方程
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
其中
i
3 2
Sij Sij
i
2 3
eij eij
这就是对于全量 理论的塑性力学
边界条件 S : ijl j pi , Su : ui ui
的边值问题.
塑性成形力学基础--韩志仁
4-5 全量理论的适用范围 简单加载定律 • 全量理论适用小变形并且是简单加载.
• 那么上面是简单加载? 理论上上指在加载过程中物体每一
点的各个应力分量按比例增长. 即
ij
t
0 ij
其中
0 ij
是某一非零的参考应力状态,
t 是单调增加的参数.
这样定义的简单加载说明, 在加载时物体内应变和应力的主方
(1)全量理论, 又称为形变理论, 它认为在塑性状态下仍有应力 和应变全量之间的关系. 有Hencky(亨奇)理论和Il’yushin (伊柳 辛)理论.
(2)增量理论, 又称为流动理论, 它认为在塑性状态下是塑性应 变增量和应力及应力增量之间有关系.有Levy-Mises(莱维-米泽 斯)理论和Prandtl-Reuss(普朗特-罗伊斯)理论.
4-1 建立塑性本构关系的基本要素 Shield和Ziegler指出, 建立塑性本构关系需要考虑三个基本要素: (1)初始屈服条件;(2)流动法则;(3)加载条件.
其中(1)和(3) 在第二章已经解决, 本章要解决第(2)点.
塑性成形力学基础--韩志仁
4-2 广义Hooke定律
• 在弹性范围内, 广义Hooke定律可以表达为
ij
m
1
1
2G
2
E
m
ij
•形式上和广义Hooke定律相似, 但这里的比例系数不是一个常 数.这是一个非线性关系.下面我们来看一下这个系数等于什么?
塑性成形力学基础--韩志仁
因为应力强度和应变强度的公式为:
i
3 2
Sij Sij
i
2 3
eij eij

eij Sij 代入上面右式并考虑上面左式得到
1 E
1
Sij ij m
3ij m
1 2G
Sij
1 2
E
ij m
所以可以写成两个相应分解张量之间的关系.
塑性成形力学基础--韩志仁
这是七个方程
ii
1 2
E
ii
eij
1 2G
Sij
第二个式子是六个方程,但因为有 Sii 0, 所以有5个是独立的. 从第二式可以看到在弹性范围内应力主轴和应变主轴是一致 的. 应变偏量的分量和相应的应力偏量的分量成正比.

i
A
m i
这就是Il’yushin简单加载定律.有人认为只有第(1)条就可以了.
塑性成形力学基础--韩志仁
4-6 卸载定律
• 从单向拉伸实验的应力应变曲线
A
看:加载至过弹性极限达到A点,然后
塑性成形力学基础--韩志仁
第四章 塑性本构关系—全量理论 和增量理论
塑性成形力学基础--韩志仁
塑性模型三要素
屈服条件 流动法则
硬化规律
判断何时 达到屈服
屈服后塑性应变 增量的方向,也 即各分量的比值
决定给定的应力 增量引起的塑性 应变增量大小
本章内容
塑性成形力学基础--韩志仁
第四章 塑性本构关系—全量理论和增量理论 引言:塑性变形规律的复杂性, 到目前为止这个塑性本构关系问 题还没有得到满意的解决.现在广范采用的理论分为两大类:
dii
1 2
E
d ii
deij
1 2G
dSij
塑性成形力学基础--韩志仁
4-3 全量型本构方程
Il’yushin在1943年提出的硬化材料在弹塑性小变形情况下的本 构关系, 这是一个全量型的关系, 类似于广义Hooke定律. 在小 变形的情况下作出下列关于基本要素的假定:
(1) 体积变形是弹性的, 即
ii
1 2
E
ii
(2) 应变偏张量和应力变的定性关系, 即方向关系和 分配关系. 方向关系指应变偏量主轴和应力偏量主轴 重合, 也即应变主轴和应力主轴重合,而分配关系是指 应变偏量和应力偏量成正比。
塑性成形力学基础--韩志仁
简单加载(简单变形):各应力分量按同一比例增加,此时应 力主轴方向固定不变。由于应变增量的主轴方向和应力主轴方 向重合,应变主轴也始终不变。 1924年汉基提出了不包括硬化的全量关系。
3i 2 i
(3)应力强度是应变强度的函数 i i , 即按单一曲线假
定的硬化条件.
综上所述, 全量型塑性本构方程为
ii
1 2
E
ii
eij
3i 2 i
Sij
i i
注意的是上式只是描述了加载过程中的弹塑性变形规律. 加
载的标志是应力强度 i 成单调增长. i 下降时为卸载过
程, 它时服从增量Hooke定律.
第二式也可以写成 Sij 2Geij ,把它代入应力强度的表达式
就可以得到下面的第二式, 然后有 G i / 3i 再代回上面第
一式得到下面的第二式.
• 所以也可i 写成32 e如ije下ij 形式
eij
i
3i 2 i
23SSij ijSij
i
3Gi
• 当应力从加载面卸载, 也服从广义Hooke定律,写成增量形式
向都保持不变.
• 但是物体内的内力是不能事先确定的, 那么如何判断加载过 程是简单加载? Il’yushin指出, 在符合下列三个条件时, 可以 证明物体内所有各点是处于简单加载过程:
(1) 荷载(包括体力)按比例增长.如有位移边界条件应为零.
(2) 材料是不可压缩的.
(3)应力强度和应变强度之间幂指数关系,
相关文档
最新文档