汉诺塔问题非递归算法详解
汉诺塔问题的非递归算法设计及可视化实现

汉诺塔问题的非递归算法设计及可视化实现彭伟【摘要】This essay introduces the classic recursive algorithm of the famous Hanoi,and then carries out further analysis and study on the algorithm based on the binary recursive tree to get a non-recursive solution without using the stack technology.Finally,designing procedures of development environment are visualized in NET,using recursive and non-recursive algorithm respectively to solve Hanoi of specified scale,with the moving effects of disc being dynamically simulated.%讨论了汉诺塔问题的经典递归算法,并基于二叉递归树对算法进行研究,得出了一种不使用堆栈技术的非递归解法,最后在.NET可视化开发环境下设计程序,分别用递归与非递归算法求解指定规模的汉诺塔问题,动态模拟了求解过程中盘片的移动效果。
【期刊名称】《武汉船舶职业技术学院学报》【年(卷),期】2011(010)006【总页数】6页(P55-59,72)【关键词】汉诺塔;二叉树;递归,非递归;可视化;模拟【作者】彭伟【作者单位】武汉城市职业学院,湖北武汉430064【正文语种】中文【中图分类】TP301汉诺塔游戏最早于19世纪出现在欧洲,它展示了一项正在婆罗门寺庙进行的任务:在创世之初,牧师被授予一个铜盘,上面有3根钻石针,在第1根针上叠放着64个碟片,每一个都比它下面的稍小一些,这位牧师被安排了一项任务,那就是将所有的碟片从第1根针移到第3根针,但要遵循的规则是:一次只能移动一个碟片,并且不允许将任何一个碟片放在比它小的碟片上面。
汉诺塔问题

盐城工学院C++课程设计二级学院:信息学院班级:姓名:学号:指导老师:1.报告简介1.1 汉诺塔问题简介在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。
印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔(如下图)。
不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必在大片上面。
当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,梵塔、庙宇和众生都将同归于尽。
故汉诺塔问题又被称为“世界末日问题。
”图1-11.2 问题思想解决为满足题目中盘子的移动问题,必须遵循的条件是:一次仅能移动一个盘,且不允许大盘放在小盘的上面。
设要解决的汉诺塔共有N个圆盘,对A杆上的全部N个圆盘从小到大顺序编号,最小的圆盘为1号,次之为2号,依次类推,则最下面的圆盘的编号为N。
第一步:先将问题简化。
假设A杆上只有一个圆盘,即汉诺塔只有一层N,则只要将1号盘从A杆上移到B杆上即可。
第二步:对于一个有N(N>1)个圆盘的汉诺塔,将N个圆盘分成两部分:“上面的N-1个圆盘”看成一个整体,为了解决N个圆盘的汉诺塔,可以按下面图示的方式进行操作:(1)将A杆上面的N-1个盘子,借助B杆,移到C杆上;图1-2(2)将A杆上剩余的N号盘子移到B杆上;图1-3(3)将C杆上的N-1个盘子,借助A杆,移到B杆上。
图 1-41.3 预期目标运行程序后,首先显示:图 1-5选择 1 后,要求输入盘子的数目,即N输入后,显示递归调用时盘子移动的过程图 1-6继续选择 2 ,要求输入盘子的数目,即P输入后,显示非递归调用时盘子移动过程。
图 1-72.需求分析编写汉诺塔程序用到的知识有:符号常量的定义,循环语句,函数,栈与应用;2.1 符号常量的定义常量就是在程序运行过程中其值不发生变化的量。
汉诺塔问题求解思路

汉诺塔问题求解思路汉诺塔问题是⼀个经典的问题。
汉诺塔(Hanoi Tower),⼜称河内塔,源于印度⼀个古⽼传说。
⼤梵天创造世界的时候做了三根⾦刚⽯柱⼦,在⼀根柱⼦上从下往上按照⼤⼩顺序摞着64⽚黄⾦圆盘。
⼤梵天命令婆罗门把圆盘从下⾯开始按⼤⼩顺序重新摆放在另⼀根柱⼦上。
并且规定,任何时候,在⼩圆盘上都不能放⼤圆盘,且在三根柱⼦之间⼀次只能移动⼀个圆盘。
问应该如何操作?分析如果是初次接触类似的问题,乍看之下肯定会感觉⽆从下⼿。
要把64个圆盘从a柱⼦移动到c柱⼦上,第⼀步应该怎么做?虽然可以肯定,第⼀步唯⼀的选择是移动a最上⾯的那个圆盘,但是应该将其移到b还是c呢?很难确定。
因为接下来的第⼆步、第三步……直到最后⼀步,看起来都是很难确定的。
能⽴即确定的是最后⼀步:最后⼀步的盘⼦肯定也是a最上⾯那个圆盘,并且是由a或b移动到c——此前已经将63个圆盘移动到了c上。
也许你会说,管他呢,先随便试着移动⼀下好了。
如果你这么做,你会发现,接下来你会⾯临越来越多类似的选择,对每⼀个选择都“试”⼀下的话,你会偏离正确的道路越来越远,直到你发现你接下来⽆法进⾏为⽌。
如果将这个问题的盘⼦数量减为10个或更少,就不会有太⼤的问题了。
但盘⼦数量为64的话,你⼀共需要移动约1800亿亿步(18,446,744,073,709,551,615),才能最终完成整个过程。
这是⼀个天⽂数字,没有⼈能够在有⽣之年通过⼿动的⽅式来完成它。
即使借助于计算机,假设计算机每秒能够移动100万步,那么约需要18万亿秒,即58万年。
将计算机的速度再提⾼1000倍,即每秒10亿步,也需要584年才能够完成。
注:在我的笔记本电脑上,每秒⼤约能够移动6~8百万步。
虽然64个盘⼦超出了⼈⼒和现代计算机的能⼒,但⾄少对于计算机来说,这不是⼀个⽆法完成的任务,因为与我们⼈类不同,计算机的能⼒在不断提⾼。
分解问题⼀股脑地考虑每⼀步如何移动很困难,我们可以换个思路。
python汉诺塔非递归算法

python汉诺塔非递归算法如何使用Python编写非递归的汉诺塔算法首先,让我们回顾一下汉诺塔问题的背景。
汉诺塔是一个经典的数学问题,涉及到递归和栈的使用。
问题的目标是将一组不同大小的圆盘从一个柱子移动到另一个柱子,其中有三个柱子可供选择。
在移动过程中,您必须遵守以下规则:1. 您只能移动一个圆盘,并且只能将较小的圆盘放在较大的圆盘上。
2. 您只能在三个柱子之间移动圆盘。
3. 将所有圆盘从一个柱子移动到另一个柱子上是成功的。
使用递归算法可以很容易地解决这个问题。
然而,递归算法在处理大量圆盘时可能会导致递归深度过大,从而消耗大量的内存和计算时间。
因此,我们需要采用非递归的方法来解决这个问题。
接下来,让我们一步一步地介绍如何使用Python编写非递归的汉诺塔算法:步骤1: 定义一个Stack类首先,我们需要定义一个Stack类来模拟栈的行为。
在Python中,可以使用列表来实现这个类。
我们可以使用列表的append()方法将元素添加到栈顶,使用pop()方法从栈顶取出元素,使用isEmpty()方法检查栈是否为空,以及使用size()方法获取栈的大小。
下面是Stack类的代码实现:class Stack:def __init__(self):self.items = []def isEmpty(self):return len(self.items) == 0def push(self, item):self.items.append(item)def pop(self):return self.items.pop()def size(self):return len(self.items)步骤2: 定义一个非递归的汉诺塔函数接下来,我们需要定义一个非递归的汉诺塔函数。
该函数的输入参数包括圆盘的数量、起始柱子、目标柱子和辅助柱子。
函数的实现思路如下:- 首先,将所有的圆盘按照倒序从起始柱子压入起始栈。
采用递归和非递归方法求解hannol问题

采用递归和非递归方法求解hannol问题汉诺塔问题是数学中的经典问题之一,也被认为是计算机科学中的经典问题。
它的解法可以使用递归或非递归的方法。
在本文中,我们将介绍并比较这两种解法。
汉诺塔问题的描述是:有三根柱子,A、B、C,初始时,A柱子上有n个盘子,这些盘子从小到大按顺序堆叠在一起。
现在需要将这n 个盘子从A柱子移动到C柱子上,期间可以借助B柱子。
移动盘子有以下几个规则:1.每次只能移动一个盘子;2.盘子只能从大盘子移到小盘子上;3.在移动过程中,可以借助柱子进行中转。
接下来,我们将先介绍递归解法。
递归解法:对于n个盘子,我们可以将问题分解为以下三个步骤:1.将n-1个盘子从A柱子移动到B柱子;2.将第n个盘子从A柱子移动到C柱子;3.将n-1个盘子从B柱子移动到C柱子。
递归解法的代码如下:```pythondef hanoi(n, A, B, C):if n == 1:print("Move disk %d from %s to %s" % (n, A, C)) else:hanoi(n-1, A, C, B)print("Move disk %d from %s to %s" % (n, A, C)) hanoi(n-1, B, A, C)```在这个递归函数中,n表示盘子的数量,A、B、C表示三根柱子。
当n为1时,直接将第一个盘子从A柱子移动到C柱子;否则,先将n-1个盘子从A柱子移动到B柱子,然后将第n个盘子从A柱子移动到C柱子,最后将n-1个盘子从B柱子移动到C柱子。
递归的过程中,会不断地将问题分解为子问题,直到子问题规模减小到1。
下面是一个具体的例子,假设有3个盘子,初始时都在A柱子上:```pythonhanoi(3, 'A', 'B', 'C')```输出结果为:```Move disk 1 from A to CMove disk 2 from A to BMove disk 1 from C to BMove disk 3 from A to CMove disk 1 from B to AMove disk 2 from B to CMove disk 1 from A to C```如上所示,递归解法将问题分解为子问题,然后逐步解决子问题,最后得到整体的解。
汉诺塔问题非递归算法c语言

汉诺塔问题非递归算法c语言汉诺塔问题是一个经典的数学问题,也是一个常见的编程练习题。
在这个问题中,有三根柱子和一些圆盘,圆盘的大小不一,从小到大依次叠放在一根柱子上。
目标是将所有的圆盘从一根柱子移动到另一根柱子,移动过程中要保证大的圆盘在小的圆盘上面。
同时,每次只能移动一个圆盘,且不能把一个大的圆盘放在一个小的圆盘上面。
在解决汉诺塔问题时,通常采用递归算法。
但是递归算法的效率并不高,因为每次递归都会产生额外的函数调用,增加了系统的开销。
因此,我们可以通过非递归的方式来解决汉诺塔问题,提高算法的效率。
以下是一个用C语言实现的汉诺塔问题的非递归算法:```c#include <stdio.h>#include <stdlib.h>typedef struct {int n;char start, end, temp;} StackNode;typedef struct {StackNode data[100];int top;} Stack;void push(Stack *s, StackNode node) {s->data[s->top++] = node;}StackNode pop(Stack *s) {return s->data[--s->top];}void hanoi(int n, char start, char end, char temp) {Stack s;s.top = 0;StackNode node;node.n = n;node.start = start;node.end = end;node.temp = temp;push(&s, node);while (s.top > 0) {node = pop(&s);if (node.n == 1) {printf("Move disk 1 from %c to %c\n", node.start, node.end); } else {StackNode node1, node2, node3;node1.n = node.n - 1;node1.start = node.temp;node1.end = node.end;node1.temp = node.start;push(&s, node1);node2.n = 1;node2.start = node.start;node2.end = node.end;node2.temp = node.temp;push(&s, node2);node3.n = node.n - 1;node3.start = node.start;node3.end = node.end;node3.temp = node.temp;push(&s, node3);}}}int main() {int n;printf("Enter the number of disks: "); scanf("%d", &n);hanoi(n, 'A', 'C', 'B');return 0;}```在这个非递归算法中,我们使用了一个栈来模拟递归的过程。
汉诺塔问题

汉诺塔百科名片汉诺塔初始状态汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。
上帝创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上安大小顺序摞着64片黄金圆盘。
上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。
并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
目录由来汉诺塔与宇宙寿命concreteHAM:汉诺塔问题的程序实现由来汉诺塔与宇宙寿命concreteHAM:汉诺塔问题的程序实现展开编辑本段由来来源汉诺塔是源自印度神话里的玩具。
上帝创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘。
上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。
并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
传说在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。
印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。
不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。
僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。
不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序。
这需要多少次移动呢?这里需要递归的方法。
假设有n片,移动次数是f(n).显然f(1)=1,f(2)=3,f(3)=7,且f(k+1)=2*f(k)+1。
此后不难证明f(n)=2^n-1。
n=64时,f(64)= 2^64-1=18446744073709551615假如每秒钟一次,共需多长时间呢?一个平年365天有31536000 秒,闰年366天有31622400秒,平均每年31556952秒,计算一下,18446744073709551615/31556952=584554049253.855年这表明移完这些金片需要5845亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年。
四柱汉诺塔非递归算法实现

,:
Mo v e ( A, C ) ; h a n o i 3 ( n - 1 , B , A , C ) ;
}
l
三柱 汉诺塔 非 递归算 法 分析 : 先不 考虑 盘子 个数 , 我们 对 h a n o i 3 ( A , B , C ) 进 行 一 次 递 归展 开 , 如图 1 , 得 到一 棵 二 叉树 , 对图 1 二 叉 树
图 3 三 柱 汉 诺 四 次 递 归过 程
本文 考虑 带 四柱 的汉诺 塔 问题 , 四柱 汉诺 塔 问题 和三 柱 汉诺 塔 问题 的惟 一 区别就 是 增加 了一 个 柱,目 标 是用 最少 的移 动 次 数将 A柱 上 的 n个盘 子 通 过 B 柱和 C柱移 到 D柱 上 。 虽然 四柱 汉诺 塔只 L L = 柱汉 诺 塔 多一 个柱, 但 是解 决它 的难 度远 大 于三柱 汉诺 塔 。 对 于盘 数 为 n的 四柱 汉诺 塔 问题 , 可 以递 归地 定
h a n o i 3 ( r , A, C , D ) ;
பைடு நூலகம்
9 6 . 福建电脑 I 2 0 1 3 年 第u期
煎…堡… … 曼… 照
UJ } AN C0 M pt J T嚣随
h a n o i 4 ( n — r , B , A, C , D ) ;
B , B 一> D , D 一> A进 行循 环 。 v o i d o u t p u t ( i n t p r e s e n t _ l e v e l , i n t p o s i t i o n , i n t r ) { / 参数 分 别为 : 当前层 号 , 在 本层 的序 号 , 层 号 所
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
void setNext(Stake *p)
{
next=p;
}
Stake *getNext()//获取下一个对象的地址
{
return next;
}
int getName()//获取当前桩子的编号
{
return name;
}
private:
int s[Cap+1];//表示每根桩子放盘子的最大容量
int top,name;
最后,进行以下步骤即可:
(1)首先,按顺时针方向把圆盘1从现在的桩子移动到下一根桩子,即当n为偶数时,若圆盘1在桩子A,则把它移动到B;若圆盘1在桩子B,则把它移动到C;若圆盘1在桩子C,则把它移动到A。
(2)接着,把另外两根桩子上可以移动的圆盘移动到新的桩子上。
即把非空桩子上的圆盘移动到空桩子上,当两根桩子都非空时,移动较小的圆盘。
(3)重复(1)、(2)操作直至移动次数为2^n - 1。
#include<iostream>
#include<cmath>
using namespace std;
#define Cap 64
class Stake //表示每桩子上的情况
{
public:
Stake(int name,int n)
{
this->name=name;
Stake *next;
};
void ห้องสมุดไป่ตู้ain()
{
int n;
void hanoi(int,int,int,int);
cout<<"请输入盘子的数量:";
cin>>n;
if(n<1)
cout<<"输入的盘子数量错误!!!"<<endl;
else
{
cout<<"移动"<<n<<"个盘子的步骤如下:"<<endl;
}
else
{
temp=p->Pop();
cout<<p->getName()<<"-->";
p=p->getNext();
p->Push(temp);
cout<<p->getName()<<endl;
}
}
}
for(i=0;i<n;i++)//把n个盘子按顺序放在A桩子上
a.Push(n-i);
a.setNext(&b);
b.setNext(&c);//将3个桩子连在一起,就如同链表
c.setNext(&a);
for(i=0,p=&a;i<max;i++)//此处打印盘子的移动步骤
{
if(i%2)
{
ptr1=p->getNext();
if(n%2)
hanoi(n,1,3,2);
else
hanoi(n,1,2,3);
}
}
void hanoi(const int n,int A,int B,int C)
{
Stake a(A,n),b(B,n),c(C,n);
Stake *p,*ptr1,*ptr2,*pt;
int i,temp,max=pow(2,n)-1;
top=0;
s[top]=n+1;/*假设桩子最底部有第n+1个盘子,即s[0]=n+1,这样方便下面进行操作*/
}
int Top()//获取栈顶元素
{
return s[top];//栈顶
}
int Pop()//出栈
{
return s[top--];
}
void Push(int top)//进栈
{
s[++this->top]=top;
Make By Mr.Cai
思路介绍:
首先,可证明,当盘子的个数为n时,移动的次数应等于2^n - 1。
然后,把三根桩子按一定顺序排成品字型(如: ),再把所有的圆盘按至上而下是从小到大的顺序放在桩子A上。
接着,根据圆盘的数量确定桩子的排放顺序:
若n为偶数,按顺时针方向依次摆放 ;
若n为奇数,按顺时针方向依次摆放 。
ptr2=ptr1->getNext();
if(ptr1->Top()<ptr2->Top())
{
pt=ptr1;
ptr1=ptr2;
ptr2=pt;
}
ptr1->Push(ptr2->Pop());
cout<<ptr2->getName()<<"-->"
<<ptr1->getName()<<endl;