水的离子交换处理

合集下载

水处理离子交换器原理

水处理离子交换器原理

水处理离子交换器原理
离子交换是水处理中常用的一种方法,离子交换器是一种专门用来去除水中离子的设备。

离子交换器通过固体吸附、离子交换和颗粒捕获等机制,将水中的离子吸附或交换到交换树脂上,从而实现水质的净化。

离子交换器的工作原理是利用交换树脂对水中的离子进行吸附或交换。

离子交换树脂是一种聚合物材料,具有大量的离子交换基团,可以与水中的离子发生化学反应。

当水通过离子交换器时,交换树脂会吸附或交换水中的阳离子和阴离子,将其中的有害离子去除,同时释放出对水质有益的离子。

离子交换器通常包括两种类型:阳离子交换器和阴离子交换器。

阳离子交换器主要用于去除水中的阳离子,如钠离子、镁离子、钙离子等;阴离子交换器则主要用于去除水中的阴离子,如硝酸根离子、硫酸根离子、氯离子等。

通过这两种离子交换器的组合,可以实现水质的全面净化。

离子交换器的再生是保证其长期有效运行的关键。

离子交换器在使用一段时间后会逐渐饱和,失去去除离子的能力,需要进行再生。

离子交换器的再生通常通过反向冲洗、盐水洗脱或酸碱再生等方式来实现。

再生后的离子交换器可以重新投入使用,延长其使用寿命。

总的来说,离子交换器是一种有效的水处理设备,通过离子交换的原理,可以去除水中的有害离子,提高水质,保障人们的健康。

离子交换器的运行稳定、效果显著,被广泛应用于工业生产、饮用水处理、污水处理等领域。

通过合理的选择离子交换树脂和优化的操作,可以实现更好的水处理效果,为人们的生活和生产提供更加清洁的水资源。

第四章 离子交换水处理

第四章 离子交换水处理

4.3 离子交换除盐水处理
弱碱阴树脂的再生:
再生特点:极易用碱再生,碱耗比低。
弱碱树脂特性:交换容量高于强碱树脂,抗有机污染能力强。设 在强碱阴床前,可减轻强碱树脂的负荷,并保护其不受有机污染。
4.3 离子交换除盐水处理
4.3 离子交换除盐水处理
常见的化学除盐主系统及其选择 采用阳、阴离子交换器组成主系统时,通常参照下面 的原则: (1)第一个交换器应是H型交换器。 (2)弱酸性阳树脂;适用于处理碱度大或碳酸盐硬度 大的水。 (3)弱碱性阴树脂;是用于处理强酸阴离子含量大的 水。 (4)除硅必须采用强碱性阴树脂。 (5)水质要求高时应设混床。 (6)除碳器应置于强碱性阴树脂之前,以保证除硅效 果。
4.2 软化脱碱水处理
H型弱酸离子交换过程(目前应用广的主要是丙烯
酸型)
4.2 软化脱碱水处理
•由于电离较弱,只能去除碳酸盐硬度
2 RCOOH Ca( HCO3 ) 2 ( RCOO) 2 Ca 2 H 2O 2CO2 2 RCOOH Mg ( HCO3 ) 2 ( RCOO) 2 Mg 2 H 2O 2CO2
4.4 离子交换装置及其运行 三塔式移动床
4.4 离子交换装置及其运行
各种类型的交换器,各有其特点。 从实践看,应用最普遍的仍属固定床,并且可制 得纯度很高的水,连续床适用于软化处理,当供水 量不大,对水质要求又不太高时,移动床是可行的。 流动床应用很少。
4.5 混合床
混合床是将再生后的阳、阴离子交换树脂放在同一个 交换器中并混合均匀。 混床的设备结构示意见图4-42。 混床的运行分反洗分层、再生、混合、正洗和交换五 个步骤,其中反洗分层是运行操作的关键。
第四章
离子交换水处理

离子交换技术在水处理中的应用

离子交换技术在水处理中的应用

离子交换技术在水处理中的应用离子交换技术是一种常用的水处理方法,通过将水中的离子与固体交换树脂上的离子进行交换,从而达到去除水中杂质的目的。

离子交换技术在水处理中有着广泛的应用,本文将从硬水处理、去除重金属、水软化和水纯化等方面介绍离子交换技术在水处理中的应用。

一、硬水处理硬水是指含有较高浓度的钙、镁等离子的水,长期饮用硬水会对人体健康产生不利影响。

离子交换技术可以有效地去除水中的钙、镁离子,将硬水转化为软水。

通过将硬水通过离子交换树脂柱,树脂上的钠离子与水中的钙、镁离子进行交换,从而使水中的钙、镁离子被去除,得到软化水。

软化水不仅可以改善饮用水的口感,还可以减少水垢对设备的腐蚀,延长设备的使用寿命。

二、去除重金属水中的重金属污染是一种严重的环境问题,重金属对人体健康有着严重的危害。

离子交换技术可以有效地去除水中的重金属离子,如铅、汞、镉等。

通过选择合适的离子交换树脂,将水中的重金属离子与树脂上的其他离子进行交换,从而实现去除重金属的目的。

离子交换技术在工业废水处理中有着广泛的应用,可以有效地减少重金属对环境的污染。

三、水软化水软化是指将硬水转化为软水的过程,主要是去除水中的钙、镁离子。

硬水不仅会影响饮用水的口感,还会对管道、设备等产生腐蚀和堵塞的问题。

离子交换技术可以通过选择合适的离子交换树脂,将水中的钙、镁离子与树脂上的其他离子进行交换,从而实现水的软化。

软化水不仅可以改善饮用水的口感,还可以减少设备的腐蚀和堵塞问题,延长设备的使用寿命。

四、水纯化离子交换技术在水纯化中也有着广泛的应用。

通过选择合适的离子交换树脂,可以去除水中的有机物、无机盐和微量元素等杂质,从而得到纯净水。

离子交换技术在制备超纯水、制药工业和电子工业中有着重要的应用,可以满足不同领域对水质的要求。

总结:离子交换技术在水处理中的应用十分广泛,可以用于硬水处理、去除重金属、水软化和水纯化等方面。

通过选择合适的离子交换树脂,可以有效地去除水中的杂质,改善水质,保护设备,满足不同领域对水质的要求。

水的净化离子交换法

水的净化离子交换法

实验九水的净化——离子交换法[实验目的]1.了解离子交换法制备纯水的基本原理;2.掌握水质检验的原理和方法;3.学习电导率仪的使用;4.掌握离子交换树脂的操作方法。

[实验原理]天然水的净化方法有:蒸馏法、电渗析法、离子交换法离子交换法制备纯水是使自来水通过离子交换柱(内装离子交换树脂),除去杂质离子,达到净化的目的。

离子交换树脂是一种难溶性的高分子聚合物,对酸、碱及一般有机溶剂稳定。

它具有网状骨架结构。

在其骨架上含有许多可与溶液中的离子起交换作用的“活性基团”。

根据树脂可交换活性基团的不同,可将离子交换树脂分为阳离子交换树脂和阴离子交换树脂。

阳离子交换树脂:是树脂中的活性基团可与溶液中的阳离子进行交换,如:R-SO3-H+R-COO-H+R表示树脂中网状结构的骨架部分。

活性基团中含有H+,可与溶液中的阳离子交换的阳离子交换树脂称为酸性阳离子交换树脂或H型阳离子交换树脂。

按活性基团酸性强弱的不同,又分为强酸性、弱酸性离子交换树脂。

例如R-SO3H为强酸性离子交换树脂(如国产“732”树脂);R-COOH为弱酸性离子交换树脂(如国产“724”树脂)。

阴离子交换树脂:是树脂中的活性基团可与溶液中的阴离子进行交换,如:R-NH3+OH-R-N+(CH3)3|OH-按活性基团碱性强弱的不同,又分为强碱性、弱碱性离子交换树脂。

例如R-N+ OH- (CH3)3为强碱性离子交换树脂(如国产“717”树脂);为R-NH3+OH-弱碱性离子交换树脂(如国产“701”树脂)。

当水流经过离子交换柱时,水中的Na+,Ca2+或Cl-,SO42-等离子与树脂上的活性基团中的H+或OH-进行交换:R-SO3-H+ + Na+⇌ R-SO3-Na+ + H+2R-SO3-H+ + Ca2+ ⇌ (R-SO3-)2Ca2+ + 2H+R-N+(CH3)3 + Cl- ⇌R-N+(CH3)3 + OH-| |OH-Cl-这样,经过离子交换柱后,交换出来的H+和OH-发生中和反应,使水得到净化。

离子交换膜法水处理的工艺流程

离子交换膜法水处理的工艺流程

离子交换膜法水处理的工艺流程引言离子交换膜法是一种常用的水处理技术,通过离子交换膜的选择性通透性,将水中的离子物质进行去除或分离,从而实现水质的净化和处理。

本文将介绍离子交换膜法水处理的工艺流程。

工艺流程1. 原水处理原水处理- 原水收集:从水源收集待处理的原水,可能是自来水、井水或河水等。

- 水质检测:对原水进行水质检测,包括测定水中悬浮物、溶解物质、有机物质和离子物质的浓度,以确定其污染程度和组成。

2. 预处理预处理- 澄清:使用澄清剂将原水中的悬浮物迅速沉淀,并去除悬浮物,以减少膜的污染和阻塞。

- 软化:通过加入适量的软化剂,将原水中的钙、镁离子等硬水离子转化为不易产生水垢的盐类。

- 过滤:利用滤芯将原水中的颗粒物、杂质等进行过滤,进一步净化水质。

3. 反渗透反渗透- 进料泵送:将预处理后的水送入反渗透设备,通过进料泵进行泵送。

- 压力增加:通过增加水压,使水分子逆向通过离子交换膜,而离子和溶解物质无法通过膜的选择性孔洞。

- 分离净化:离子交换膜将水中的大部分离子物质、溶解物质、有机物质、重金属离子等截留在一侧,而过滤出纯净水。

4. 净水质检净水质检- 检测:对净化后的水进行全面检测,包括测定PH值、溶解物质、微生物、有机物质、重金属离子等的含量,以确保水质达到要求。

- 二次处理:如果净化后的水不符合相关标准,需要进行二次处理,如再次过滤、加入消毒剂等。

5. 水质储存水质储存- 存储:将净化后的水储存到合适的中,以备使用。

结论离子交换膜法水处理工艺流程包括原水处理、预处理、反渗透、净水质检和水质储存等步骤。

通过该工艺流程,可以实现对水中离子物质的去除和分离,达到净化水质的目的。

然而,具体工艺流程可能因实际情况而有所不同,需根据实际需求及水质特征进行调整和优化。

水污染治理中的离子交换法

水污染治理中的离子交换法
2012-4-15 1
主要内容: 主要内容:
离子交换剂 离子交换工艺和设备 L 离子交换法的应用及问题 L
2012-4-15
2
一、离子交换剂
• 1、离子交换剂的分类 L • 2、离子交换树脂的结构 L 离子交换树脂的结构 • 3、离子交换树脂的种类 L • 4、离子交换树脂的性能 L 离子交换树脂的性能
平衡交换容量> 全(总)交换容量 > 平衡交换容量 工作交换容量
2012-4-15 10
2)选择性
• 离子交换树脂对水中某种离子能优先交换的性能称 离子交换树脂对水中某种离子能优先交换的性能称 优先交换 为选择性。 选择性。 • 它表征树脂对不同离子亲和力的差别,是决定离子 它表征树脂对不同离子亲和力的差别, 亲和力的差别 交换法处理效率的一个主要因素。 交换法处理效率的一个主要因素。 • 选择性大小用选择性系数来表征。以A型树脂交换溶 选择性大小用选择性系数来表征。 选择性系数来表征 液中的B离子的反应为例: 液中的B离子的反应为例:RA + B ⇔ RB + A,交换 , 反应达动态平衡时, 交换B的选择性系数为: 反应达动态平衡时,A交换B的选择性系数为:
R-SO3 -
- H+
固定离子: 固定离子: SO3-
活性基团: 活性基团: SO3-H+
2012-4-15
活动离子(可交换离子) 活动离子(可交换离子): H+
6
3、离子交换树脂的种类
• 按功能基团的性质分: 按功能基团的性质分:
阳离子交换树脂 阴离子交换树脂 强酸性阳离子交换树脂( 强酸性阳离子交换树脂(如-SO3H) 阳离子交换树脂 弱酸性阳离子交换树脂 阳离子交换树脂( 弱酸性阳离子交换树脂(如-COOH) 强碱性阴离子交换树脂( 强碱性阴离子交换树脂(如R4NOH) 阴离子交换树脂 弱碱性阴离子交换树脂 阴离子交换树脂( 弱碱性阴离子交换树脂(如-NH3OH)

离子交换技术在水处理中的应用

离子交换技术在水处理中的应用

离子交换技术在水处理中的应用水是生命之源,对于人类和其他生物来说,干净的水是必不可少的。

然而,随着工业化和城市化的发展,水污染问题日益严重。

离子交换技术作为一种常用的水处理方法,被广泛应用于水处理领域。

本文将介绍离子交换技术在水处理中的应用,并探讨其优势和局限性。

离子交换技术概述离子交换技术是一种通过固体材料与溶液中的离子发生置换反应,实现离子去除或转化的方法。

常见的离子交换材料包括树脂、活性炭和陶瓷等。

离子交换技术可以有效去除水中的有害离子,改善水质。

离子交换技术在硬水处理中的应用硬水是指含有高浓度钙、镁等金属离子的水。

硬水不仅影响家庭用水质量,还会导致管道堵塞和设备损坏。

离子交换技术可以通过选择合适的树脂材料,将水中的钙、镁离子与树脂上的钠离子进行交换,从而软化水质,解决硬水问题。

离子交换技术在除盐处理中的应用除盐是指去除水中的盐分,使其达到可饮用或工业用水标准。

离子交换技术可以通过选择具有高选择性的树脂材料,将水中的钠、钾等金属离子与树脂上的氢离子进行交换,从而实现除盐效果。

这种方法被广泛应用于海水淡化和地下水处理等领域。

离子交换技术在污水处理中的应用污水处理是保护环境和人类健康的重要环节。

离子交换技术可以通过选择具有特定功能的树脂材料,吸附和去除污水中的重金属离子、有机物和其他有害物质,从而实现污水的净化和回收利用。

离子交换技术的优势离子交换技术在水处理中具有以下优势: 1. 高效:离子交换材料具有较大的比表面积和孔隙结构,能够提供更多的吸附位点,从而提高去除效率。

2. 可控性强:通过选择不同类型和规格的离子交换材料,可以实现对特定离子的选择性去除。

3. 可再生性:离子交换材料可以通过再生操作,恢复其吸附能力,延长使用寿命,减少成本。

4. 适应性广:离子交换技术可以适用于不同水质和处理需求,具有较强的适应性。

离子交换技术的局限性离子交换技术在水处理中也存在一些局限性: 1. 选择性有限:离子交换材料对于不同离子的选择性有限,可能会导致一些有害物质无法完全去除。

离子交换技术在水处理中的应用

离子交换技术在水处理中的应用

离子交换技术在水处理中的应用
简介
离子交换技术是一种常用的水处理方法,通过利用树脂等材料对水中离子进行吸附和交换,以达到去除杂质、软化水质等目的。

本文将介绍离子交换技术在水处理中的应用。

离子交换技术的原理
离子交换技术是一种通过树脂或其他吸附材料将水中的离子和分子有选择性地去除并替换的方法。

其原理是利用树脂上活性位点与水中离子发生化学反应,使水中的离子被树脂吸附并被其他离子替代的过程。

离子交换可以分为阴离子交换和阳离子交换两种方式。

水处理中的离子交换应用
水软化
离子交换技术在水处理中最常见的应用之一是水软化。

硬水是指含有大量钙、镁离子的水,经过离子交换处理后,可将硬水中的钙、镁等离子与树脂上的钠、氢等离子进行交换,从而软化水质,减少水垢的生成。

去除有害离子
离子交换技术还可以应用于去除水中的有害离子,如重金属离子、氟化物离子等。

通过选择性吸附和交换,可以有效地将有害离子从水
中去除,保证饮用水和工业用水的安全性。

水处理废水
离子交换技术也被广泛应用于水处理废水过程中。

通过离子交换
过程,可以有效去除废水中的金属离子、有机物等杂质,提高废水处
理效率,降低对环境的污染。

制备高纯水
在电子、光伏等领域,需要用到超纯水。

离子交换技术可以去除
水中的离子和微生物等,制备出高纯度的水,满足特定工艺对水质的
要求。

结语
离子交换技术在水处理中发挥着重要作用,不仅可以改善饮用水
质量,还可以保护环境、节约资源。

随着科学技术的不断进步,离子
交换技术在水处理领域的应用前景将更加广阔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水的离子交换处理第一节离子交换除盐原理、水的离子交换除盐就是顺序用H型阳离子交换树脂将水中各种阳离子交换成H+,用 OH型阴离子交换树脂将水中各种阴离子交换成OH-,进入水中的H+和OH-离子组成水分子H2O;或者让水经过阳阴混合离子交换树脂层,水中阳、阴离子几乎同时被H+和OH-离子所取代。

这样,当水经过离子交换处理后,就可除尽水中各种的无机盐类。

该工艺中发生的H离子交换反应和OH离子交换反应以及树脂再生过程中发生的反应如下:(1)氢离子交换反应式:(HCO3) (HCO3)2RH + Ca(Mg,Na2) Cl2→ R2Ca(Mg,Na2) + H2Cl2SO4 SO4再生反应式为:2HCl Cl2R 2Ca(Mg,Na2) + → 2RH + Ca(Mg,Na2)H2SO4SO4(2)氢氧根离子交换反应式为:SO4 SO4Cl2 Cl22ROH + H2 CO3→ R2(HCO3)2+ 2H2OSiO3 (HsiO3)2再生反应式:SO4 SO4Cl2 Cl2R2 (HCO3)2+ 2NaOH → 2ROH + Na2CO32- 3)2SiO3进入离子交换器的水中一般都含有大量的碳酸氢盐。

它是天然水中碱度的主要组成部分。

当水经H离子交换后,碳酸氢盐转化成了碳酸,连同水中原来含有的碳酸,可用除碳器一起除去。

这样可以减轻阴离子交换器的负担降低消耗。

水中碳酸的平衡关系如下式所示:H+ + HCO3-≒ H2CO3≒ CO2+H2O水中H+浓度越大,平衡越易向右移动。

当水的pH值低于4.3时,水中的碳酸几乎全部以游离的CO2形式存在。

水中游离的CO2可以看作是溶解在水中的气体,它在水中的溶解度符合亨利定律,只要降低水面上CO2的分压就可除去CO2。

除碳器就是利用这个原理除去CO2的。

第二节树脂层中的离子交换过程一、阳床工作特性阳床的作用是除去水中H+离子以外的所有阳离子。

当其运行出水钠离子浓度升高时,树脂失效,须进行再生。

阳床运行时,水由上而下通过强酸性H型树脂层,因树脂层对各种阳离子的选择性不同,被吸着的离子在树脂层中产生分层,其分布状况如下图5-1所示。

在运行过程中,Ca+、Mg+、Na+三层树脂层的高度均会不断向下扩展,直到树脂失效。

实际上各层界面并不是很明显的,有程度不同的混层现象发生。

(a) (b)图5-1 逆流再生阳床树脂层态分布示意(a)运行至失效时;(b)再生后图5-2所示为阳床经再生投入运行后的出水特性。

当阳床再生后冲洗时,出水中各种杂质的含量迅速下降,待出水水质达到一定标准(如含钠量≤100ug/L)时,就可投入运行,此后水质基本保持稳定。

当运行一定程度时,如图5-2中b点,漏钠量增大,酸度降低,树脂进入失效状态。

图5-2阳床出水特性阳床失效的监督最好采用钠度计(pNa计),当阳床出水含钠量大于500ug/L时,说明阳床已经失效。

二、阴床工作特性阴床中强碱性OH型交换树脂可以和水中除OH-离子外的各种阴离子进行交换,把它们从水中除去。

由于树脂对离子的选择性不同,阴床运行中被吸着的离子也会发生分层,其分布状况如图5-3所示。

(a) (b)图5-3逆流再生阴床树脂层态分布示意(a)运行至失效时;(b)再生后阴床运行时,一般出水pH值为7~9之间,SiO含量小于100ug/L,电导2率小于10uS/cm。

因为阴床设在阳床的后面,所以阴床的出水水质受阳床出水水质的影响很大。

阳床未失效时,阴床的出水特性如图5-4(a)所示。

当运含量上升,pH值下降,电导率先微降后再上升。

行通过水量到b点时,SiO2电导率的变化是因为H+和OH-要比其它离子易导电,当出水中这两种离子的总含量很小时,有一电导率最低点。

在b点前由于OH-含量较大使水的电导率较大;在b点之后由于H+含量增加而使水的电导率增大。

图5-4 阴床出水特性(a)阳床未失效时(b)阳床失效时阳床失效时,阴床的出水特性如图5-4(b)所示。

阳床失效时漏钠量增大,这些钠离子通过阴床后转化成氢氧化钠,使阴床出水pH值迅速上升,连续测定阴床出水pH值,可以区分是阳床还是阴床失效。

含量和电导率来判断,当然用出水pH值也可阴床失效的监督最好用SiO2以进行分析判断。

第三节树脂的再生原理树脂再生是离子交换水处理中很重要的一环。

影响再生效果的因素很多,如再生方式,再生剂的种类、纯度、用量,再生液的浓度、流速、温度等。

要取得好的再生效果,必须进行调整试验,确定最优的再生条件。

1、再生方式再生方式按再生液流向与运行时水流方向分为顺流、对流和分流三种。

顺流再生是指再生液流向与运行时水流方向一致的再生方式,通常是自上而下流动。

对流再生指再生液流向与运行时水流方向是相对的。

习惯上将运行时水流向下流动,再生液向上流动的水处理工艺称逆流再生工艺。

将运行时水向上流,床层浮动;再生时再生液向下流的水处理工艺称浮动床工艺。

对流再生可使出水端树脂层再生度最高,出水水质好。

分流再生是指再生液自交换器的上端和下端同时进入,由树脂层中间的排水装置排出,运行时水自上而下流过床层。

这种交换器上部床层采用顺流再生工艺,下部床层采用对流再生工艺。

2、再生剂的品种与纯度一般认为盐酸的再生效果优于硫酸,硫酸再生成本低于盐酸。

再生剂的纯度高,杂质含量少,树脂的再生程度就高,特别是对阴树脂影响更大。

3、再生剂用量再生剂用量是影响再生的重要因素,其概念是单位体积树脂所用的再生剂的量,单位为kg/m3(树脂)或g/L(树脂)。

另外常用的一个指标是再生剂比耗,它是指投入的再生剂的量与所获得树脂的工作交换容量的比值。

还有一种表示法即再生剂耗量,是预计取得单位工作交换容量所需纯再生剂量,单位g/mol。

从理论上讲1mol的再生剂应使交换树脂恢复1mol的交换容量,但实际上再生反应最多只能进行到离子交换化学反应的平衡状态,只用理论量的再生剂再生树脂,并不能完全恢复其交容量,所以用量必须超过理论量。

提高再生剂的用量,可以提高树脂的再生程度,但再生剂比耗增加到一定程度之后,再生程度的提高则不明显。

再生剂用量与离子交换树脂的性质有关,一般强型树脂所需再生剂用量高于弱型树脂。

不同的再生方式,再生剂用量也有所不同,一般顺流再生的再生剂用量要高于逆流再生的。

再生方式采用顺流时,由于再生液首先接触到的是上部完全失效的树脂,所以这一部分树脂得到了很好的再生。

当再生液再往下流与交换器底部树脂接触时,再生液中已经积累了大量被置换出来的离子,严重影响了交换树脂的再生程度,使这部分树脂没有得到充分的再生,影响了出水水质。

如果要提高这部分树脂的再生程度,就要增加再生剂的用量。

再生方式采用逆流时,由于交换器底部树脂总是和新鲜的再生剂相接触,所以可以达到很高的再生程度,运行时水最后和这部分再生程度高的树脂接触,保证了出水水质。

采用逆流再生时,交换器上部树脂再生程度差,虽然它首先与进水接触,但由于水中从树脂交换下来离子含量少,所以还是可以进行离子交换的,这部分树脂的交换容量仍可以得到充分的发挥。

因此这种再生方式比较优越,使用得也比较广泛。

4、再生液的浓度再生液的浓度与再生方式有关,一般顺流再生的再生液浓度应高于逆流再生的。

通常HCl以3%~5%为宜,NaOH以2%~4%为宜。

5、再生液的温度与流速提高再生液的温度能提高树脂的再生程度,但再生温度不能超过树脂允许的最高使用温度,一般强酸性阳树脂用盐酸再生时不需加热。

强碱性Ⅰ型阴树脂的再生液温度为35~50℃。

强碱性Ⅱ型阴树脂适宜的再生液温度为35±3℃。

再生液流速影响着再生液与树脂的接触时间,一般以4~8m/h为宜。

逆流再生的再生液流速应保证不使树脂乱层。

再生液的温度很低时,不宜提高流速。

第四节离子交换器的运行离子交换器分为固定床和连续床两种。

固定床有顺流再生固定床、逆流再生固定床、浮动床、双层床、混合床等形式;连续床有移动床和流动床。

离子交换除盐系统一般都采用固定床。

离子交换器外形为圆筒形容器,为防止设备腐蚀,对交换器内部及附属设备都进行了防腐处理。

针对我厂的设备特点,本节主要介绍逆流再生固定床离子交换工艺。

一、逆流再生固定床离子交换工艺1、交换器的结构逆流再生离子交换器按其用途的不同,可分为阳离子交换器(包括H型)和阴离子交换器(OH型等)。

用于软化工艺的阳离子交换器称为钠离子软化器和氢离子软化器。

用于除盐工艺的阳离子交换器和阴离子交换器分别称为阳床和阴床。

这些交换器在结构上没有多大区别,其结构为交换器内顶部装有十字支管式进水分配装置。

中上部装有母支管式再生液分配装置,称为中间排水装置。

在其上面有一层厚150~200mm的压脂层,其作用一是过滤掉水中的悬浮物,二是使水均匀地进入中排装置。

底部装有穹形多孔板加石英砂垫层式的排水装置。

交换器的外部设有各种管道、阀门、取样管、监视管、排空气管、流量和压力表计以及有机玻璃窥视孔等。

2、交换器的运行交换器的运行应保证其出水水质、水量和经济指标,这些指标与运行操作,特别是再生操作有很大的关系。

逆流再生固定床的运行通常分为四个步骤,从床层失效后算起为:反洗、再生、正洗和交换。

这四个步骤为交换器的一个运行周期。

(1)小反洗。

交换器运行到失效时,停止交换运行,将反洗水从中间排水管引进,对中间排水管上面的压脂层进行反洗,以冲去运行时积聚在表面层和中间排水装置上的污物,然后由上部排走。

冲洗流速应使压脂层能充分松动,但又不至将正常的颗粒冲走。

反洗一直进行到出水澄清。

(2)放水。

小反洗后,待交换剂颗粒下降后,放掉交换器内中间排水装置上部的水。

(3)进再生液。

开进酸(碱)一次、二次门,启动自用水泵,开喷射器入口门,维持进水流速5-8m/h,同时开启并调整中间排水门。

开酸(碱)计量箱出口门,调整进酸浓度为3-4%范围内。

进碱浓度为2-2.5%范围内。

(4)逆流冲洗。

当再生液进完后,关闭进再生液阀门,停止送入再生液,但喷射器保持原来的流量,在有顶压的情况下,进行逆流冲洗,直至排出废液达到一定标准为止[如H型交换器,控制排出废液中酸度小于10mmol/L(OH-)]。

逆流冲洗所需的时间一般为30~40min,逆洗水应采用质量较好的水,不然会影响底部交换剂的再生程度。

(5)正洗。

最后,用水由上而下进行正洗至出水合格,即可投入运行。

逆流离子交换器一般在运行10~20个或更多周期后,进行一次大反洗,以除去交换剂层中的污物和破碎的树脂微粒。

通常运行,不进行大反洗。

大反洗是从底部进水,废水由上部反洗排水阀门放掉。

由于大反洗时扰乱了整个树脂层,所以大反洗后第一次再生时,再生剂的用量应加大1倍以上。

为了使逆流再生达到较好的效果,故在逆流再生的操作工艺中需注意以下几个问题:1)压脂层的厚度要符合要求。

2)为使底部树脂的再生程度高,不致被杂质污染而影响出水水质,故在逆流再生后,应用水质较好的水逆流冲洗,如用经过H离子交换的水来逆流冲洗阴离子交换器。

相关文档
最新文档