贝叶斯决策例题(精选.)
贝叶斯决策例题(精选.)

例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。
假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。
根据过去的经验,在计划实施工期天气好的可能性为30%。
为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。
从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。
问如何进行决策。
解:采用贝叶斯决策方法。
(1)先验分析根据已有资料做出决策损益表。
根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8(2)预验分析完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)=1.36(万元)完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元)即,完全信息价值大于信息成本,请气象中心进行预报是合算的。
(3)后验分析①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。
从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。
预报天气好的概率1111212()()(/)()(/)P x P P x P P x θθθθ=+=0.31预报天气坏的概率2121222()()(/)()(/)P x P P x P P x θθθθ=+=0.69 预报天气好且天气实际也好的概率:111111()(/)(/)()P P x P x P x θθθ⋅==0.3×0.8/0.31=0.77预报天气好而天气坏的概率:212211()(/)(/)()P P x P x P x θθθ⋅==0.7×0.1/0.31=0.23预报天气坏而实际天气好的概率:121122()(/)(/)()P P x P x P x θθθ⋅==0.3×0.2/0.69=0.09预报天气坏且实际天气也坏的概率: 222222()(/)(/)()P P x P x P x θθθ⋅==0.7×0.9/0.69=0.91上述计算可以用表格表示:③ 后验决策:若气象中心预报天气好(x1),则每个方案的最大期望收益值 E(d1/x1)=0.77×5+0.23×(-1)=3.62 E(d2/x1)=0.77×(-0.2)+0.23×(-0.2)=-0.2选择d1即施工的方案,相应在预报x1时的最大期望收益值E (X1)=3.62若气象中心预报天气不好(x2),各方案的最大期望收益值 E(d1/x2)=0.09×5+0.91×(-1)=-0.46 E(d2/x2)=0.09×(-0.2)+0.91×(-0.2)=-0.2选择d2即不施工的方案,相应在预报x2时的最大期望收益值E (X2)=-0.2④ 计算补充信息的价值:得到天气预报的情况下,后验决策的最大期望收益值:1122*()()()()()EMV P x E x P x E x =⋅+⋅后=0.31×3.62+0.69×(-0.2)=0.9842则补充的信息价值为:EMV*(后)-EMV*(先)=0.9842-0.8=0.1842补充信息价值大于信息费(800元),即这种费用是合算的。
贝叶斯公式例题范文

贝叶斯公式例题范文利用贝叶斯公式,我们可以很容易地计算出一个事件发生的概率,即在给定一些背景信息的情况下,这个事件发生的可能性有多大。
下面我们来看一个实际的例题,以帮助更好地理解贝叶斯公式的应用。
假设地区有很多农场,其中有20%的农场种植了A品种的作物,其他农场种植了其他品种。
现在,我们有一个基因检测方法,可以通过一个人口样本来确定一个人是不是A品种的作物的种植者。
这个基因检测方法的准确率为90%,即当一个人是A品种的作物的种植者时,有90%的概率检测结果是阳性;当一个人不是A品种的作物的种植者时,有90%的概率检测结果是阴性。
现在,我们在随机抽取一个人口样本进行检测,结果显示他是A品种的作物的种植者。
那么,我们应该如何计算他真正是A品种的作物的种植者的概率呢?首先,我们可以根据已知信息计算出一个人是A品种的作物的概率,这就是所谓的先验概率。
根据题目中的信息,已知有20%的农场种植了A品种的作物,那么一个人是A品种的作物的种植者的概率就是20%。
然后,我们可以根据基因检测方法的准确率来计算出当一个人是A品种的作物的种植者时,检测结果为阳性的概率。
根据题目中的信息,基因检测方法的准确率为90%,那么当一个人是A品种的作物的种植者时,检测结果为阳性的概率为90%。
接着,我们可以根据贝叶斯公式计算出一个人检测结果为阳性时,他真正是A品种的作物的种植者的概率。
P(A,B)=P(B,A)*P(A)/P(B)其中P(A,B)表示在事件B发生的条件下事件A发生的概率,也就是待求的真实概率;P(B,A)表示在事件A发生的条件下事件B发生的概率,也就是检测结果为阳性的概率;P(A)表示事件A发生的概率,也就是先验概率;P(B)表示事件B发生的概率,也就是检测结果为阳性的概率。
根据题目中的信息,我们可以将上述参数代入贝叶斯公式进行计算:P(A,B)=0.9*0.2/P(B)接下来,我们需要计算出P(B),即检测结果为阳性的概率。
贝叶斯公式典型例题

贝叶斯公式典型例题
贝叶斯公式是一种计算条件概率的公式,常用于根据已知条件更新某个事件发生的概率。
下面是一个贝叶斯公式的典型例题:
例:假设有两种类型的围棋棋手,分别是专业棋手和业余棋手。
专业棋手在比赛中获胜的概率为0.9,而业余棋手获胜的概率为0.3。
已知在所有棋手中,专业棋手占70%,业余棋手占30%。
现在有一场比赛,我们只知道其中一位棋手获胜了,那么这位棋手是专业棋手的概率是多少?
解:首先,我们定义以下事件:
•A:棋手是专业的
•B:棋手获胜
根据题意,我们知道:
•P(A) = 0.7(专业棋手占比)
•P(¬A) = 0.3(业余棋手占比)
•P(B|A) = 0.9(专业棋手获胜的概率)
•P(B|¬A) = 0.3(业余棋手获胜的概率)
我们要找的是P(A|B),即在已知棋手获胜的条件下,棋手是专业的概率。
根据贝叶斯公式,我们有:
P(A|B) = \frac{P(A) \times P(B|A)}{P(A) \times P(B|A) + P(¬A) \times P(B|¬A)}将已知的概率值代入公式中,我们得到:
P(A|B) = \frac{0.7 \times 0.9}{0.7 \times 0.9 + 0.3 \times 0.3} = \frac{0.63}{0.63
+ 0.09} = \frac{0.63}{0.72} = 0.875
所以,在已知棋手获胜的条件下,这位棋手是专业棋手的概率为0.875。
这个例题展示了贝叶斯公式在更新条件概率方面的应用。
通过已知的概率值和贝叶斯公式,我们可以计算出在给定条件下的未知概率。
贝叶斯推理例子

贝叶斯推理例子
1. 嘿,你想想看啊,比如说你去买彩票,你觉得中奖的概率有多大呢?这就可以用贝叶斯推理呀!你先根据以往的开奖情况大概估计一个基础概率,然后每次开奖后根据新的结果来调整你的概率判断,这多有意思啊!
2. 来,咱说个生活中的例子。
你判断今天会不会下雨,你会先根据天气预报和以往的经验来有个初步想法吧,但如果突然天空变得阴沉沉的,你不得赶紧调整你觉得下雨的概率呀,这就是贝叶斯推理在起作用呀,你说是不是?
3. 你知道怎么猜别人手里的牌吗?这也能用贝叶斯推理呢!看他的表情动作,先有个初步判断,然后随着每一轮出牌,不断更新你对他手里牌的估计,哎呀,多带劲啊!
4. 你想想,你找工作的时候,对拿到某个 offer 的概率判断不也是这样嘛!开始根据公司的要求和自己的情况有个想法,然后面试过程中根据各种表现来调整,这可真是贝叶斯推理的活用呀!
5. 就像你猜你喜欢的人对你有没有意思,一开始你有个感觉,然后通过他跟你的每次互动,你不就会调整那个可能性嘛,这就是贝叶斯推理呀,神奇吧!
6. 好比你玩猜数字游戏,你先乱猜一个,然后根据提示不断缩小范围,调整你的猜测,这不就是活脱脱的贝叶斯推理嘛,多好玩呀!
7. 哎呀,你看医生诊断病情也是这样的呀!根据症状先有个初步判断,然后做各种检查,根据检查结果不断改变对病情的推测,贝叶斯推理真的无处不在呢!
8. 再比如你预测一场比赛的结果,先有个大概想法,比赛过程中根据双方的表现来不断调整胜败的概率,这不是贝叶斯推理在帮忙嘛,多有用啊!总之,贝叶斯推理在我们生活中可太常见啦,好多事情都能靠它来让我们的判断更准确呢!。
贝叶斯博弈例子

贝叶斯博弈例子
以下是 8 条关于贝叶斯博弈例子:
1. 你想想在牌桌上呀,就像咱打牌的时候,你先根据对手前面出的牌来判断他手里大概有啥牌,这不就是贝叶斯博弈嘛!比如说你看到对手老是出小牌,那是不是大概率他手里大牌不多呀!
2. 去商场买东西砍价也有点这个感觉呢!你看商家报价,然后根据他的态度和表情猜测他的底线,这也是一种贝叶斯博弈嘞!要是他看起来很犹豫,那是不是代表咱还能往下砍砍价呀!
3. 在求职面试的时候呀,你得根据面试官的提问和反应来调整自己的回答策略,这难道不是贝叶斯博弈吗?好比面试官一直追问某个问题,那就得想着更深入地回答呀!
4. 学生时代考试猜答案也能算呢!当你不确定一个题目的答案时,根据以往对这类题目的了解去猜测,这不是贝叶斯博弈是啥呀!哎呀,要是以前做过类似的,那猜对的几率不就大多啦!
5. 谈恋爱的时候其实也有哦!你通过对方平时的言行举止来判断他的喜好和想法,这算不算是在进行贝叶斯博弈呢?比如说他总提到某个东西,那是不是表示他可能很喜欢呀!
6. 参加比赛的时候呀,观察对手的表现来调整自己的战术,这就是活生生的贝叶斯博弈呀!要是看到对手有个弱点,那不就得抓住机会嘛!
7. 玩游戏抢地盘的时候呢,根据其他玩家的行动来决定自己该怎么行动,不也是贝叶斯博弈嘛!他们都往左边去了,那右边是不是咱的机会就来了呀!
8. 去市场买菜的时候呀,看着菜的品质和价格,还有老板的态度,来决定要不要买,这就是一种贝叶斯博弈嘛!要是老板很热情,菜看着也不错,那咱肯定更愿意买啦!
我觉得贝叶斯博弈在我们生活中可太常见了,很多时候我们都在不知不觉中运用着它呢!。
贝叶斯准则例题

一、贝叶斯准则:例题1:设二元假设检验的观测信号模型为: H 0: x = -1+nH 1: x = 1+n其中n 是均值为0,方差为212nσ=的高斯观测噪声。
若两种假设是等先验概率的,而代价因子为000110111,8,4,2,c c c c ==== 试求贝叶斯(最佳)表达式和平均代价C : 解:因为两种假设是等先验概率的所以 011()()2P H P H ==,这样,贝叶斯准备的似然比函数()x λ为: ① 122110221(1)exp 1122(|)22()exp(4)(|)(1)1exp 112222x p x H x x p x H x πλπ⎛⎫⎡⎤⎪⎢⎥-- ⎪⎢⎥⨯⨯ ⎪⎢⎥⎝⎭⎣⎦==•=⎡⎤⎛⎫⎢⎥+ ⎪-⎢⎥⎪⨯⎢⎥⨯ ⎪⎣⎦⎝⎭ 而似然比检测门限η为:010********(41)()()21()()(82)2P H c c P H c c η--=•=-- =1/2于是贝叶斯判决表达式为11exp(4)2H x H ><,两边取自然对数,并整理的最简判决表达式为10.1733H x H >-<②现在计算判决概率01(|)P H H 和00(|)P H H ,由于本例中检验统计量()l x x =,所以在两个假设下检验统计量的概率密度函数分别为:122012211(1)(|)exp 1122221(1)(|)exp 112222l p l H l p l H ππ⎛⎫⎡⎤⎪⎢⎥+=- ⎪⎢⎥⨯⨯ ⎪⎢⎥⎝⎭⎣⎦⎛⎫⎡⎤⎪⎢⎥-=- ⎪⎢⎥⨯⨯ ⎪⎢⎥⎝⎭⎣⎦这样,0.17330111220.1733(|)(|)1(1)exp 0.0486112222P H H p l H dll dl π--∞--∞=⎛⎫⎡⎤⎪⎢⎥-=-= ⎪⎢⎥⨯⨯ ⎪⎢⎥⎝⎭⎣⎦⎰⎰0.17330001220.1733(|)(|)1(1)exp 0.8790112222P H H p l H dll dl π--∞--∞=⎛⎫⎡⎤⎪⎢⎥+=-= ⎪⎢⎥⨯⨯ ⎪⎢⎥⎝⎭⎣⎦⎰⎰ 最后,利用贝叶斯平均代价表达式,01011110111010100000()()()()(|)()()(|)C P H c P H c P H c c P H H P H c c P H H =++---代入0000110(),(|),(|),P H P H H P H H c 等各数据,计算得: 1.8269C=总结:如果我们把判决表达式中的检测门限-0。
贝叶斯公式例子

贝叶斯公式例子
1. 你知道怎么用贝叶斯公式来猜骰子点数吗?比如我掷了一个骰子,我猜是 3,然后又掷了一次还是 3,那我是不是就可以更肯定下一次还是 3 呀,这就有点像贝叶斯公式在不断更新我的猜测概率呢!
2. 嘿,想想看,天气预报是不是也能用贝叶斯公式呢?今天预报说有 80%
的概率下雨,结果没下,那明天再预报有雨的时候,我们对这个概率的看法是不是就不一样啦,这和贝叶斯公式多契合呀!
3. 哇塞,选彩票号码能不能用贝叶斯公式呢?每次选了一些号码没中,下次是不是就可以根据之前的情况调整选择呀,这就像贝叶斯在帮我们做决定呢!
4. 你有没有想过,医生诊断病情也像贝叶斯公式在起作用呀!根据各种症状先有个初步判断,然后随着检查结果的出来不断调整诊断的概率,多神奇呀!
5. 哎呀呀,考试猜答案的时候呢,第一遍猜了个 C,检查的时候又觉得可能不对,这时候不就是贝叶斯公式在帮我们重新计算猜对的可能性嘛!
6. 来来来,找工作面试的时候,一开始觉得自己有 50%的把握能通过,后
面表现不错,那通过的概率不就提高了嘛,这可不就是贝叶斯公式在起作用嘛!
7. 哈哈,猜一个人喜不喜欢自己的时候,每一个举动都好像在给贝叶斯公式提供信息呢,然后可以不断更新自己觉得对方喜欢自己的概率哟!
8. 看电视猜节目的结局不也是嘛,开始有个想法,随着剧情发展不断调整对结局的猜测,这像极了贝叶斯公式呀!
9. 贝叶斯公式真的好有趣呀,它在我们生活中无处不在呢,能帮我们做出更准确的判断和推测呀!。
贝叶斯决策例子

贝叶斯决策练习某石油公司拟在一片估计含油的荒地上钻井。
如果钻井,费用为150万,若出油的概率为0.55,收入为800万元;若无油的概率为0.45,此时的收入为0。
该公司也可以转让开采权,转让费为160万元,但公司可以不担任何风险。
为了避免45%的无油风险,公司考虑通过地震试验来获取更多的信息,地震试验费用需要20万元。
已知有油的情况下,地震试验显示油气好的概率为0.8,显示油气不好的概率为0.2;在无油条件下,地震显示油气好的概率为0.15,而显示油气不好的概率为0.85。
又当试验表明油气好时,出让开采权的费用将增至400万元,试验表明油气不好时,出让开采权费用降至100万元,问该公司应该如何决策,使其期望收益值为最大。
解:该公司面临两个阶段的决策:第一阶段为要不要做地震试验,第二阶段为在做地震试验条件下,当油气显示分别为好与不好时,是采取钻井策略还是出让开采权。
若用A 1表示有油,A 2表示无油;用B 1表示地震试验显示油气好,B 2表示地震试验显示油气不好。
由题意可知:1211211222()0.55 ()0.45(|)0.8 (|)0.2(|)0.15 (|)0.85P A P A P B A P B A P B A P B A ======由贝叶斯公式计算得到:11111111212()(|)0.440.44(|)0.867()(|)()(|)0.440.06750.5075P A P B A P A B P A P B A P A P B A ====++ 同理,有: 2112220.0675(|)0.1330.50750.11(|)0.2230.49250.3825(|)0.7770.4925P A B P A B P A B ======该问题对应的决策树图采用逆序的方法,先计算事件点②③④的期望值:事件点 期望值② 800×0.867+0×0.133=693.6(万元)③ 800×0.223+0×0.777=178.4(万元)④ 800×0.55+0×0.45=440(万元) 在决策点2,按max[(693.6-150),400]=543.6万元,故选择钻井,删除出让开采权策略; 在决策点3,按max[(178.4-150),100]=100万元,故选择出让开采权,删除钻井策略; 在决策点4,按max[(440-150),160]=290万元,故选择钻井策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。
假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。
根据过去的经验,在计划实施工期天气好的可能性为30%。
为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。
从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。
问如何进行决策。
解:采用贝叶斯决策方法。
(1)先验分析
根据已有资料做出决策损益表。
根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8
(2)预验分析
完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)
=1.36(万元)
完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元)
即,完全信息价值大于信息成本,请气象中心进行预报是合算的。
(3)后验分析
①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。
从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9
②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。
预报天气好的概率
1111212()()(/)()(/)P x P P x P P x θθθθ=+=0.31
预报天气坏的概率
2121222()()(/)()(/)P x P P x P P x θθθθ=+=0.69 预报天气好且天气实际也好的概率:
111111()(/)
(/)()
P P x P x P x θθθ⋅=
=0.3×0.8/0.31=0.77
预报天气好而天气坏的概率:
212211()(/)
(/)()
P P x P x P x θθθ⋅=
=0.7×0.1/0.31=0.23
预报天气坏而实际天气好的概率:
121122()(/)
(/)()
P P x P x P x θθθ⋅=
=0.3×0.2/0.69=0.09
预报天气坏且实际天气也坏的概率: 222222()(/)
(/)()
P P x P x P x θθθ⋅=
=0.7×0.9/0.69=0.91
上述计算可以用表格表示:
③ 后验决策:
若气象中心预报天气好(x1),则每个方案的最大期望收益值 E(d1/x1)=0.77×5+0.23×(-1)=3.62 E(d2/x1)=0.77×(-0.2)+0.23×(-0.2)=-0.2
选择d1即施工的方案,相应在预报x1时的最大期望收益值E (X1)
=3.62
若气象中心预报天气不好(x2),各方案的最大期望收益值 E(d1/x2)=0.09×5+0.91×
(-1)=-0.46 E(d2/x2)=0.09×(-0.2)+0.91×(-0.2)=-0.2
选择d2即不施工的方案,相应在预报x2时的最大期望收益值E (X2)=-0.2
④ 计算补充信息的价值:
得到天气预报的情况下,后验决策的最大期望收益值:
1122*()()()()()EMV P x E x P x E x =⋅+⋅后=0.31×3.62+0.69×(-0.2)
=0.9842
则
补
充的信
息
价值为
:
EMV*(
后
)-
EMV*(先)=0.9842-0.8=0.1842
补充信息价值大于信息费(800元),即这种费用是合算的。
⑤ 画出决策树(略)。