次序统计量及其分布

合集下载

3-次序统计量

3-次序统计量

F ( z ) F ( y )
j i 1
n k
( X (1) , X ( 2 ) ,, X ( n ) )的联合密度函数为
p( n ) ( y1 , y2 ,, yn ) n! p( y1 ) p( y2 ) p( yn ), y1 y2 yn
二、与次序统计量相关的常用统计量
样本中位数m0.5的渐近分布为
m0.5
1 ~ N x , 0 . 5 2 4 n p ( x ) 0.5
例5 设总体分布为柯西分布 ,密度函数为
1 p( x; ) , x 2 (1 ( x ) )
若X 1 , X 2 ,, X n 来自该总体的样本,求 样本中位数 的渐近分布.
1、样本均值 X 总体均值
估计
2、样本中位数 估计 总体中位数
样本均值容易受离群值 的干扰,离群值会把样 本 均值拉向自己一侧,而 样本中位数不受此害 .
若有离群值时,可用截 尾均值代替样本均值 . 何为截尾均值? 把样本排序,并截去两 端一定比例的样本后求 得的 其余值的平均 .
m0.25 x([290.251]) x(8) 60
m0.5 x(15) 67 m0.75 x([290.751]) x(22) 73
五值 18 , 60 , ,67 , ,73 , 97
箱线图
18
60 67 73
97
1、样本中位数 设x(1) ,x(2) , , x( n) 是有序样本,则样本中 位数m0 .5为
m0 .5 x n 1 , n为奇数; ( ) 2 1 ( x n x n ), n为偶数. ( 1) 2 2 (2)

(概率论与数理统计 茆诗松) 第5章 统计量及其分布

(概率论与数理统计 茆诗松) 第5章 统计量及其分布
例5.3.6 设总体X 的分布为仅取0,1,2的 离散
均匀分布,分布列为
x0 1 2
p 1/3 1/3 1/3
现从中抽取容量为3的样本,其一切可能取值有 33=27种, (表5.3.6)
x0 1 2
p 1/3 1/3 1/3
P(x(1)=0) = ?
ቤተ መጻሕፍቲ ባይዱ
可给出的 x(1) , x(2), x(3) 分布列如下 :
n
(x x ) 0. i i1
定理5.3.2 数据观测值与均值的偏差平方和 最小,即在形如 (xic)2 的函数中,
(xi x)2最小,其中c为任意给定常数。
样本均值的抽样分布:
定理5.3.3 设x1, x2, …, xn 是来自某个总体的样本,
x 为样本均值。
(1) 若总体分布为N(, 2),则
是将样本观测值由小到大排列后得到的第 i 个 观测值。
其中, x(1)=minx1, x2,…, xn称为该样本的最小次序统计量, 称 x(n)=maxx1,x2,…,xn为该样本的最大次序统计量。
在一个样本中,x1, x2,…,xn 是独立同分布的,而 次序统计量 x(1), x(2),…, x(n) 则既不独立,分布也 不相同,看下例。

p R ( r ) 0 1 r n ( n 1 ) [ ( y r ) y ] n 2 d y n ( n 1 ) r n 2 ( 1 r )
这正是参数为(n1, 2)的贝塔分布。
5.3.6 样本分位数与样本中位数
样本中位数也是一个很常见的统计量,它也是 次序统计量的函数,通常如下定义:
在n
不大时,常用
s2
1 n n1i1
(xi
x)2

次序统计量与分布27页PPT

次序统计量与分布27页PPT
次序统计量与分布
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言

1-4 次序统计量

1-4 次序统计量
1
显然有
X (1) ≤ X (2) ≤ L ≤ X ( n )
称为最小次序统计量 它的值 x(1) 是样本 最小次序统计量, 其中 X (1) = min X i 称为最小次序统计量, 1≤i≤n 值中最小的一个; 称为最大次序统计量 最大次序统计量, 值中最小的一个;而 X (n) = max X i 称为最大次序统计量, 1≤i≤n 是样本值中最大的一个。 它的值 x(n) 是样本值中最大的一个。
米的小河中淹死了,他觉得不可思议。 平均水深为 1 米的小河中淹死了,他觉得不可思议。 这件事情是否是一个玩笑? 这件事情是否是一个玩笑?
8
思考2. 一位统计学家把一只脚放进 100℃ 的开水里, 思考 ℃ 的开水里, 另一只脚放进冰水中。然后宣布:现在, 另一只脚放进冰水中。然后宣布:现在,在平均值的 意义上,我感觉很舒服。 意义上,我感觉很舒服。
16
乙同学毕业后求职于一家公司。总经理说, 例 乙同学毕业后求职于一家公司。总经理说, 公司平均月薪是 3000 元。一个月后乙同学得到 工资1000元,据了解,公司共有21人,和自己 元 据了解,公司共有 人 工资 职位相同的业务员共有 10 人,每人的月薪都是 1000 元。应该如何理解乙同学的遭遇 ? 总经理 15,000 ;两个副总经理每人 8,000 ; , , 3 个部门经理每人 4000;5 个财务等行政人员 ; 每人 2000;10 个业务员每人 1000 。 ; 一共 21 人,每月支出工资 63,000。 , 。 平均值 3000,中位数 2000,众数 1000,极差 14,000 , , , ,
2
定义
样本 X 1 , X 2 ,L , X n 按由小到大的顺序重排为
X (1) ≤ X (2) ≤ L ≤ X ( n )

次序统计量及其分布通用课件

次序统计量及其分布通用课件

3. 健康状况评估:通过 对个体的多项生理指标 进行监测,并利用次序 统计量进行分析,可以 对个体的健康状况进行 综合评估。
环境科学领域应用案例
总结词:环境科学领 域中,次序统计量可 用于环境监测、污染 物排放评估、气候变 化研究等。
详细描述
1. 环境监测:通过在 环境中布置传感器, 并利用次序统计量分 析传感器数据,可以 实时监测环境的空气 质量、水质等情况。
次序统计量的特点
次序统计量具有简单直观、可操 作性强、易于理解等优点,是统 计分析中常用的一种方法。
次序统计量的种类
简单次序统计量
只对总体或样本的视察值进行排序, 不涉及其他数据处理。
加权次序统计量
将总体或样本的视察值进行加权处理 后再进行排序,可以更准确地反应数 据的散布特征。
次序统计量的应用场景
统计模型
参数统计模型
在这种模型中,次序统计量被视为一个随机变量,并假定其 具有某种已知或可估计的散布情势(例如正态散布、泊疏松 布等)。然后通过参数估计和假设检验等方法对总体参数进 行推断。
非参数统计模型
在这种模型中,总体被视为非参数的,并不假定其具有某种 特定的散布情势。然后通过核密度估计、分位数回归等方法 对总体散布进行推断。
未来应用前景展望
金融风险管理
次序统计量在金融风险管理领域有着广泛的应用。例如,可以利用次序统计量分析股票市场的波动性 ,为投资决策提供支持。未来,随着金融数据的日益复杂化,次序统计量的应用将更加重要。
环境监测与保护
次序统计量可以用于环境监测和保护领域。例如,可以利用次序统计量分析空气质量、水质等环境指 标的变化趋势,为制定环境保护政策提供根据。
07
参考文献
参考文献

1-4 次序统计量

1-4 次序统计量

等于极差的四分之一。
(3). 大多数情况下,数据基本上落在“均值±2个 标准差”的区间内,否则这个数据就被认为是
异常的大或异常的小。
在绝大多数情况下,一组正常的数据基本上 落在“均值±3个标准差”的区间内。
14

从总体中抽取容量为6的样本,测得样本值为 32, 65, 28, 35, 30, 29,
特别,最小次序统计量X (1) 和最大次序统计量X ( n ) 的分布 密度为
f X (1) ( x) n[1 F ( x)]n1 f ( x), f X ( n ) ( x) n[ F ( x)]n1 f ( x).
5
定理 1.20
设总体 X 的分布密度为 f(x)(分布函数为
F(x)), X 1 , X 2 ,, X n 为其样本, 则次序统计量的分布 密度为 ( X (1) , X (2) ,, X ( n) ) 的联合分布密度为
n n! f ( yi ), y1 y2 yn f ( y1 , y2 ,, yn ) i 1 0, 其他
6
定理 1.21
设总体 X 的分布密度为 f(x)(分布函数为
F(x)), X 1 , X 2 ,, X n 为其样本, 则次序统计量的分布 密度为 ( X (1) , X ( n ) ) 的联合分布密度为
定理
证明
次序统计量是充分统计量。
当给定 X (1) x(1) ,, X ( n ) x( n ) 时,由于X 1 , X 2 ,, X n
1 P( X i1 x(1) ,, X in x( n) ) n!
独立同分布,所以
此条件分布与总体分布无关,故次序统计量是充分统计量。
3

伽马分布次序统计量分布

伽马分布次序统计量分布

伽马分布次序统计量分布伽马分布是一种连续概率分布,通常用来对正值的随机变量进行建模。

伽马分布的次序统计量分布是对多个伽马分布变量进行排序后的概率分布。

在本文中,我们将讨论伽马分布次序统计量的定义、性质以及在统计学和概率论中的应用。

首先,让我们回顾一下伽马分布的定义。

伽马分布的概率密度函数如下所示:f(x; k, λ) = (λ^k * x^(k-1) * e^(-λx))/(Γ(k))其中,x是一个正值,k是形状参数,λ是比例参数,Γ表示伽马函数。

伽马函数定义为:Γ(k) = ∫[0, +∞] t^(k-1) * e^(-t) dt伽马分布是一族分布,包括多个参数值。

不同的参数值会导致不同的形状和尺度。

伽马分布的均值为k/λ,方差为k/λ^2。

当k=1时,伽马分布退化为指数分布。

次序统计量是从一个随机样本中选择出的排序值。

假设我们有一个大小为n的样本x1, x2, ..., xn,其中每个样本都是从同一个分布中独立取出的。

那么第i个次序统计量定义为样本中第i小的值。

我们用X(i)表示第i个次序统计量,即X(i) = x(i)。

那么伽马分布次序统计量的分布是什么样子呢?为了回答这个问题,我们需要使用概率密度函数转换法。

假设Y(i)是第i个次序统计量的概率密度函数。

我们可以通过计算概率密度函数的导数来得到Y(i)。

具体计算方法可以在概率论和数理统计的教材中找到。

通过计算可以得到,伽马分布的次序统计量的概率密度函数可由下面的公式给出:g(x; n, k, λ) = n! * (λ^k * x^(k-1) * e^(-λx))/(x(1)^(k-1) * x(2)^(k-1) * ... * x(n)^(k-1)) 其中,x(i)是第i个次序统计量,n是样本大小。

现在我们来讨论一下伽马分布次序统计量的一些性质。

首先,伽马分布次序统计量的均值和方差可以通过计算得到。

均值为k/nλ,方差为k/(n^2λ^2)。

伽马分布次序统计量分布

伽马分布次序统计量分布

伽马分布次序统计量分布
伽马分布的次序统计量分布是指根据伽马分布的概率密度函数,得到一组样本的次序统计量的概率分布。

伽马分布是一种重要的连续概率分布,常用于对正值随机变量进行建模。

假设我们有一个伽马分布的样本,其中包含有n个观测值。

我们可以按照这些观测值的大小,从小到大排列,得到一个次序统计量序列。

伽马分布的次序统计量分布可以描述这一序列中各个次序统计量的分布情况。

根据伽马分布的次序统计量分布,我们可以计算出不同次序统计量的概率密度函数和累积分布函数。

这些分布函数可以用于推断统计量、估计参数以及进行假设检验等统计推断操作。

需要注意的是,伽马分布的次序统计量分布通常需要借助数值计算或统计软件来进行计算和绘制。

这可以通过使用概率密度函数的解析形式或采用模拟方法来实现。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

, X n )T 的次序统计量,样本的极差定义为 R X ( n ) X (1) max X i min X i
1 i n 1 i n
xi min xi 其观测值为 r x( n ) x(1) max 1 i n 1 i n
4、样本极差的意义 样本极差主要用来描述样本变化幅度以及离散 程度的特征,具有和样本方差类似的含义,但它受 样本异常值的影响较小,同时也容易计算,也可以 作为总体均方差的估计. 在实际中应用比较广泛. 例3(p32例1.20) 从总体中抽取容量为6的样本, 测得样本值为 32, 65, 28, 35, 30, 29 试求,样本中位数、样本均值、样本极差、样本方差、 以及样本标准差。
1、样本中位数 定义 设(X (1) , X ( 2 ) ,
, X ( n ) )T 为样本( X1 , X 2 ,
n为奇数, n为偶数,
, X n )T 的次序统计量,样本的中位数定义为
X n 1 , ( ) 2 X 1 [ X n X n1 ], ( ) 2 (2) 2
说明 (1) 最大次序统计量X ( n )的分布密度为
f X( n ) ( x ) n[ F ( x )]n1 f ( x )
( 2) 最小次序统计量X (1)的分布密度为 f X(1) ( x ) n[1 F ( x )]
n 1
f ( x)
例1(p30例1.18) 设总体X 服从区间 [0,1] 上的均

根据分布函数的定义可得
F( X(1) , X( n ) ) ( x, y ) P{ X (1) x, X ( n) y}
以下分两种情形讨论:
(1)当x y时,
F( X(1) , X( n ) ) ( x, y) P{ X (1) x, X ( n) y} P{ X ( n) y}
i k n 1 ik
FX( k ) ( x ) P{ X ( k ) x } P{( X ( i ) x X ( i 1) X ( n ) x )
设vn ( x ) ( x )表示 x1 , x2 ,
, xn中不超
过 于 x 的个数. 它表示的是总体X 作n次重复独立观 测时,事件{ X x }出现的次数,也就是样本观测中 ( X1 , X 2 , , X n )T 不超过x的个数,因而vn ( x ) B( n,
1 i n
X ( n ) max X i 称为最大次序统计量 .
1 i n

由于每个X ( k )都是样本( X 1 , X 2 ,, X n )的函数,
所以, X (1) , X ( 2) ,, X ( n )也都是随机变量 , 并且它们 一般不相互独立 .
定义1.12 设样本X1 , X 2 , , X n按由小到达的顺序重排为
6 1 2 样本方差:sn xi2 x 2 167.583 6 i 1
1 6 2 2 样本标准差:sn x x 12.954 i 6 i 1
再 见

首先将样本观测值进行排序,可得
28, 29, 30, 32, 35, 65,

1 样本中位数:x ( x( 3) x( 4 ) ) 31 2 1 6 样本均值:x xi 36.5 6 i 1
样本极差:r max xi min xi 65 28 37
1 i 6 1 i 6
n 1
F ( x) n! k 1 n k = t ( 1 t ) dt (利用分部积分) ( k 1)!( n k )! 0
因此
n! f X(k)( x ) = ( F ( x ))k 1 (1 F ( x ))n k f ( x ) ( k 1)!( n k )!
证 由充分统计量的定义可知,只需要证明其条件 分布与总体分布无关即可.由于样本具有独立性与同分 布性,因而
P{ X1 x1 ,
P{ X i1 x(1) , c
, X n xn | X(1) x(1) ,
, X( n) x( n) }
, X ( n) x( n) }
, X in x( n ) | X (1) x(1) ,
X(1) X( 2) X( n)
则称(X (1) , X ( 2 ) ,
, X ( n ) )T 为样本( X1 , X 2 ,
, X n )T 的
次序统计量,X ( k )称为样本的第k个次序统计量,
X (1)称为样本的最小次序统计量, X ( n)称为样本的 最大次序统计量.
2、次序统计量的性质 定理1.19 次序统计量是充分统计量
其观测值为
x n1 , ( ) 2 x 1 [ x n x n1 ], ( ) 2 (2) 2
n为奇数, n为偶数,
2、样本中位数的意义 样本中位数主要用来描述样本位置的特征, 具有和样本均值类似的含义,但它不受样本异常值 的影响,同时也容易计算,也可以作为总体均值的 估计. 缺点是分布不容易计算,因而在理论讨论时, 带来一定困难. 3、样本极差 定义 设(X (1) , X ( 2 ) , , X ( n ) )T 为样本( X1 , X 2 ,
其中( i1 , i2 ,
, in )是(1, 2,
-1
, n)的一个置换,这样的
置换共n ! ,因而c ( n !) 。由此可见,此条件分布 与总体无关,故
次序统计量是充分统计量.
3、次序统计量的分布
定理1.19 设总体X的分布密度为f ( x)(或分布函数
为F ( x ), X1 , X 2 ,
FX( k ) ( x ) P{ X ( i ) x X ( i 1) } P{ X ( n ) x }
i k n 1
F ( x )),因此
= P{v ( x ) i } P{v ( x ) n}
i k
i = C n [F ( x )]i [1 F ( x )]n i i k n 1
匀分布,( X1 , X 2 , 分布.

, X n )为总体X的样本, 试求X ( k )的
总体X的分布密度为 1, 0 x 1 f ( x) 0, 其他
X的分布函数为 0, x 0 F ( x ) x, 0 x 1 1, x 1
n! k 1 n k f X(k)( x ) = ( F ( x )) (1 F ( x )) f ( x ) ( k 1)!( n k )! n! = ( x )k 1 (1 x )n k , 0 x 1. ( k 1)!( n k )!
P{ X (1) y,
(2)当x y时,
, X ( n ) y } P{ X ( i ) y } [F ( y )]n
i 1
nபைடு நூலகம்
F( X(1) , X( n ) ) ( x, y ) P{ X (1) x, X ( n) y}
又由于 { X ( n ) y } { X (1) x , X ( n ) y } { X (1) x , X ( n ) y } { X (1) x , X ( n ) y } { x X (1) y , , x X ( n) y}
, X ( n ) )T 称为样本 ( X1 , X 2 , , X n )T 的次序统计量. ( X (1) , X ( 2 ) ,
对应的( x(1) , x( 2 ) , x( n ) )称为其观测值 .
X ( k ) : 样本( X 1 , X 2 ,, X n )的第k个次序统计量.
特别地,X (1) min X i 称为最小次序统计量 .
因而
[ F ( y )]n F( X (1) , X ( n ) ) ( x , y ) [ F ( y ) F ( x )]n
所以
F( X (1) , X ( n ) ) ( x , y ) [ F ( y )]n [ F ( y ) F ( x )]n
于是可以得到其联合分布密度为
定理1.20 设总体X的分布密度为f ( x)(或分布函数
为F ( x ), X1 , X 2 , 统计量( X (1) , X , (2)
, X n为来自总体X的样本,则次序
T ,X ) (n) 的联合分布密度为 n n ! f i ( yi ), y1 y2 yn f ( y1 , y2 , , yn ) i 1 0, 其他, 证明省略
f ( X (1 ) , X ( n ) ) ( x , y )
2 F( X(1) , X( n ) ) ( x , y ) xy
n( n 1)[ F ( y ) F ( x )]n 2 f ( x ) f ( y ), x y 其他, 0,
二、样本中位数和样本极差
第1.4节 次序统计量及其分布
一、次序统计量 二、样本中位数和样本极差
一、次序统计量
1、 次序统计量 设( X1 , X 2 , , X n )T 是从总体X中抽取的一个样本,
( x1 , x2 ,
, xn )T 是其一个观测值, 将观测值按由小到
大的次序重新排列为 x(1) x( 2 ) x( n ) 当( X1 , X 2 , , X n )T 取值为( x1 , x2 , xn )T 时, 定义 X ( k )取值为x( k ) ( k 1, 2, n),由此得到
例2(p30例1.19) 设总体X 服从区间 [0, ] 上的均
匀分布,( X1 , X 2 ,
, X n )为总体X的样本, 试求样本
的联合分布. 解 总体X的分布密度为
相关文档
最新文档