第五章 统计量及其分布
概率论与数理统计(茆诗松)第二版课后第五章习题参考答案

(2)上班所需时间在半小时以内有 25 + 60 + 85 = 170 人. 5. 40 种刊物的月发行量(单位:百册)如下: 5954 5022 14667 6582 6870 1840 2662 4508 1208 3852 618 3008 1268 1978 7963 2048 3077 993 353 14263 1714 11127 6926 2047 714 5923 6006 14267 1697 13876 4001 2280 1223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为 1700(百册) ; (2)画出直方图. 解: (1)最大观测值为 353,最小观测值为 14667,则组距为 d = 1700, 区间端点可取为 0,1700,3400,5100,6800,8500,10200,11900,13600,15300, 频率分布表为 组序 1 2 3 4 5 6 7 8 9 合计 (2)作图略.
1091 1572 775 1044 738
3. 假若某地区 30 名 2000 年某专业毕业生实习期满后的月薪数据如下: 909 1086 1120 999 1320 1071 1081 1130 1336 967 825 914 992 1232 950 1203 1025 1096 808 1224 871 1164 971 950 866 (1)构造该批数据的频率分布表(分 6 组) ; (2)画出直方图. 解: (1)最大观测值为 1572,最小观测值为 738,则组距为 d =
样本的分布为 p ( x1 , x2 , L , xn ) = λ eλ x1 ⋅ λ eλ x2 L λ eλ xn = λ n e
第五章 统计量及其分布

2018/10/13
, Xn
抽定
样本实现 x1 , x2 ,
, xn
6
样本应满足的性质 (1) 代表性;(2) 随机性。 简单随机样本(Independence identical distribution) Def 设X 1 , X 2 , , X n为总体X 的一个样本,如果X 1 , X 2 , , X n 相互独立,且均与总体X 具有相同的分布,则称X 1 , X 2 , , X n为简单随机样本,简称iid 样本。 例如:要通过随机抽样了解一批产品的次品率,如果每 次抽取一件产品观测后放回原来的总量中再抽第二件产 品,则这样获得一个简单随机抽样。 实际抽样中,往往是不再放回产品,则这不是一个 简单随机抽样。但当总量N很大时,可近似看成是简单 随机抽样。 样本分布 Def 设X1 , X 2 , , X n为总体X 的一个样本,则(X1 , X 2 , 的分布称为样本分布。
参数估计 假设检验
试验设计 抽样
数据
整理
我们这门课所学的数理 统计实际上是统计推断 及其应用(方差分析与 回归分析)的一部分内 容。
为什么要用数理统计方法研究问题?随机现象有它的规律 性,随机现象的特点注定了进行足够多次观察,其规律性才 能清楚地呈现出来。但是,客观上只允许对随机现象进行有 限次观察试验,只能获得局部观察资料.
i 1 i 1 n n
p i1 (1 p )
2018/10/13
xi
n
n
xi
i 1
n
9
例5.2 设总体X ~ e( ),X 1 , X 2 , 样本,求样本分布。
, X n是抽自总体X 的iid
e - x x 0 解:总体 X ~ e( ),即有 f X ( x)= x0 0 设样本任意一组实现为x1 , x2 , , xn,由于样本为iid e- xi xi 0 所以 f X i ( xi )= i 1, 2, , n xi 0 0 于是,样本分布的概率密度为 n - x n e i min x1 , x2 , , xn 0 1i n f ( x1 , x2 , , xn ) f X i ( xi ) i 1 i 1 0 其他 n xi n e i1 min x , x , , x 0 1 2 n 1i n 0 其他 2018/10/13 10
第五章 统计量及其分布

For personal use only in study and research;not for commercial use第五章 统计量及其分布§ 5.1 总体与样本内容概要1 总体 在一个统计问题中,研究对象的全体称为总体,构成总体的每个成员称为个体若关心的是总体中每个个体的一个数量指标,则该总体称为一维分布。
若关心的是总体中的每个个体的两个数量指标,则该总体称为二维总体,二维总体就是一个二维分布,余此类推。
2 有限总体与无限总体 若总体中的个数是有限的,此总体称为有限总体。
若总体中的个数是无限的,此总体称为无限总体。
实际中总体的个体数大多是有限的。
当个体数充分大时,将有限总体看作无限总体是一种合理的抽象。
3 样本 从总体中随机抽取的部分个体组成的集合称为样本,样本的个体称为样本,样本个数称为样本容量或样本量。
样本常用n 个指标值1x ,2x , ,n x 表示.它可看作n 维随机变量,又可看作其观察值,这由上下文加以区别。
4 分组样本 只知样本观测值所在区间,而不知具体值的样本称为分组样本。
缺点:与完全样本相比损失部分信息。
优点:在样本量较大时,用分组样本即简明扼要,又能帮助人们更好的认识总体。
5 简单随机样本 若样本 1x ,2x , ,n x 是n 个相互独立的具有同一分布(总体分布)的随机变量,册称该样本为简单随机样本,仍简称样本。
若总体的分布函数为F(x),则其样本的(联合)分布函数为()∏=ni ix F 1;若总体的密度函数为P(x),则其样本的(联合)密度函数为∏=ni x p 1)(;若总体的分布列为{p(x i )},则其样本的(联合)分布列为∏=ni x p 1)(;习题与解答5.11. 某地电视台想了解某电视栏目(如:每晚九点至九点半的体育节目)在该 地区的收视率情况,于是委托一家市场咨询公司进行一次电话访查。
(1)该项研究的总体是什么? (2)该项研究的样本是什么?解:(1)该项研究的总体是该地区全体电视观众;(2)该项研究的样本上一该地区被电话访查的电视观众。
概率论与数理统计(茆诗松)课后第五章习题参考答案

第五章 统计量及其分布习题5.11. 某地电视台想了解某电视栏目(如:每日九点至九点半的体育节目)在该地区的收视率情况,于是委托一家市场咨询公司进行一次电话访查. (1)该项研究的总体是什么? (2)该项研究的样本是什么? 解:(1)总体是该地区的全体用户;(2)样本是被访查的电话用户.2. 某市要调查成年男子的吸烟率,特聘请50名统计专业本科生作街头随机调查,要求每位学生调查100名成年男子,问该项调查的总体和样本分别是什么,总体用什么分布描述为宜?解:总体是任意100名成年男子中的吸烟人数;样本是这50名学生中每一个人调查所得到的吸烟人数;总体用二项分布描述比较合适.3. 设某厂大量生产某种产品,其不合格品率p 未知,每m 件产品包装为一盒.为了检查产品的质量,任意抽取n 盒,查其中的不合格品数,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是全体盒装产品中每一盒的不合格品数;样本是被抽取的n 盒产品中每一盒的不合格品数;总体的分布为X ~ b (m , p ),x m x qp x m x X P −⎟⎟⎠⎞⎜⎜⎝⎛==}{,x = 0, 1, …, n , 样本的分布为nn x m x n x m x x m x n n q p x m q p x m q p x m x X x X x X P −−−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛====L L 2211212211},,,{ ∑∑⋅⎟⎟⎠⎞⎜⎜⎝⎛===−=∏ni tni tx mn x ni i q px m 111.4. 为估计鱼塘里有多少鱼,一位统计学家设计了一个方案如下:从鱼塘中打捞出一网鱼,计有n 条,涂上不会被水冲刷掉的红漆后放回,一天后再从鱼塘里打捞一网,发现共有m 条鱼,而涂有红漆的鱼则有k 条,你能估计出鱼塘里大概有多少鱼吗?该问题的总体和样本又分别是什么呢? 解:设鱼塘里有N 条鱼,有涂有红漆的鱼所占比例为Nn , 而一天后打捞出的一网鱼中涂有红漆的鱼所占比例为m k,估计mk N n ≈,故估计出鱼塘里大概有kmnN ≈条鱼;总体是鱼塘里的所有鱼;样本是一天后再从鱼塘里打捞出的一网鱼. 5. 某厂生产的电容器的使用寿命服从指数分布,为了了解其平均寿命,从中抽出n 件产品测其使用寿命,试说明什么是总体,什么是样本,并指出样本的分布. 解:总体是该厂生产的全体电容器的寿命;样本是被抽取的n 件电容器的寿命;总体的分布为X ~ e (λ ),p (x ) = λ e λ x ,x > 0,样本的分布为11212(,,,)e e e enin i x x x x n n p x x x λλλλλλλλ=∑=⋅=L L ,x i > 0.6. 美国某高校根据毕业生返校情况纪录,宣布该校毕业生的年平均工资为5万美元,你对此有何评论? 解:返校的毕业生只是毕业生中一部分特殊群体,样本的抽取不具有随机性,不能反应全体毕业生的情况.习题5.21. 以下是某工厂通过抽样调查得到的10名工人一周内生产的产品数149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解:经验分布函数0,138,0.1,138149,0.3,149153,()0.5,153156,0.8,156160,0.9,160169,1,169.n x x x F x x x x x <⎧⎪≤<⎪⎪≤<⎪=≤<⎨⎪≤<⎪≤<⎪⎪≥⎩ 作图略.2. 下表是经过整理后得到的分组样本组序 1 2 3 4 5分组区间 (38,48] (48,58] (58,68] (68,78] (78,88] 频数 3 4 8 3 2试写出此分布样本的经验分布函数.解:经验分布函数0,37.5,0.15,37.547.5,0.35,47.557.5,()0.75,57.567.5,0.9,67.577.5,1,77.5.n x x x F x x x x <⎧⎪≤<⎪⎪≤<⎪=⎨≤<⎪⎪≤<⎪≥⎪⎩3. 假若某地区30名2000年某专业毕业生实习期满后的月薪数据如下:909 1086 1120 999 1320 1091 1071 1081 1130 1336 967 1572 825 914 992 1232 950 775 1203 1025 1096 808 1224 1044 871 1164 971 950 866 738(1)构造该批数据的频率分布表(分6组); (2)画出直方图. 解:(1)最大观测值为1572,最小观测值为738,则组距为15727381406d −=≈, 区间端点可取为735,875,1015,1155,1295,1435,1575, 频率分布表为 组序 分组区间 组中值 频数 频率 累计频率 1 (735, 875] 805 6 0.2 0.2 2 (875, 1015] 945 8 0.2667 0.4667 3 (1015, 1155] 1085 9 0.3 0.7667 4 (1155, 1295] 1225 4 0.1333 0.95 (1295,0.96672 0.066671435]13651 0.03333150516 (1435,1575]合计30 1(2)作图略.4.某公司对其250名职工上班所需时间(单位:分钟)进行了调查,下面是其不完整的频率分布表:所需时间频率0~10 0.1010~20 0.2420~3030~40 0.1840~50 0.14 (1)试将频率分布表补充完整.(2)该公司上班所需时间在半小时以内有多少人?解:(1)频率分布表为组序分组区间组中值频数频率累计频率10] 5 25 0.1 0.11 (0,20] 15 60 0.24 0.342 (10,30] 25 85 0.34 0.683 (20,40] 35 45 0.18 0.864 (30,50] 45 35 0.14 15 (40,合计250 1(2)上班所需时间在半小时以内有25 + 60 + 85 = 170人.5.40种刊物的月发行量(单位:百册)如下:5954 5022 14667 6582 6870 1840 2662 45081208 3852 618 3008 1268 1978 7963 20483077 993 353 14263 1714 11127 6926 2047714 5923 6006 14267 1697 13876 4001 22801223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为1700(百册);(2)画出直方图.解:(1)最大观测值为353,最小观测值为14667,则组距为d = 1700,区间端点可取为0,1700,3400,5100,6800,8500,10200,11900,13600,15300,频率分布表为组序分组区间组中值频数频率累计频率1700] 850 9 0.225 0.2251 (0,25509 0.225 0.453400]2 (1700,42505 0.125 0.5755100]3 (3400,59504 0.1 0.6756800]4 (5100,76504 0.1 0.7758500]5 (6800,1 0.025 0.893506 (8500,10200]1 0.025 0.825110507 (10200,11900]3 0.075 0.9127508 (11900,13600]4 0.1 11445015300]9 (13600,合计30 1(2)作图略.6.对下列数据构造茎叶图472 425 447 377 341 369 412 399400 382 366 425 399 398 423 384418 392 372 418 374 385 439 408429 428 430 413 405 381 403 479381 443 441 433 399 379 386 387 解:茎叶图为34 135369, 6377, 2, 4, 9382, 4, 5, 1, 1, 6, 7399, 8, 2400, 5, 3412, 9, 8, 8, 3, 9425, 5, 3, 8, 9, 8439, 0, 3447, 3, 14546472, 97.根据调查,某集团公司的中层管理人员的年薪(单位:千元)数据如下:40.6 39.6 37.8 36.2 38.838.6 39.6 40.0 34.7 41.738.9 37.9 37.0 35.1 36.737.1 37.7 39.2 36.9 38.3试画出茎叶图.解:茎叶图为34.735. 136.2, 7, 937.0, 1, 738. 639.6, 6, 240.6, 8, 041.742.43.844.9, 545. 4习题5.31.在一本书上我们随机的检查了10页,发现每页上的错误数为:4 5 6 0 3 1 4 2 1 4试计算其样本均值、样本方差和样本标准差.解:样本均值3)41654(101=+++++=L x ; 样本方差7778.3])34()31()36()35()34[(91222222≈−+−++−+−+−=L s ;样本标准差9437.17778.3≈=s .2. 证明:对任意常数c , d ,有11()()()()()()n niiiii i x c y d x x y y n x c y d ==−−=−−+−−∑∑.证:∑∑==−+−−+−=−−ni i i n i i i d y y y c x x x d y c x 11)]())][(()[())((∑=−−+−−+−−+−−=ni i i i i d y c x d y x x y y c x y y x x 1)])(())(())(())([())(()()()()())((111d y c x n x x d y y y c x y y x x ni i ni i ni i i −−+−−+−−+−−=∑∑∑===))(())(())((00))((11d y c x n y y x x d y c x n y y x x ni i i ni i i −−+−−=−−+++−−=∑∑==.3. 设x 1 , …, x n 和y 1 , …, y n 是两组样本观测值,且有如下关系:y i = 3 x i − 4,i = 1, …, n ,试求样本均值x和y 间的关系以及样本方差2x s 和2y s 间的关系.解:4343431)43(111111−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=−==∑∑∑∑====x x n n x n x n y n y ni i n i i n i i n i i ; 212121229(19)]43()43[(11)(11x n i i n i i n i i ys x x n x x n y y n s =−−=−−−−=−−=∑∑∑===. 4. 记∑==n i i n x n x 11,∑=−−=n i i n x x n s 122)(11,n = 1, 2, …,证明 )(1111n n n n x x n x x −++=++,21221)(111n n nn x x n s n n s −++−=++. 证:)(111111111111111111n n n n n n n i i n i i n x x n x x n x n n x n x n n n x n x −++=+++=++⋅+=+=+++=+=+∑∑; ⎥⎦⎤⎢⎣⎡−+−−=−=++=+=++∑∑21112112121))(1()(1)(1n n n i n i n i n i n x x n x x n x x n s ⎥⎦⎤⎢⎣⎡−+⋅+−−+−=++=∑2122112)()1(1)1()()(1n n n n n i n i x x n n x x x x n 2122112)(111)(1)(11)1(1n n n n n n i n i x x n s n n x x n n x x n n n −++−=⎥⎦⎤⎢⎣⎡−++−−−=++=∑.5. 从同一总体中抽取两个容量分别为n , m 的样本,样本均值分别为1x , 2x ,样本方差分别为21s , 22s ,将两组样本合并,其均值、方差分别为x , s 2,证明:12nx mx x n m+=+,)1)(()(1)1()1(22122212−++−+−+−+−=m n m n x x nm m n s m s n s . 证:m n x m x n x x m n x x m n x m j j n i i m j j n i i ++=⎟⎟⎠⎞⎜⎜⎝⎛++=⎟⎟⎠⎞⎜⎜⎝⎛++=∑∑∑∑====211211121111; ⎥⎦⎤⎢⎣⎡−+−−+=∑∑==m j jn i i x x x x m n s 1221212()(11 ⎥⎦⎤⎢⎣⎡−+−+−+−−+=∑∑==221222211211)()()()(11x x m x x x x n x x m n m j j n i i ⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛++−+−+⎟⎠⎞⎜⎝⎛++−+−−+=221222221121)1()1(11m n x m x n x m s m m n x m x n x n s n m n 2212222122221)()()(111)1()1(m n x x mn x x nm m n m n s m s n +−+−⋅−++−+−+−=)1)(()(1)1()1(2212221−++−+−+−+−=m n m n x x nm m n s m s n . 6. 设有容量为n 的样本A ,它的样本均值为A x ,样本标准差为s A ,样本极差为R A ,样本中位数为m A .现对样本中每一个观测值施行如下变换:y = ax + b ,如此得到样本B ,试写出样本B 的均值、标准差、极差和中位数.解:b x a b x n a nb x a n b ax n y n y A ni i n i i n i i n i i B +=+⋅=+=+==∑∑∑∑====11111)(1)(11;A n i A i n i A i n iB i B s a x x n a b x a b ax n y y n s ||)(11||)(11)(11121212=−−⋅=−−+−=−−=∑∑∑===; R B = y (n ) − y (1) = a x (n ) + b − a x (1) − b = a [x (n ) − x (1)] = a R A ; 当n 为奇数时,b am b ax y m A n n B +=+==⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛+5.021215.0,当n 为偶数时,b am b x x ab ax b ax y y m A n n n n n n B +=++=+++=+=⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛5.01221221225.0][2][21][21,故m B 0.5 = a m A 0.5 + b .7. 证明:容量为2的样本x 1 , x 2的方差为2212)(21x x s −=. 证:221212221221222112)(214)(4)(])2()2[(121x x x x x x x x x x x x s −=−+−=+−++−−=. 8. 设x 1 , …, x n 是来自U (−1, 1) 的样本,试求)(X E 和Var(X .解:因X i ~ U (−1, 1),有0211)(=+−=i X E ,3112)11()(Var 2=+=i X ,故0)(1)1()(11===∑∑==ni i n i i X E n X n E X E ,n n nXnX n X ni in i i 31311)(Var 11Var )(Var 2121=⋅⋅==⎟⎟⎠⎞⎜⎜⎝⎛=∑∑==. 9. 设总体二阶矩存在,X 1 , …, X n 是样本,证明X X i −与)(j i X X j ≠−的相关系数为 − (n − 1) − 1.证:因X 1 , X 2 , …, X n 相互独立,有Cov (X l , X k ) = 0,(l ≠ k ), 则),(Cov ),(Cov ),(Cov ),(Cov ),(Cov X X X X X X X X X X X X j i j i j i +−−=−−)(Var ),1(Cov )1,(Cov 0X X X nX n X j j i i +−−= 22221111)(Var )(Var 1)(Var 1σσσσnn n n X X n X n j i −=+−−=+−−=,且)1,(Cov 21),(Cov 2)(Var )(Var )(Var 22i i i i i X nX n X X X X X X −+=−+=−σσ)(Var 1212222X X nn n n j −=−=−+=σσσσ,故11111)(Var )(Var ),(Cov ),(Corr 222−−=−⋅−−=−⋅−−−=−−n nn n n n X X X X X X X X X X X X j i j i j i σσσ. 10.设x 1 , x 2 ,…, x n 为一个样本,∑=−−=ni i x x n s 122)(11是样本方差,试证: 22)()1(1s x x n n ji j i =−−∑<. 证:因⎟⎟⎠⎞⎜⎜⎝⎛−−=−−=∑∑==21212211)(11x n x n x x n s n i i n i i , 则⎟⎟⎠⎞⎜⎜⎝⎛−+=−+=−=−∑∑∑∑∑∑∑∑∑∑∑==========<n i n j j i n i n j j n i n j i n i n j j i j i n i n j j i j i j i x x x x x x x x x x x x 1111211211221122221)2(21)(21)( 221212111212)1(2221221s n n x n x n x n x n x n x x x n x n n i i n i i n i n j j i n j j n i i −=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛−+=∑∑∑∑∑∑======, 故22)()1(1s x x n n ji j i =−−∑<. 11.设总体4阶中心矩ν4 = E [X − E (X )]4存在,试对样本方差∑=−−=ni i X X n S 122(11,有 2442442442)1(3)1()2(2)1()()Var(−−+−−−−−=n n n n n S σνσνσν,其中σ 2为总体X 的方差.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎥⎦⎤⎢⎣⎡−−−−=∑=21222)()(Var )1(1)Var(µµX n X n S n i i⎭⎬⎫⎩⎨⎧−+⎟⎟⎠⎞⎜⎜⎝⎛−−−⎥⎦⎤⎢⎣⎡−−=∑∑==])(Var[)(,)(Cov 2)(Var )1(12212122µµµµX n X n X X n n i i n i i ⎭⎬⎫⎩⎨⎧−+−−−−−=∑∑==22122122)Var())(,)Cov((2)Var()1(1µµµµX n X X n X n n i i n i i , 因E (X i − µ)2 = σ 2,E (X i − µ)4 = ν4,则)(})({}])([)({)Var(441224122412σνσνµµµ−=−=−−−=−∑∑∑===n X E X E X ni ni i i ni i ,因E (X i − µ) = 0,221)Var()(σµnX X E ==−,且当i ≠ j 时,X i − µ 与X j − µ 相互独立, 则∑∑==−−−−−=−−ni i i ni i X E X E X X E X X 12222122})()(])()[({))(,)Cov((µµµµµµ∑∑==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅−⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−⋅−=ni nk k i n X n X E 1222121)(1)(σσµµ∑∑=≠⎭⎬⎫⎩⎨⎧−⎥⎦⎤⎢⎣⎡−⋅−+−=n i i k k i i n X E X E X E n1422421)()()(1σµµµ)(11])1([144142242σνσσσν−=⎭⎬⎫⎩⎨⎧−−⋅+=∑=n n n nni ,且224122421)(1])([)()Var(⎥⎦⎤⎢⎣⎡−⎥⎦⎤⎢⎣⎡−=−−−=−∑=σµµµµn X n E X E X E X n i i42221441)()(24)(1σµµµn X X X E n j i j i n i i −⎥⎦⎤⎢⎣⎡−−⎟⎟⎠⎞⎜⎜⎝⎛+−=∑∑<= 42221441)()(6)(1σµµµn X E X E X E n j i j i ni i −⎥⎦⎤⎢⎣⎡−−+−=∑∑<= 42443424444222442)3(11])1(3[11261σσνσσνσσσνn n n n n n n n n n n +−=−−+=−⎥⎦⎤⎢⎣⎡⋅⎟⎟⎠⎞⎜⎜⎝⎛⋅+=, 故⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+−+−⋅−−−=4244324444222)3(1)(12)()1(1)Var(σσνσνσνn n n n n n n S⎭⎬⎫⎩⎨⎧+−+−−−−=444444422)3(1)(2)()1(1σσνσνσνn n n 2442442444444442)1(3)1()2(2)1()()3(1)2(2)()1(1−−+−−−−−=⎭⎬⎫⎩⎨⎧−+−−−−=n n n n n n n n σνσνσνσνσνσν. 12.设总体X 的3阶矩存在,设X 1 , X 2 ,…, X n 是取自该总体的简单随机样本,X 为样本均值,S 2为样本方差,试证:nS X 32),Cov(ν=,其中ν3 = E [X − E (X )]3.证:因⎥⎦⎤⎢⎣⎡−−−−=−−−−=∑∑==212122)()(11)]()[(11µµµµX n X n X X n S n i i n i i ,其中µ = E (X ), 则⎟⎟⎠⎞⎜⎜⎝⎛⎥⎦⎤⎢⎣⎡−−−−−=−=∑=21222)()(11,Cov ),Cov(),Cov(µµµµX n X n X S X S X n i i ⎥⎦⎤⎢⎣⎡−−−−−−=∑=))(,Cov())(,Cov(11212µµµµX X n X X n n i i , 因0)()(=−=−µµi X E X E ,E (X i − µ)2 = σ 2,E (X i − µ)3 = ν3,且当i ≠ j 时,X i − µ 与X j − µ 相互独立,则∑∑∑∑====−−=⎟⎟⎠⎞⎜⎜⎝⎛−−=−−n i i i ni i n k k ni i X X n X X n X X 1212112))(,Cov(1)(,)(1Cov ))(,Cov(µµµµµµ331231])()()([1ννµµµ=⋅=−−−−=∑=n nX E X E X E n n i i i i , 且31232)(1)()()())(,Cov(⎥⎦⎤⎢⎣⎡−=−−−−=−−∑=n i i X n E X E X E X E X X µµµµµµ323313313311)(1)(1ννµµn n n X E n X E n n i i n i i =⋅=−=⎥⎦⎤⎢⎣⎡−=∑∑==,故n nn n n n n S X 333232111111),Cov(νννν=−⋅−=⎟⎠⎞⎜⎝⎛⋅−−=. 13.设1X 与2X 是从同一正态总体N (µ, σ 2)独立抽取的容量相同的两个样本均值.试确定样本容量n ,使得两样本均值的距离超过σ 的概率不超过0.01. 解:因µ==)()(21X E X E ,nX X 221)Var()Var(σ==,1X 与2X 相互独立,且总体分布为N (µ, σ 2),则0)(21=−=−µµX X E ,n n n X X 222212)Var(σσσ=+=−,即⎟⎟⎠⎞⎜⎜⎝⎛−n N X X 2212,0~σ, 因01.0222212}|{|21≤⎟⎟⎠⎞⎜⎜⎝⎛Φ−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛Φ−=>−n n X X P σσσ,有995.02≥⎟⎟⎠⎞⎜⎜⎝⎛Φn ,5758.22≥n ,故n ≥ 13.2698,即n 至少14个.14.利用切比雪夫不等式求抛均匀硬币多少次才能使正面朝上的频率落在 (0.4, 0.6) 间的概率至少为0.9.如何才能更精确的计算这个次数?是多少?解:设⎩⎨⎧=,,0,,1次反面朝上第次正面朝上第i i X i 有X i ~ B (1, 0.5),且正面朝上的频率为∑==ni i X n X 11,则E (X i ) = 0.5,Var (X i ) = 0.25,且5.0(=X E ,n X 25.0)(Var =, 由切比雪夫不等式得n nX P X P 2511.025.01}1.0|5.0{|}6.04.0{2−=−≥<−=<<,故当9.0251≥−n时,即n ≥ 250时,9.0}6.04.0{≥<<X P ;利用中心极限定理更精确地计算,当n 很大时∑==ni i X n X 11的渐近分布为正态分布25.0,5.0(n N , 则)2.0()2.0()25.05.04.0(25.05.06.0()4.0()6.0(}6.04.0{n n nnF F X P −Φ−Φ=−Φ−−Φ=−=<<9.01)2.0(2≥−Φ=n ,即95.0)2.0(≥Φn ,64.12.0≥n ,故当n ≥ 67.24时,即n ≥ 68时,9.0}6.04.0{≥<<X P .15.从指数总体Exp (1/θ ) 抽取了40个样品,试求X 的渐近分布.解:因θ==)((X E X E ,2401)(Var )(Var θ==n X X ,故X 的渐近分布为)401,(2θθN .16.设X 1 , …, X 25是从均匀分布U (0, 5) 抽取的样本,试求样本均值X 的渐近分布.解:因25)()(==X E X E ,1211225)05()(Var )(Var 2=×−==n X X ,故X 的渐近分布为)121,25(N . 17.设X 1 , …, X 20是从二点分布b (1, p ) 抽取的样本,试求样本均值X 的渐近分布.解:因p X E X E ==)((,20)1()(Var )(Var p p n X X −==,故X 的渐近分布为20)1(,(p p p N −.18.设X 1 , …, X 8是从正态分布N (10, 9) 中抽取的样本,试求样本均值X 的标准差.解:因89)(Var )(Var ==n X X ,故X 的标准差为423)(Var =X . 19.切尾均值也是一个常用的反映样本数据的特征量,其想法是将数据的两端的值舍去,而用剩下的当中的值为计算样本均值,其计算公式是][2])[()2]([)1]([αααααn n X X X X n n n n −+++=−++L ,其中0 < α < 1/2是切尾系数,X (1) ≤ X (2) ≤ … ≤ X (n ) 是有序样本.现我们在高校采访了16名大学生,了解他们平时的学习情况,以下数据是大学生每周用于看电视的时间:15 14 12 9 20 4 17 26 15 18 6 10 16 15 5 8 取α = 1/16,试计算其切尾均值.解:因n α = 1,且有序样本为4, 5, 6, 8, 9, 10, 12, 14, 15, 15, 15, 16, 17, 18, 20, 26,故切尾均值8571.12)20865(216116/1=++++−=L x . 20.有一个分组样本如下:区间 组中值 频数 (145,155) 150 4 (155,165) 160 8 (165,175) 170 6 (175,185) 180 2试求该分组样本的样本均值、样本标准差、样本偏度和样本峰度.解:163)2180617081604150(201=×+×+×+×=x ;2338.9]2)163180(6)163170(8)163160(4)163150[(1912222=×−+×−+×−+×−=s ; 因81]2)163180(6)163170(8)163160(4)163150[(20122222=×−+×−+×−+×−=b , 144]2)163180(6)163170(8)163160(4)163150[(20133333=×−+×−+×−+×−=b ,14817]2)163180(6)163170(8)163160(4)163150[(20144444=×−+×−+×−+×−=b ,故样本偏度1975.02/3231==b b γ,样本峰度7417.032242−=−=b b γ.21.检查四批产品,其批次与不合格品率如下:批号批量不合格品率1 100 0.052 300 0.063 250 0.04 4 150 0.03试求这四批产品的总不合格品率.解:046875.0)03.015004.025006.030005.0100(8001=×+×+×+×=p . 22.设总体以等概率取1, 2, 3, 4, 5,现从中抽取一个容量为4的样本,试分别求X (1) 和X (4) 的分布. 解:因总体分布函数为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,54,43,53,32,52,21,51,1,0)(x x x x x x x F则F (1) (x ) = P {X (1) ≤ x } = 1 − P {X (1) > x } = 1 − P {X 1 > x , X 2 > x , X 3 > x , X 4 > x } = 1 − [1 − F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625624,43,625609,32,625544,21,625369,1,0x x x x x x且F (4) (x ) = P {X (4) ≤ x } = P {X 1 ≤ x , X 2 ≤ x , X 3 ≤ x , X 4 ≤ x } = [F (x )]4⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=,5,1,54,625256,43,62581,32,62516,21,6251,1,0x x x x x x故X (1) 和X (4) 的分布为6251625156256562517562536954321)1(P X ; 6253696251756256562515625154321)4(PX . 23.设总体X 服从几何分布,即P {X = k } = pq k − 1,k = 1, 2, …,其中0 < p < 1,q = 1 − p ,X 1, X 2, …, X n 为该总体的样本.求X (n ) , X (1)的概率分布.解:因k k kj j q qq p pqk X P −=−−==≤∑=−11)1(}{11,k = 1, 2, …,故n k n k ni i ni i n n n q q k X P k X P k X P k X P k X P )1()1(}1{}{}1{}{}{111)()()(−==−−−=−≤−≤=−≤−≤==∏∏;且nk k n ni i ni i q q k X P k X P k X P k X P k X P −=>−−>=>−−>==−==∏∏)1(11)1()1()1(}{}1{}{}1{}{.24.设X 1 , …, X 16是来自N (8, 4) 的样本,试求下列概率(1)P {X (16) > 10}; (2)P {X (1) > 5}.解:(1)1616161)16()16()]2810([1)]10([1}10{1}10{1}10{−Φ−=−=≤−=≤−=>∏=F X P X P X P i i = 1 − [Φ(1)]16 = 1 − 0.841316 = 0.9370;(2)3308.09332.0)]5.1([285(1[)]5(1[}5{}5{16161616161)1(==Φ=−Φ−=−=>=>∏=F X P X P i i . 25.设总体为韦布尔分布,其密度函数为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−=−mmm x mx m x p ηηηexp ),;(1,x > 0, m > 0, η > 0. 现从中得到样本X 1 , …, X n ,证明X (1) 仍服从韦布尔分布,并指出其参数. 解:总体分布函数mm mmx xt xmt xt mm xt t mtt t p x F ⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛−−−=−=⎟⎟⎠⎞⎜⎜⎝⎛===∫∫∫ηηηηηηe1e d ed ed )()(00010,x > 0,则X (1) 的密度函数为111(1)11()[1()]()eeemmmmx x x m m m n n n mmmxmnxp x n F x p x n ηηηηη⎛⎞⎛⎞⎛⎞⎛⎞−−−−−−−−⎜⎟⎜⎟⎜⎟−⎝⎠⎝⎠⎝⎠=−=⋅==,故X (1) 服从参数为⎟⎟⎠⎞⎜⎜⎝⎛m n m η,的韦布尔分布. 26.设总体密度函数为p (x ) = 6 x (1 − x ), 0 < x < 1,X 1 , …, X 9是来自该总体的样本,试求样本中位数的分布. 解:总体分布函数3203223)23(d )1(6d )()(x x t t t t t t t p x F xxx−=−=−==∫∫,0 < x < 1,因样本容量n = 9,有样本中位数)5(215.0x x m n ==⎟⎠⎞⎜⎝⎛+,其密度函数为)1(6)231()23(!4!4!9)()](1[)]([!4!4!9)(432432445x x x x x x x p x F x F x p −⋅+−−⋅=−⋅=. 27.证明公式∫∑−−=−−−−=−⎟⎟⎠⎞⎜⎜⎝⎛110)1()!1(!!)1(p r n r rk k n k dx x x r n r n p p k n ,其中0 ≤ p ≤ 1. 证:设总体X 服从区间(0, 1)上的均匀分布,X 1, X 2, …, X n 为样本,X (1), X (2), …, X (n )是顺序统计量,则样本观测值中不超过p 的样品个数服从二项分布b (n , p ),即最多有r 个样品不超过p 的概率为∑=−+−⎟⎟⎠⎞⎜⎜⎝⎛=>rk kn k r p p k n p X P 0)1()1(}{,因总体X 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(x x x x x F则X (r + 1)的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−+.,0,10,)1()!1(!!)()](1[)]([)!1(!!)(111其他x x x r n r n x p x F x F r n r n x p r n r r n r r 故∫∑−−+=−−−−=>=−⎟⎟⎠⎞⎜⎜⎝⎛11)1(0)1()!1(!!}{)1(p r n r r rk kn k dx x x r n r n p X P p p k n . 28.设总体X 的分布函数F (x )是连续的,X (1), …, X (n )为取自此总体的次序统计量,设ηi = F (X (i )),试证: (1)η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量;(2)1)(+=n iE i η,)2()1()1()Var(2++−+=n n i n i i η,1 ≤ i ≤ n ; (3)ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−2)1(2)1(2)1(2)1(22212111n a a n a a n a a n a a 其中11+=n i a ,12+=n j a . 注:第(3)问应要求i < j . 解:(1)首先证明Y = F (X )的分布是均匀分布U (0, 1),因分布函数F (x )连续,对于任意的y ∈ (0, 1),存在x ,使得F (x ) = y , 则F Y ( y ) = P {Y = F (X ) ≤ y } = P {F (X ) ≤ F (x )} = P {X ≤ x } = F (x ) = y , 即Y = F (X )的分布函数是⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y可得Y = F (X )的分布是均匀分布U (0, 1),即F (X 1), F (X 2), …, F (X n )是均匀分布总体U (0, 1)的样本, 因分布函数F (x )单调不减,ηi = F (X (i )),且X (1) ≤ X (2) ≤ … ≤ X (n )是总体X 的次序统计量, 故η1 ≤ η2 ≤ … ≤ ηn ,且ηi 是来自均匀分布U (0, 1)总体的次序统计量; (2)因均匀分布U (0, 1) 的密度函数与分布函数分别为⎩⎨⎧<<=.,0;10,1)(其他y y p Y ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(y y y y y F Y则ηi = F (X (i ))的密度函数为⎪⎩⎪⎨⎧<<−−−=−−−=−−−−.,0,10,)1()!()!1(!)()](1[)]([)!()!1(!)(11其他y y y i n i n y p y F y F i n i n y p i n i Y in Y i Y i即ηi 服从贝塔分布Be (i , n − i + 1),即Be (a , b ),其中a = i ,b = n − i + 1,故1)(+=+=n i b a a E i η,)2()1()1()1()()Var(22++−+=+++=n n i n i b a b a ab i η,1 ≤ i ≤ n ; (3)当i < j 时,(ηi , ηj )的联合密度函数为z y Y Y j n Y i j Y Y i Y ij z p y p z F y F z F y F j n i j i n z y p <−−−−−−−−−−=I )()()](1[)]()([)]([)!()!1()!1(!),(111011I )1()()!()!1()!1(!<<<−−−−−−−−−−=z y j n i j i z y z y j n i j i n , 则∫∫∫∫−−−+∞∞−+∞∞−−⋅−−−−−=⋅=1001)1()()!()!1()!1(!),()(z j n i j i ij j i dy z z y z y dz j n i j i n dydz z y p yz E ηη, 令y = zu ,有dy = zdu ,且当y = 0时,u = 0;当y = z 时,u = 1,则∫∫⋅−−=−⋅−−−−−−−1101)()()1()1()(zdu zu z zu z z dy z z y z y i j i j n zj n i j ij n j j n j i j i j j n z z j i j i i j i B z z du u u z z z −+−+−−−−−−=−+⋅−=−⋅−=∫)1(!)!1(!),1()1()1()1(1111,即∫−+−−−−−−−=101)1(!)!1(!)!()!1()!1(!)(dz z z j i j i j n i j i n E jn j j i ηη )1,2(!)!1(!)!()!1()!1(!+−+−−⋅−−−−=j n j B j i j i j n i j i n)2)(1()1()!2()!()!1(!)!1(!)!()!1()!1(!+++=+−+⋅−−⋅−−−−=n n j i n j n j j i j i j n i j i n , 可得)2()1()1(11)2)(1()1()()()(),Cov(2++−+=+⋅+−+++=−=n n j n i n j n i n n j i E E E j i j i j i ηηηηηη, 因11+=n i a ,12+=n j a , 则2)1()2()1()1(),Cov(212+−=++−+=n a a n n j n i j i ηη, 且2)1()2()1()1()Var(112+−=++−+=n a a n n i n i i η,2)1()2()1()1()Var(222+−=++−+=n a a n n j n j jη, 故ηi 和ηj 的协方差矩阵为⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+−+−+−+−=⎟⎟⎠⎞⎜⎜⎝⎛2)1(2)1(2)1(2)1()Var(),Cov(),Cov()Var(22212111n a a n a a n a a n a a j j i j i i ηηηηηη. 29.设总体X 服从N (0, 1),从此总体获得一组样本观测值x 1 = 0, x 2 = 0.2, x 3 = 0.25, x 4 = −0.3, x 5 = −0.1, x 6 = 2, x 7 = 0.15, x 8 = 1, x 9 = −0.7, x 10 = −1.(1)计算x = 0.15(即x (6))处的E [F (X (6))],Var[F (X (6))]; (2)计算F (X (6))在x = 0.15的分布函数值.解:(1)根据第28题的结论知1)]([)(+=n iX F E i ,)2()1()1()](Var[2)(++−+=n n i n i X F i ,且n = 10, 故116)]([)6(=X F E ,2425121156)](Var[2)6(=××=X F ; (2)因F (X (i ))服从贝塔分布Be (i , n − i + 1),即这里的F (X (6))服从贝塔分布Be (6, 5),则F (X (6))在x = 0.15的分布函数值为∫−⋅=15.00456)1(!4!5!10)15.0(dx x x F , 故根据第27题的结论知0014.085.015.0101)1(!4!5!10)15.0(501015.00456=××⎟⎟⎠⎞⎜⎜⎝⎛−=−⋅=∑∫=−k k k k dx x x F . 30.在下列密度函数下分别寻求容量为n 的样本中位数m 0.5的渐近分布.(1)p (x ) = 6x (1 − x ),0 < x < 1;(2)⎭⎬⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ; (3)⎩⎨⎧<<=.,0;10,2)(其他x x x p (4)||e 2)(x x p λλ−=.解:样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛⋅)(41,5.025.0x p n x N ,其中p (x )是总体密度函数,x 0.5是总体中位数, (1)因p (x ) = 6x (1 − x ),0 < x < 1,有35.025.003205.023)23()1(6)(5.05.05.0x x x x dx x x x F x x −=−=−==∫,则x 0.5 = 0.5,有nn p n 91)5.05.06(41)5.0(4122=×××=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 91,5.0;(2)因⎭⎫⎩⎨⎧−−=222)(exp π21)(σµσx x p ,有0.5 = F (x 0.5) = F (µ), 则x 0.5 = µ ,有n n p n 2ππ2141)(41222σσµ=⎟⎟⎠⎞⎜⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎟⎠⎞⎜⎜⎝⎛n N 2π,2σµ;(3)因⎩⎨⎧<<=.,0;10,2)(其他x x x p 有25.00205.05.05.02)(5.0x x xdx x F x x ====∫, 则215.0=x ,有n n p n 8121241214122=⎟⎠⎞⎜⎝⎛××=⎟⎠⎞⎜⎝⎛⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛n N 81,21; (4)因||e 2)(x x p λλ−=,有0.5 = F (x 0.5) = F (0),则x 0.5 = 0,有2221241)0(41λλn n p n =⎟⎠⎞⎜⎝⎛×=⋅, 故样本中位数m 0.5的渐近分布为⎟⎠⎞⎜⎝⎛21,0λn N .31.设总体X 服从双参数指数分布,其分布函数为⎪⎩⎪⎨⎧≤>⎭⎬⎫⎩⎨⎧−−−=.,0;,exp 1)(µµσµx x x x F其中,−∞ < µ < +∞,σ > 0,X (1) ≤ … ≤ X (n )为样本的次序统计量.试证明)(2)1()1()(−−−−i i X X i n σ服从自由度为2的χ 2分布(i = 2, …, n ). 注:此题有误,讨论的随机变量应为)(2)1()1()(−−+−i i X X i n σ.证:因(X (i − 1), X (i ))的联合密度函数为z y i n i i i z p y p z F y F i n i n z y p <−−−−−−=I )()()](1[)]([)!()!2(!),(2)1( z y in i z y z y i n i n <<−−⎭⎬⎫⎩⎨⎧−−⋅⎭⎬⎫⎩⎨⎧−−⋅⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−−−=µσµσσµσσµσµI exp 1exp 1exp exp 1)!()!2(!2z y i n i z y y i n i n <<+−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσI exp exp 1exp )!()!2(!122,则T = X (i ) − X (i − 1)的密度函数为∫+∞∞−−⋅⋅+=dy t y y p t p i i T 1),()()1(∫∞++−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−+−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎭⎬⎫⎩⎨⎧−−−−=µσµσµσµσdy t y y y i n i n i n i 122exp exp 1exp )!()!2(!∫∞+−+−+−⎥⎦⎤⎢⎣⎡⎭⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=µσµσσµσµσσy d y y t i n i n i i n i n exp )(exp 1exp exp )!()!2(!2112∫−−⎥⎦⎤⎢⎣⎡⎭⎬⎫⎩⎨⎧−−−=−+−+−012112)()1(exp )!()!2(!du u ut i n i n i i n i n σσσ∫−+−−⎭⎬⎫⎩⎨⎧+−−−−=1021)1()1(exp )!()!2(!du u ut i n i n i n i i n σσ )1,2()1(exp )!()!2(!−+−⎭⎬⎫⎩⎨⎧+−−−−=i i n B t i n i n i n σσ⎭⎬⎫⎩⎨⎧+−−+−=−+−⋅⎭⎬⎫⎩⎨⎧+−−−−=σσσσt i n i n n i i n t i n i n i n )1(exp 1!)!2()!1()1(exp )!()!2(!,t > 0,可得T i n X X i n S i i σσ2)1()(2)1()1()(+−=−+−=−的密度函数为⎭⎬⎫⎩⎨⎧−=+−⋅⎭⎬⎫⎩⎨⎧−+−=+−⋅⎟⎟⎠⎞⎜⎜⎝⎛+−=2exp 21)1(22exp 1)1(2)1(2)(s i n s i n i n s i n p s p T S σσσσ,s > 0, 故)(2)1()1()(−−+−=i i X X i n S σ服从参数为21的指数分布,也就是服从自由度为2的χ 2分布. 32.设总体X 的密度函数为⎩⎨⎧<<=.,0;10,3)(2其他x x x p X (1) ≤ X (2) ≤ … ≤ X (5)为容量为5的取自此总体的次序统计量,试证)4()2(X X 与X (4)相互独立.z −证:因总体X 的密度函数和分布函数分别为⎩⎨⎧<<=.,0;10,3)(2其他x x x p ⎪⎩⎪⎨⎧≥<≤<=.1,1;10,;0,0)(3x x x x x F 则(X (2), X (4))的联合密度函数为)4()2(I )()()](1[)]()([)]([!1!1!1!5),()4()2(1)4(1)2()4(1)2()4()2(24x x x p x p x F x F x F x F x x p <−−⋅⋅=103)4(3)2(3)4(2)4(5)2(102)4(2)2(3)4(3)2(3)4(3)2()4()2()4()2(I )1)((1080I 33)1)((120<<<<<<−−=⋅⋅−−=x x x x x x x x x x x x x x x ,设)4()2(1X X Y =,Y 2 = X (4),有X (2) = Y 1Y 2,X (4) = Y 2,则(X (2), X (4))关于( Y 1 , Y 2 )的雅可比行列式为21221)4()2(1),(),(y y y y y x x J ==∂∂=,且0 < X (2) ≤ X (4) < 1对应于0 < Y 1 < 1, 0 < Y 2 < 1,可得(Y 1 , Y 2 )的联合密度函数为210,10323213222521221242121I )1]()([)(1080||),(),(y y y y y y y y J y y y p y y p y y ⋅−−=⋅=<<<<103211210315121I )1(I )1(1080<<<<−⋅−=y y y y y y ,由于(Y 1 , Y 2 , …, Y n )的联合密度函数p ( y 1 , y 2)可分离变量, 故)4()2(1X X Y =与Y 2 = X (4)相互独立.33.(1)设X (1)和X (n )分别为容量n 的最小和最大次序统计量,证明极差R n = X (n ) − X (1)的分布函数∫+∞∞−−−+=dy y p y F x y F n x F n R n )()]()([)(1其中F ( y )与p ( y )分别为总体的分布函数与密度函数;(2)利用(1)的结论,求总体为指数分布Exp (λ)时,样本极差R n 的分布. 注:第(1)问应添上x > 0的要求. 解:(1)方法一:增补变量法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 对于其函数R n = X (n ) − X (1),增补变量W = X (1),⎩⎨⎧−==.;y z r y w 反函数为⎩⎨⎧+==.;r w z w y 其雅可比行列式为11101==J ,则R n 的密度函数为∫+∞∞−>−+−+−=dw r w p w p w F r w F n n r p r n R n 02I )()()]()()[1()(,故R n = X (n ) − X (1)的分布函数为∫∫∫∞−+∞∞−>−∞−+−+−==x r n x R R dw r w p w p w F r w F n n dr dr r p x F n n 02I )()()]()()[1()()(∫∫+∞∞−∞−>−+−+−=xr n dr r w p w p w F r w F n n dw 02I )()()]()()[1(∫∫+∞∞−−+−+−=xn dr r w p w F r w F dw w p n n 02)()]()([)()1(∫∫+∞∞−−+−+−=xn r w dF w F r w F dw w p n n 02)()]()([)()1(∫+∞∞−−−+−⋅−=x n w F r w F n dw w p n n 01)]()([11)()1(∫+∞∞−−−+=dw w p w F x w F n n )()]()([1 ∫+∞∞−−−+=dy y p y F x y F n n )()]()([1,x > 0;方法二:分布函数法因(X (1), X (n ))的联合密度函数为z y n z y n n z p y p y F z F n n z p y p y F z F n n z y p <−<−−−=−−=I )()()]()()[1(I )()()]()([)!2(!),(221, 故R n = X (n ) − X (1)的分布函数为∫∫+∞∞−+∞−=≤−==xy n n n R dz z y p dy x X X R P x F n ),(}{)(1)1()(∫∫+∞∞−+−−−=xy yn dz z p y p y F z F dy n n )()()]()([)1(2∫∫+∞∞−+−−⋅−=xy yn z F d y F z F y p dy n n )]([)]()([)()1(2∫∫+∞∞−−+∞∞−+−−+=−−⋅⋅−=dy y p y F x y F n y F z F n y p dy n n n x y y n )()]()([)]()([11)()1(11,x > 0;(2)因指数分布Exp (λ)的密度函数与分布函数分别为⎩⎨⎧≤>=−.0,0;0,e )(x x x p x λλ ⎩⎨⎧≤>−=−.0,0;0,e 1)(x x x F x λ故R n = X (n ) − X (1)的分布函数为∫∫+∞−−−+−+∞∞−−⋅−−−=−+=01)(1e )]e 1()e 1[()()]()([)(dy n dy y p y F x y F n x F y n y x y n R n λλλλ101011)e 1()(e 1)e 1(e )1()e 1()(e −−+∞−−−+∞−−−−−−=⎟⎠⎞⎜⎝⎛−⋅−=−⋅−=∫n x n y n x y n x n y n n d n λλλλλλ,x > 0.34.设X 1 , …, X n 是来自U (0, θ ) 的样本,X (1) ≤ … ≤ X (n ) 为次序统计量,令)1()(+=i i i X X Y ,i = 1, …, n − 1,Y n = X (n ) ,证明Y 1 , …, Y n 相互独立.。
第五章数理统计中的统计量及其分布

满足以上条件的样本 ( X 1 , X 2 , , X n ) 称为来自总体
X 的容量为n 的一个简单随机样本(简称样本)。
样本的一次具体实现 ( x1 , x2 , , xn ) 称为样本观测值 样本二重性:既是随机变量(抽样前),又是数(抽样后)
设X 1 , X 2 , ,X n为来自总体 X的一组样本,则
2 N ( , ( Y , Y , , Y ) 样本, 1 2 2 2 ) 样本, n 是来自正态总体
2 2 其中 1 2 ,且两样本相互独立。 X , Y 分别表示其
2 2 S , S 样本均值, X Y 分别表示其样本方差,则有
( X Y ) ( 1 2 ) SW 1 1 m n
/ n
又 X 和S
2 n 1
相互独立
X / n 2 ( n 1) S n 1
X n ~ t ( n 1) S n 1 ( n 1)
2
定理2: 设( X 1 , X 2 , , X n1 )是来自正态母体X的样本, X ~ N ( 1 , 1 ), (Y1 , Y 2 , , Yn2 )是来自正态
由定义可看出
1 Y n ~ F ( n, m ) F X m
分位数
P{ F F1 ( m , n)} 1
1 F 分布的性质: F1 (m, n) F (n, m)
表8 F分布的临界值( P .313 )
使用EXCEL计算分位数
t-分布(TINV)双侧分位数 c2 -分布(CHINV)上分位数 F-分布(FINV)上分位数
t(n) 。
n1 n1 ( ) 2 x 2 密度函数: p( x ) (1 ) 2 n n n ( ) 2
2021统计学原理-《统计学》第五章统计量及其抽样分布试题(精选试题)

统计学原理-《统计学》第五章统计量及其抽样分布试题1、智商的得分服从均值为100,标准差为16的正态分布。
从总体中抽取一个容量为n的样本,样本均值的标准差为2,样本容量为____________。
2、样本均值与总体均值之间的差被称作____________。
3、从均值为50,标准差为5的无限总体中抽取容量为30的样本,则抽样分布的超过51的概率为____________。
4、某校大学生中,外国留学生占10%。
随机从该校学生中抽取100名学生,则样本中外国留学生比例的标准差为____________。
5、假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( )。
A.服从非正态分布B.近似正态分布C.服从均匀分布D.服从x²分布6、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差( )。
A.保持不变B.增加C.减小D.无法确定7、总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分别为( )。
A.50,8B.50,1C.50,4D.8,88、某厂家生产的灯泡寿命的均值为60小时,标准差为4小时。
如果从中随机抽取30只灯泡进行检测,则样本均值( )。
A.抽样分布的标准差为4小时B.抽样分布近似等同于总体分布C.抽样分布的中位数为60小时D.抽样分布近似等同于正态分布,均值为60小时9、假设某学校学生的年龄分布是右偏的,均值为23岁,标准差为3岁。
如果随机抽取100名学生,下列关于样本均值抽样分布描述不正确的是( )。
A.抽样分布的标准差等于3B.抽样分布近似服从正态分布C.抽样分布的均值近似为23D.抽样分布为非正态分布10、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的数学期望是( )。
A.150B.200C.100D.25011、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的标准差是( )。
第五章 统计量及其分布

(
)
(
)
由此知, n ≥ 100 p(1 − p ) ,
要对一切 p ∈ (0,1) 此时均成立.
只要求 p 值使 p(1 − p ) 最大, 显然当 p = 时,对一切 p 的不等式均能成立.
1 1 1 , p (1 − p ) = 最大,. 所以当 n ≥ 100 × = 25 4 2 4
3
8 设母体 ξ 的 k 阶原点矩和中心矩分别为 vk =E ξ k,
2 2
若 P ∈ (0.1) 为未知数,则对每个 p ,子样容量 n 应取多大才能使 E (丨 ξ − p 丨 ) ≤ 0.01. 解: (1) 要 P ξ − 0.2 ≤ 0.1 = P 0.1 ≤ ξ ≤ 0.3 ≥ 0.75.
(
) (
)
当 n = 10 时,
∑ξ
i =1
n
i
服从二项项分布 b(k ,10,0.2 ). 查二项分布表知
9. 设母体 ξ ~N
(µ ,σ )
2
1 ,子样方差 S = n
2 n
∑ (ξ
n i =1
i
− ξ ) , 求 E S n ,D S n
2
2
2
并证明当 n 增
大时,它们分别为 σ 2 + ο ⎜
2
4 ⎛ 1 ⎞ 2σ ⎛1⎞ 和 +ο⎜ ⎟ . ⎟ n ⎝n⎠ ⎝n⎠
解:
由于
nS n
σ
2
~ χ 2 (n − 1). 所以 Eχ 2 (n − 1) = n − 1.DX 2 (n − 1) = 2(n − 1)
10 ⎛ ⎞ P(0.1 ≤ ξ ≤ 0.3) = P⎜1 ≤ ∑ ξ i ≤ 3 ⎟ = 0.8791 − 0.1074 = 0.7717 > 0.75. i =1 ⎝ ⎠
第5章 统计量及其分布

第5章
5.1 总体与样本
例5.1.2 考察全国正在使用某种型号灯泡的寿命 所形成的总体,由于可能观察值的个数很多,可以认 为是无限总体。 总体中的每一个个体是随机试验的一个观察值, 因此它是某一随机变量X的值,这样,一个总体对应 于一个随机变量X。我们对总体的研究就是对一个随 机变量X的一研究,X的分布函数和数字特征就称为 总体的分布函数和数字特征。以后将不区分总体与相 应的随机变量,笼统的称为总体。
552
寿命范围 元件数 寿命范围 元件数 寿命范围 元件数
4 8 6
(192 216] (216 240] (240 264] (264 288] (288 312] (312 336] (336 360] (360 384]
4 4 1
5
3 4
5
5 3
2
2 3
5
4
5
1
2
13
第5章
5.1 总体与样本
第5章
统计量及其分布
前四章的研究属于概率论的范畴。随机变量及其概 率分布全面地描述了随机现象的统计规律性,在概率论 的许多问题中,概率分布通常是假定为已知的,而一切 计算和推理均基于这个已知的分布进行,在实际问题中 情况往往并非如此。 随后讲述的是数理统计,它以概率论为理论基础, 所研究的随机变量分布未知,人们通过进行大量重复独 立的试验或观察得到的数据,对其进行分析,从而对所 研究的随机变量的分布(客观规律性)作出合理的估计和 判断。 数理统计学:方法和应用研究
F ( x1 , x2 , , xn ) F ( xi )
i 1 n
第5章
5.1 总体与样本
超链接一张随机数表
获取简单样本的方法:抽签法和随机数表法。 •抽签法:抽签法是利用抽签原理进行的一种方 法。具体做法是:先把总体中每个个体编上号,并对 应地写在签上,然后将签充分混合,从中随机抽取n 个签,与被抽到的签号相应的个体作为样本的分量。 •随机数表法:随机数表法是借助于随机数表进 行抽样的一种方法。随机数是由0~9这十个数字随机 排列而成的,第一张随机数表由铁皮特(Tippet)在 1927年给出的。利用随机数表进行抽样是现代最简单 最有效的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 统计量及其分布§ 5.1 总体与样本内容概要1 总体 在一个统计问题中,研究对象的全体称为总体,构成总体的每个成员称为个体若关心的是总体中每个个体的一个数量指标,则该总体称为一维分布。
若关心的是总体中的每个个体的两个数量指标,则该总体称为二维总体,二维总体就是一个二维分布,余此类推。
2 有限总体与无限总体 若总体中的个数是有限的,此总体称为有限总体。
若总体中的个数是无限的,此总体称为无限总体。
实际中总体的个体数大多是有限的。
当个体数充分大时,将有限总体看作无限总体是一种合理的抽象。
3 样本 从总体中随机抽取的部分个体组成的集合称为样本,样本的个体称为样本,样本个数称为样本容量或样本量。
样本常用n 个指标值1x ,2x , ,n x 表示.它可看作n 维随机变量,又可看作其观察值,这由上下文加以区别。
4 分组样本 只知样本观测值所在区间,而不知具体值的样本称为分组样本。
缺点:与完全样本相比损失部分信息。
优点:在样本量较大时,用分组样本即简明扼要,又能帮助人们更好的认识总体。
5 简单随机样本 若样本 1x ,2x , ,n x 是n 个相互独立的具有同一分布(总体分布)的随机变量,册称该样本为简单随机样本,仍简称样本。
若总体的分布函数为F(x),则其样本的(联合)分布函数为()∏=ni ix F 1;若总体的密度函数为P(x),则其样本的(联合)密度函数为∏=ni x p 1)(;若总体的分布列为{p(x i )},则其样本的(联合)分布列为∏=ni x p 1)(;习题与解答5.11. 某地电视台想了解某电视栏目(如:每晚九点至九点半的体育节目)在该 地区的收视率情况,于是委托一家市场咨询公司进行一次电话访查。
(1)该项研究的总体是什么? (2)该项研究的样本是什么?解:(1)该项研究的总体是该地区全体电视观众;(2)该项研究的样本上一该地区被电话访查的电视观众。
2. 为了了解统计学专业本科毕业生的就业情况,我们调查了某地区30名2000年毕业生的统计学专业本科生实习期满的月薪情况。
(1)什么是总体?(2)什么是样本?(3)本量是多少?解:(1) 总体是该地区2000年毕业的统计学专业本科生实习期满后的月薪; (2) 样本是被调查的30名2000年毕业的统计学专业本科生实习期满后的月薪; (3) 样本量为30。
3.设某厂大量生产某种产品,其不合格品率p 未知,每m 件产品包装为一盒。
为了检查产品的质量,任意抽取n 盒,查其中的不合格品数,试说明什么是总体,什么是样本,并指出样本的分布。
解:总体为该厂生产的每盒产品中的不合格品数;样本是任意抽取的n 盒中每盒产品的不合格数;样本中每盒产品中的不合格品数为1x ,…,n x ,因i x ~b(m,p),i =1,2,…,n,所以样本(x 1,x 2,…,x n )的分布为().,)1(1111n t nm t n i i x m x ni i x x t p p x m p p x m ii ++=-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-⎪⎪⎭⎫ ⎝⎛---=∏∏ 其中 4.假设一位运动员在完全相同的条件下重复进行n 次打靶,试给出总体样本的统计描述。
解: 若以P 记运动员打靶命中的概率,并以“1”记打靶命中,记“0”记打靶未命中,则总体为运动员打靶命中与否,该总体可由一个二点分布表示:样本为由n 个0或组成的集合,若记i x 为第i 次打靶命中情况,则i x ~b(1,p),i=1,2,…,样本(x 1,x 2,…,x n )的分布为11(1)(1)ii nx x t n t i Pp p p --=-=-∏,其中t=n x x ++ 1。
5. 某厂生产的电容器的使用寿命服从指数分布,为了解其平均寿命,从中抽出n 件厂品测其实际使用寿命,试说明什么是总体,什么是样本,并指出样本的分布解: 总体是该厂生产的电容器的寿命,或者可以说总体是指数分布,其分布为Exp(λ); 样本是该厂中抽出的n 个电容器的寿命;记第i 个电容器的寿命为i x ,则i x ~ Exp(λ),i=1,2,…,n,样本(x 1,x 2,…,x n )的分布为t n ni x e e iλλλλ-=-=∏1,其中t=n x x ++ 1。
6. 美国某高校根据毕业生返校情况记录,宣布该校毕业生的资为五万美元,你对此有和评论。
解: 毕业生返校记录是全体毕业生中的一个特殊群体(子总体)的一个样本,它只能反映该子总体的特征,不能反映全体毕业生状况,故此说法有骗人之嫌。
7. 设有N 个厂品,其中有M 个次品,进行放回抽样。
定义i x 如下:⎩⎨⎧=次取得正品。
第次取得次品,第i i x i ,0,1 求样本n x x x ,,,21 的联合分布。
解: 总体的分布列为 ,1)0(,)1(NMX P N M X P -==== 也可以写成 .1,0,1)(1=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛==-x N M N M x X P xx因此样本n x x x ,,,21 的联合分布列为1121(,,,)11,0,1,iixx tn tnn i i M M M M p x x x x N N N N --=⎛⎫⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∏其中12n t x x x =+++ .8.设离散总体的分布列为.,,2,1,1)(n k Nk X P ===现进行不返回抽样,(x 1,x 2,…,x n )为样本,11ni i x x n ==∑为样本均值,求)(_x E 与()Var x (表示成N 的函数)。
解: 由于N 有限,抽样是不返回的,所以样本n x x x ,,,21 中诸i x 的分布列与总体的分布列相同,但诸i x 间不相互独立,即此样本不是简单随机样本。
以下我们先求诸i x 的期望,方差与协方差:122221222,11(1)1(),1,2,,221()()[()]2(1)(21)11,1,2,,,62121()()()(),12Ni k Ni i i k Ni j i j i j k k N N N E x i n N N k N Var x E x E x NN N N N N i n N k l N Cov x x E x x E x E x N N ==≠++==⋅==+⎛⎫=-=- ⎪⎝⎭+++-⎛⎫=-== ⎪⎝⎭+⎛⎫=-⋅=⋅- ⎪-⎝⎭∑∑∑其中222111(1)(1)(21)46(1)(1)(32),12NN Nk k k N N N N N kl k k NN N N ≠==+++⎛⎫=-=- ⎪⎝⎭=+-+∑∑∑代回原协方差表达式,可得2,(1)(1)(32)(1)()12(1)41,,1,2,,,12i j N N N N N Cov x x N N N i ji j N +-++=--+=-≠= 且由此可得样本均值_x 的期望与方差21212211()()21()()(,)1(1)11(1)(1)().121212ni i nN i i j i i j N E x E x nVar x Var x Cov x x n n N N n n N N n n n==≠+==⎡⎤=+⎢⎥⎣⎦⎡⎤-+=--⋅=+-⎢⎥⎣⎦∑∑∑5.2 样本数据的整理与显示内容提要1. 经验分布函数 若将样本观测值n x x x ,,,21 由小到大排列,得有序样本,)()2()1(n x x x ≤≤≤ 用有序样本定义如下函数,,1,,2,1,, ,1,/,0)()()1()()1(n k k n x x n k x x x x x n k x F ≥-=<≤<⎪⎩⎪⎨⎧=+当当当则称)(x F n 为该样本的经验分布函数 。
格里纹科定理 设n x x x ,,,21 是取自总体分布函数为是的样本,)()(x F x F n 该样本的经验分布函数,则当n →∞时:(sup |()()|)1n x P F x F x -∞<<∞-=。
此定理表明:当n 相当大时,经验分布函数的一个是总体分布函数)()(x F x F n 良好的近似,它是经典统计学的一块基石。
2. 频数频率分布表 有样本数据n x x x ,,,21 制作频数频率分布表的操作步骤如下: ● 确定组数k ;● 确定每组组距,通常取每组组距相等为d ; ● 确定每组组限;● 统计样本数据落入每个区间的频数,并计算频率。
综合上述,列入表中,即得该样本的频数频率分布表,该表就是一个分组样本,它能简明扼要的样本特点表示出来。
不足之处是该表依赖于分组,不同的分组方式有不同的频数频率分布表。
3. 样本数据的图形表示 (1)直方图● 利用频数频率分布表上的区间(横坐标)和频数(纵坐标)可作出频数直方图; ● 若把纵坐标改为频率就得频率直方图;● 若把纵坐标改为频率/组距,就得到单位频率直方图。
这时长条矩形的面积之和为1 此三种直方图的差别仅在纵坐标的设置上,直方图本身无变化。
(2)茎叶图把样本中的每个数据分为茎与叶,把茎放于一侧,叶放于另一侧,就得到一张该样本的茎叶图,比较两个样本时,可画出背靠背的茎叶图。
茎叶图保留数据中的全部信息,当样本量较大时数据很分散,横跨二,三个数量级时,茎叶图并不实用。
习题与解答5.21. 以下是某工厂通过抽样调查得到的10名工人一周内生产的产品149,156,160,138,149, 153,153,169,156,15.试由这批数据构造经验分布函数并作图。
解:此样本容量为10,经排序可得到有序样本;,153,149,138)5()4()3()2()1(=====x x x x x 169,160,156)10()9()8()7()6(=====x x x x x其经验分布函数及其图形分布如下⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=.169,1,169160,9.0,160156,8.0,156153,5.0,153149,3.0,149138,1.0,138,0)(x x x x x x x x F n2. 下表是经过整理后得到的分组样本;组序 1234 5分组区间 (38,48) (48,58) (58,68) (68,78) (78,88)频数34832试写出此分组样本的经验分布函数。
解: 样本的经验分布函数为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤≤<≤<=,5.77,1,5.775.67,9.0,5.675.57,75.0,5.575.47,35.0,5.475.37,15.0,5.37,0)(x x x x x x x F n3.假如某地区30 名 2000年某专业毕业生实习期满后的月薪数据如下:7388669509711164871104412248081096102512037759501232992914825157********1130108110711091132099911201086909(1)该批数据的频率分布表(分6组);(2)画出直方图。