圆柱和圆锥的体积(第二课时)

合集下载

苏教版六年级数学下册第二单元知识点归纳

苏教版六年级数学下册第二单元知识点归纳

第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。

2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。

3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。

4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。

第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。

第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。

第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。

(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。

与求体积除以3相反。

培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。

2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。

【一课一练】人教版小学数学六年级下册第三单元《圆柱与圆锥)》-第3课时圆柱的体积(二)-附答案

【一课一练】人教版小学数学六年级下册第三单元《圆柱与圆锥)》-第3课时圆柱的体积(二)-附答案

第3课时圆柱的体积(二)1.圆柱的底面直径扩大到原来的2倍,高缩小到原来的12,圆柱的体积()A.扩大到原来的2倍B.缩小到原来的12C.不变D.扩大到原来的4倍2.一个圆柱形水池,底面直径20米,深2米,池内最多容水(每立方米水重1吨)()A.125.6吨B.628吨C.439.6吨D.314吨3.如图:这个杯子()装下3000ml牛奶。

A.能B.不能C.无法判断4.将一根2m长的圆柱形木棒沿横截面切成两段圆柱后(如图),表面积比原来增加了6.4dm2。

这根圆柱形木棒原来的体积是()dm3。

A.128B.64C.12.85.把直径是4厘米的圆柱沿底面平均分成若干个扇形.切开拼成一个近似的长方体,长方体右侧面的面积是40平方厘米,圆柱的体积是。

6.一个圆柱的侧面积是18.84 cm2,高是10 cm,底面积是cm2,体积是cm3。

7.一个圆柱体的高减少2.5分米,体积减少100立方分米,这个圆柱体的底面积是平方分米.8.一个圆柱体的底面半径是3厘米,高是6厘米,侧面积是平方厘米,表面积是平方厘米,体积是立方厘米。

9.求下面圆柱的体积.(图中单位:厘米)◆基础知识达标10.一个圆柱的底面半径是3分米,高是2分米,它的侧面积是平方分米,表面积是平方分米,体积是立方分米。

11.一个圆锥的底面积是9平方分米,高是6分米,它的体积是立方分米,与它等底等高的圆柱体积是立方分米.12.如图,圆柱体的体积是立方分米(单位:分米)13.一台压路机的滚筒长2米,侧面积是5.024平方米,这个滚筒的体积是立方米。

14.一个高5厘米的圆柱体,沿底面直径将圆柱体锯成两块,其表面积增加40平方厘米,原来这个圆柱体的体积是立方厘米。

15.一种圆珠笔笔芯的内直径约0.3厘米,灌装的油墨高7.5厘米.一枝这样的笔芯内能灌装立方厘米的油墨?16.把一个棱长为20厘米的正方体削成一个尽可能大的圆柱,这个圆柱的体积是立方厘米,削去部分的体积是立方厘米。

六年级下数学说课稿圆锥的体积_西师版

六年级下数学说课稿圆锥的体积_西师版

六年级下数学说课稿圆锥的体积_西师版《圆锥的体积》说课一、教材分析1、说课内容:《圆锥的体积》,西师版小学数学六年级下册第二单元《圆柱和圆锥》中《圆锥》的第二课时。

2、教材简析:圆锥是小学几何初步知识最后一个单元的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形,也是在此基础上的又一个延伸,同时为学生以后系统学习立体几何知识打下基础。

按编者意图《圆锥》(含“圆锥的认识”和“圆锥的体积”)新课为一课时,但我认为这样教学内容太多,时间不够充分,不能保证较好的教学效果,所以这部分内容我采用了两课时进行教学,先用《圆锥的认识》做准备和铺垫,再单独完成《圆锥的体积》教学,这样有利于更好地把握和突破教学重难点,使学生学习效果更明显。

3、教学重难点及关键:本课重点是能正确运用公式计算圆锥的体积,并能解决简单的实际问题。

教学难点是理解圆锥体积公式的推导考、讨论交流、归纳总结等活动探索理解圆锥的体积计算公式,充分展示数学知识的形成过程,发挥学生的主体作用,让学生积极主动地参与学习的全过程。

培养学生的动手操作能力和数学思维能力,使学生人人都能获得必要的数学,人人都能得到不同的发展。

三、教学流程本节课我设计了以下五个教学环节:即提出猜想、实验操作、讨论归纳、练习应用、质疑提高提出猜想:先出示复习题(幻灯片2),让学生口算圆柱的体积,回忆圆柱的有关知识和圆柱的体积体积计算公式,为本课的学习做好铺垫。

接着出示圆锥(幻灯片3),让学生猜一猜怎样计算圆锥的体积,对学生的猜想不急于做出评价。

通过交流使学生得到两点认识:①我们可以通过实验进行探索。

②圆锥体积可能与它的底面积和高有关。

实验操作:先展示幻灯片4-45,介绍等底等高的圆柱和圆锥,这是本课的重要前提和铺垫。

接着学生4-6人分组实验,1-2人共同操作,用等底等高的圆锥形容器装满水倒入圆柱形容器中。

全体成员观察思考:①实验中的圆锥形和圆柱形容器有什么关系?②倒了几次水刚好把圆柱形容器装满?③通过实验你发现了什么?3、讨论归纳:针对以上实验和问题,让学生先在小组内讨论,再进行全班交流。

人教版数学六年级下册《圆锥的体积》圆柱与圆锥2

人教版数学六年级下册《圆锥的体积》圆柱与圆锥2
《圆锥的体积》圆柱与圆锥 2
人教版数学六年级下册
生动有趣的课程,搭配各个互动环节助理您教学成功
感谢所有辛勤付出的人民教师
丰收的喜悦
这堆小麦的体 积是多少呢?
圆锥的体积 怎么求呢?
准备等底等高的圆柱形容器和 圆锥形容器各一个.
将圆锥形容器装满沙,再倒入圆柱 形容器,看几次能倒满.
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
1 3.14 (10 2)2 3 3 78.(5 厘米3)
答:这堆零件的体积是78.5立方厘米.
圆锥在生活中的应用
圆锥在生活中的应用
努力吧!
说说下列各图是由哪些图形组成的。
计算下面各圆锥的体积.
3dm 12cm
s 9m2
3.6m 8dm 8cm
V=31 sh
13×19×12=76(立方厘米)
答:这个零件的体积是76立方厘米。
一堆大米,近似于圆锥形,量得 底面周长是9.42厘米,高5厘米。 它的体积是多少立方厘米?
把一个棱长是6厘米的正方体木块, 加工成一个最大圆锥体,圆锥的体 积是多少立方厘米?
V圆柱=sh
V=
1 3
sh
打谷场上,有一个近似于圆锥的小麦堆, 测得底面半径是2米,高是1.5米。你能计算出 这堆小麦的体积吗?
1 3.14 22 1.5 3 6.2(8 米圆锥形零件,它的底面直径是10厘 米,高是3厘米,这个零件的体积是多少 立方厘米?

六(下)数学教案第3讲~圆柱与圆锥2

六(下)数学教案第3讲~圆柱与圆锥2

六(下)数学教案第3讲~圆柱与圆锥2【知识精讲】圆柱与圆锥是小升初的必考点,也是六年级下学期非常重要的章节。

此章节属于立体几何专题中的一部分,圆柱和圆锥也会跟长方体正方体的专题相结合,在小升初考试中通常以填空、选择、应用题的形式出现。

本讲主要内容:1、圆锥的体积计算;2、体积不变题;3、圆柱圆锥的倍比问题;4、不规则容器的容积知识点一、圆锥的体积计算例1、一个圆锥的体积是75.36立方分米,底面半径是2分米,高是()分米。

练1.1、手工课上,小薇带了一个棱长是6厘米的正方体橡皮泥。

(1)她把这个橡皮泥切成了完全相同的两块长方体,将其中的一小块用彩纸包好,小薇至少用了多少平方厘米的彩纸?(2)她将另一小块捏成了一个高为9厘米的圆锥形陀螺,这个陀螺的底面积是多少平方厘米?练1.2、有一块正方体木料,棱长总和是96厘米,把这块木料削成一个最大的圆锥,求削成的圆锥的体积是多少?练1.3、一个长6分米、宽5分米、高4分米的长方体加工成最大的圆柱,圆柱的体积是多少立方分米再削成最大的圆锥体积是多少立方分米?例2、“六一”儿童节,乐乐在家里特制巧克力蛋糕送给福利院小朋友(如图),蛋筒的底面直径是6厘米,高是10厘米,做30个这样的蛋筒,大约需要多少升巧克力原料?(得数保留整数)练2.1、一种儿童玩具--陀螺(如右下图),上面是圆柱,下面是圆锥。

经过测试,只有当圆柱直径3厘米,高4厘米,圆锥的高是圆柱的高的43,旋转时才能又快又稳,试问这个陀螺的体积有多少。

(得数保留整立方厘米数)练2.2、如图,直角三角形绕直角边旋转一周后得到的立体图形是( ),它的体积最大是( )立方厘米。

练2.3、下图是一个直角三角形。

AC 边上的高是多少厘米?(请先在图中画出高,并计算)再算一算,以AC 为轴旋转一周形成的立体图形的体积是多少立方厘米?知识点二、体积不变问题例3、把一个底面积是6.28平方厘米,高是9厘米的圆柱体铁块熔铸成一个底面积是18.84平方厘米的圆锥体。

【一课一练】人教版小学数学六年级下册第三单元《圆柱与圆锥)》-第5课时圆锥的体积(二)-附答案

【一课一练】人教版小学数学六年级下册第三单元《圆柱与圆锥)》-第5课时圆锥的体积(二)-附答案

第5课时圆锥的体积(二)1.甲、乙两个等高的圆锥,甲圆锥的底面半径是乙圆锥底面半径的3倍,则甲圆锥体积是乙圆锥体积的()倍。

A.3B.9C.272.一个高是15cm的圆锥形容器盛满水,倒入和它等底的圆柱形量杯里,水的高度是()A.5cm B.10cm C.15cm3.把一团圆柱体橡皮泥揉成与它等底的圆锥体,圆锥的高与之前圆柱的高比较()A.圆锥高是圆柱高的3倍B.圆锥高是圆柱高的6倍C.圆锥高是圆柱高的13D.不变4.将一个圆锥底面积扩大6倍,高不变,那么圆锥的体积扩大()倍.A.6B.3C.25.一个圆锥形的机器零件,底面半径是3厘米,高是5厘米,这个机器零件所占空间的大小是()立方厘米。

A.141.3B.47.1C.15.7D.314 6.把一段圆柱形的木材,削去一个体积最大的圆锥,削去部分的体积是圆锥体积的()A.3倍B.13C.23D.2倍7.一个圆柱和一个圆锥的底面积相等,圆柱的高是圆锥的高的2倍,则圆锥的体积是圆柱体积的()。

A.12B.13C.168.下图中正方体、圆柱和圆锥底的面积相等,高也相等。

下面()是正确的。

A.圆柱的体积比正方体的体积小一些B.圆锥的体积和正方体的体积相等C.圆柱的体积与圆锥的体积相等D.正方体的体积是圆锥体积的3倍◆基础知识达标9.妈妈榨了五大杯橙汁(如图1)招待客人,如果倒入图2所示的杯子中,可以倒满杯。

(两个杯子的杯口同样大)10.一个圆柱的体积是6 m3,和它等底等高的圆锥的体积是m3。

◆课后能力提升11.一个长方体、一个圆柱体和一个圆锥体的底面积相等、体积也相等,那么圆锥的高是圆柱的,长方体高是圆锥高的。

12.一个正方体木块的棱长是6cm,把它削成一个最大的圆柱体,圆柱的体积是cm3,再把这个圆柱体削成一个最大的圆锥体,圆锥体的体积约是cm3.13.把一个棱长为6分米的正方体木块削成一个最大的圆锥,这个圆锥的体积是立方分米。

14.一个圆锥的底面周长是18.84cm,高是10cm,这个圆锥的体积是15.一个圆柱和一个圆锥等底等高,它们的体积的差是50立方厘米,它们的体积的和是立方厘米.16.等底等高的圆柱和圆锥,体积之差是3.2立方分米,圆柱的体积是立方分米。

新人教版六年级数学下册教案—第3单元 圆柱与圆锥第2课时 圆锥的体积(1)

新人教版六年级数学下册教案—第3单元  圆柱与圆锥第2课时 圆锥的体积(1)

六年级下册教案
第3单元圆柱与圆锥
第2课时圆锥的体积(1)
【教学目标】
1、通过实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

【教学重难点】
重难点:1、理解圆锥体积公式的推导过程。

2、计算圆锥的体积。

【教学过程】
一、问题引入
1、提出问题。

出示一个铅锤,并提问:你有办法知道这个铅锤的体积吗?
2、揭示课题。

这节课我们一起来探究圆锥体积的计算方法。

(板书课题:圆锥的体积) 二.新知探究
1、教学例2。

(1)回忆圆柱体积计算公式的推导过程,
(2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?
(3)实验探究
拿出等底等高的圆柱和圆锥各一个,先在圆锥里装满水,然后倒入圆柱。

让学生注意观察,倒几次正好把圆柱装满?
(4)讨论探究。

1
(5)引导归纳。

圆锥的体积是和它等底等高的圆柱的体积的
3
三、巩固练习
1、完成教材第34页“做一做”第1题。

2、完成练习六的第1~6题。

人教版数学六年级下册《圆柱的体积》圆柱与圆锥(第2课时)

人教版数学六年级下册《圆柱的体积》圆柱与圆锥(第2课时)

由v r 2h得
1升 1000 毫升
3.14 32 11
932 .58 1000
3.14 9 11 310.8( 6 cm3) 310.86(ml)
答:这些果汁够明明 和客人每人一杯。
新知应用
一根圆柱形木料底面半径是0.2m,长5m.如果 做一张课桌用去木料0.02m3。这根木料最多 能做多少张课桌?
3.14 42 10
8cm
498ml 3.141610
502.(4 cm3)
10cm
502.4(ml)
因为502.4大于 498,所以杯子 能装下这袋牛奶。
新知应用
明明家里来了两位小客人,妈妈冲了1升果
汁。用的杯子底面直径6cm,高11cm,这些果
汁够明明和客人每人一杯吗?Fra bibliotek解:6 2 ( 3 cm) 3 310 .86 932 .5(8 ml)
变,则体积扩大到原来的2倍; √
(2)一个圆柱的高扩大为原来的2倍,底面积缩 小为原来的1/2,它的体积不变;√
(3)如果两个圆柱的体积相等,那么它们一定是 等底等高; ×
能力提升2
把一个高是2dm的圆柱截成两个小圆柱之后, 表面积增加了18cm2 ,原来圆柱的体积是 (180)cm3
当堂小结
利用圆柱的体积公式解决简单的实际问题时 要注意对公式的灵活使用,注意审题仔细。 弄清楚圆柱的体积、底面积、高三者之间的关系。


能力提升
两个圆柱体的底面积相等时,高越长的体积越大。 底面积相等时,体积之比等于(高之比 )。


能力提升
圆柱的体积=底面积×高 两个圆柱的高相同,底面积不同,哪个圆柱的 体积大? 高相同时,底面积越大的体积越大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱和圆锥的体积(第二课时)
一、串联情境唤醒旧知。

1.谈话:同学们,上节课我们通过研究冰淇淋盒的体积问题,学会了如何求圆柱的体积。

你能说说如何求圆柱的体积吗?计算公式是怎样推出的?
2.口答练习:
你能借助公式计算下面圆柱的体积吗?
(1)底面半径15厘米,高8厘米。

(2)底面直径6米,高18米。

【设计意图】:通过复习公式,唤起学生的回忆,为下面利用公式解决打下基础。

二、巧用公式,解决问题。

1.出示课后练习第3题。

在美国加利福尼亚洲发现了一棵高达142米的巨衫。

它的树干上下几乎一样粗,横截面周长约是38米。

师谈话:你能提出什么问题?
生:树干的体积会是多大呢?
师:知道了树干横截面的周长,该如何求体积呢?
2.学生独立解答。

3.交流算法。

4.师生总结解决此类问题的步骤:
(1)根据周长求出底面的半径。

(2)根据半径求出底面的面积。

(3)根据体积公式求出树干的体积。

【设计意图】:让学生明确已知圆柱底面周长,求圆柱体积的计算方法。

三、综合练习,统一公式。

1.出示课后练习第10题:计算下面图形的体积。

2.交流算法。

3.师谈话:你能把上面三种图形的体积公式统一成一个吗?
引导发现:体积=底面积×高
【设计意图】:通过计算,发现长方体、正方体、圆柱体的体积公式可以统一成一个,感受到它们之间的密切联系,有助于提高学生的综合实践能力。

四.拓展练习,提高能力。

1.出示练习第12题。

引导学生发现:体积相等、底面积也相等的圆柱和圆锥,圆锥的高是圆柱高的3倍。

2.出示练习13题。

(1)用62.8厘米的边长做圆柱形小桶的底面周长,47.1厘米的边长做圆柱小桶的高。

(2)用47.1厘米的边长做圆柱形小桶的底面周长,62.8厘米的边长做圆柱小桶的高。

3.课后思考:练习第14题。

【设计意图】:在拓展练习中提高学生的解决实际问题的能力。

课后反思:灵活解决圆柱的实际问题,还需要加强练习。

第三课时
教学目标:在现实生活中,通过观察、操作、比较等活动,结合具体情境,理解圆锥体积的计算方法,并能解决简单的实际问题。

一、创设情境,提出问题。

谈话:在炎热的夏季里,同学们一定很喜欢吃冰淇淋吧!(出示课件),看:超市里正在搞促销活动呢,圆柱形的冰淇淋每个5元,圆锥形的冰淇淋每个2元。

(图中圆柱形和圆锥形的雪糕是等底等高的。

)用10元钱怎样买冰淇淋最合算呢?
谈话:要解决这个问题,需要先解决哪些问题?你有什么困难吗?谈话:是啊,今天我们就一起来学习“圆锥的体积”,相信你一定会自己找到答案的。

引出课题:圆锥的体积
[设计意图]联系学生熟悉的生活情境,激活学生思维,让学生主动思考,提出问题,有效激发了学生的学习热情和探究欲望。

二、猜想验证、研究问题。

1、引导猜想:
谈话:请同学们猜测一下,圆锥的体积可能与什么有关系?有怎样的关系?
[设计意图]让学生运用已有的知识和生活经验进行猜测,大胆提出假想,既让学生实现了创造性的学,又激发了学生急于验证假想的探究欲望。

2、实验验证:
①分组实验,验证猜想:
谈话:下面,请同学们利用老师提供的实验材料分组操作,自己找一找屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。

课件出示思考题:
(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
(2)你们的小组是怎样进行实验的?
学生分组操作实验,教师巡回指导。

(其中多数小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。

同组的学生做完实验后,进行交流,并把实验结果填写在表格中。

②汇报交流。

展示不同的结论
⑴请这几个小组同学说出他们是怎样通过实验得出这一结论的?(圆锥的体积是等底等高的圆柱体积的。


⑵讨论:哪个小组得出的结论更加科学合理一些?
(请他们拿出实验用的器材,自己比划、验证这个结论。


⑶引导学生自主修正另外两个结论。

③总结圆锥体积的计算方法:V= Sh
④回归课前问题:你能分别算出这两个冰淇淋的体积吗?在练习本上试一试吧。

谈话:用10元钱怎样买冰淇淋最合算?说说你是怎样想的?
[设计意图]让学生带着问题动手实验、自己研究、分析问题,留给学生创新时空,并通过小组合作交流、共同探讨,初步得出计算圆锥体积的方法,既突出主体地位又培养了创新精神。

三、应用公式、解决问题。

1、判断。

①圆锥的体积等于圆柱体积的。

( )
②两个体积相等的等底圆柱和圆锥,圆锥的高一定是圆柱高的3倍。

( )
③一个圆锥形物体,底面积是 a 平方米,高是 b 米,它的体积是 ab 立方米。

( )
④把一根圆体木头,削成一个最大的圆锥体,削去体积是圆锥体积的2倍。

( )
2、求下列各圆锥的体积:
a、底面面积是7.8平方米,高是1.8米;
b、底面半径是4厘米,高是21厘米;
c、底面直径是6分米,高是6分米;
3、解决问题。

①一堆圆锥形的煤堆,底面半径是 1.5 米,高是 1.2 米。

如果每立方米煤约重 1.4 吨,这堆煤有多少吨?
②有一块正方体的木材,它的棱长是9分米,把这块木料加工成一个最大的圆锥体,被削去的体积是多少?
[设计意图]通过有层次、有顺序、有梯度的循序渐进的练习,给学生提供自主探索的机会。

通过这样的练习活动,逐步培养学生的创新意识,形成初步的探索和解决问题的能力。

四、全课总结
谈话:通过本节课的学习,你有哪些收获?
课后反思:在现实生活中,通过观察、操作、比较等活动,结合具体情境,理解圆锥体积的计算方法,并能解决简单的实际问题。

相关文档
最新文档