焊接方式和焊接参数.
常用焊接参数的选择

常用焊接参数的选择:1. 手工电弧焊工艺规范参数主要有:焊接电流、焊条直径和焊接层次。
1焊接电流焊条与电流匹配参数· 1.6 2.0 2.5 3.2 4.0 5.0 5.85.8电流(A)25~4.40~60 50~80100~130160~210200~270260~300注:立焊、横焊、仰焊时焊接电流应比平时小10%~20%。
2)焊条直径焊条直径一般根据构件厚度及焊接位置来选择。
平焊时焊条直径可以选择大些,立焊时焊条直径不大于5mm,仰焊和横焊时最大焊条直径为4mm,多层焊及坡口第一层焊缝使用的焊条直径为3.2~4mm.焊条直径的选择焊件厚度(mm)2336~12≥13焊条直径(mm)2 3.2 3.2~44~54~62. 埋弧自动焊埋弧自动焊焊接规范的主要参数有:焊接电源、电弧电压、焊接速度、焊丝直径及焊丝伸出长度等。
焊丝的直径大,焊缝的熔宽会增加,熔深则稍有下降;焊丝直径越小,熔深相应增加。
一般大型工件多采用4~5mm直径的焊丝。
不同的焊丝直径应用不同的焊接电流范围焊件厚度(mm)23456焊条电流(A)200~400 300~600500~800700~1000800~1200焊接电流与相应的电弧电压焊接电流(A)600~700700~850850~10001000~1200电弧电压(V)36~3838~4040~4242~44焊接速度的变化,将直接影响电弧热量的分配情况,即影响线能量的大小。
在其他参数不变时,焊接速度增加,热输入量减少,熔宽明显变窄。
当焊接速度超过40m/h时,由于热输入量减少的影响,焊接缝会出现磁偏吹、吹边、气孔等缺陷。
焊接速度过低时,易产生类似过高的电弧电压的缺陷。
3. CO2气体保护焊主要规范参数:焊接电流、电弧电压、焊丝直径、焊接速度、焊丝伸出长度、气体流量等。
焊丝直径主要是根据工件厚度来选择。
一般薄板采用¢0.8~1.0mm的焊丝焊接。
中厚板应选用¢1.2~2.0mm的焊丝焊接。
焊接工艺参数规范要求

焊接工艺参数规范要求焊接工艺是各行业中广泛应用的技术之一,它在制造领域中扮演着至关重要的角色。
焊接工艺参数的规范要求是确保焊接质量稳定的关键因素。
本文将深入探讨焊接工艺参数规范要求的各个方面。
一、焊接前准备在进行焊接工艺之前,必须进行充分的准备工作。
首先,焊接所需的基材和焊材必须符合相关标准,确保其质量合格。
同时,需要对焊接设备进行检查和维护,确保其正常工作状态。
二、焊接工艺选择焊接工艺的选择取决于焊接材料的性质和结构要求。
在选择合适的焊接工艺时,应综合考虑材料的特性、焊接件的结构、焊接强度要求以及生产效率等因素。
同时,还需要考虑到焊接过程中产生的热变形和应力等因素。
三、焊接参数设置1. 焊接电流焊接电流是影响焊接效果的关键参数之一。
要根据焊接任务的要求,选择合适的焊接电流。
电流的大小直接影响到焊缝的质量和焊接速度。
过大的电流会导致焊缝的过温和焊渣的产生,过小的电流则会导致焊缝的不良。
2. 焊接电压焊接电压是控制焊接弧长的重要参数。
合适的焊接电压可以保证焊接过程的稳定性和焊缝的质量。
过高的电压会导致焊接弧过长,产生不良的飞溅和气孔;过低的电压则会导致焊接弧过短,焊缝的穿透性差。
3. 焊接速度焊接速度是影响焊接质量和效率的重要参数。
合理的焊接速度可以保证焊接质量,并提高焊接效率。
过快的焊接速度会导致焊缝质量下降,过慢的焊接速度则会浪费时间,影响生产进度。
4. 焊接时间焊接时间是指焊接电流和焊接速度的乘积。
它直接影响到焊缝的形成和焊接强度。
在设置焊接时间时,应根据焊接任务的要求和焊接材料的特性进行合理的选择。
四、焊接过程控制1. 清洁度控制焊接前,焊接件必须进行充分的清洁处理,确保焊接表面无油污、锈蚀和灰尘等杂质。
清洁度的好坏直接影响到焊缝的质量和强度。
同时,在焊接过程中,也要保持焊接区域的清洁,防止灰尘和杂质的污染。
2. 保护气体控制某些焊接工艺需要使用保护气体来防止焊缝氧化。
在进行这类焊接时,保护气体的流量和压力需要进行合理的控制。
氩弧焊焊接工艺参数

氩弧焊焊接工艺参数一、电特性参数1.焊接电流钨极氩弧焊的焊接电流通常是根据工件的材质、厚度和接头的空间位置来选择的,焊接电流增加时,熔深增大,焊缝的宽度和余高稍有增加,但增加很少,焊接电流过大或过小都会使焊缝成形不良或产生焊接缺陷。
2.电弧电压钨极氩弧焊的电弧电压主要是由弧长决定的,弧长增加,电弧电压增高,焊缝宽度增加,熔深减小。
电弧太长电弧电压过高时,容易引起未焊透及咬边,而且保护效果不好。
但电弧也不能太短,电弧电压过低、电弧太短时,焊丝给送时容易碰到钨极引起短路,使钨极烧损,还容易夹钨,故通常使弧长近似等于钨极直径。
3.焊接速度焊接速度增加时,熔深和熔宽减小,焊接速度过快时,容易产生未熔合及未焊透,焊接速度过慢时,焊缝很宽,而且还可能产生焊漏、烧穿等缺陷。
手工钨极氩弧焊时,通常是根据熔池的大小、熔池形状和两侧熔合情况随时调整焊接速度。
二、其它参数1.喷嘴直径喷嘴直径(指内径)增大,应增加保护气体流量,此时保护区范围大,保护效果好。
但喷嘴过大时,不仅使氩气的消耗增加,而且不便于观察焊接电弧及焊接操作。
因此,通常使用的喷嘴直径一般取8mm~20mm为宜。
2.喷嘴与焊件的距离喷嘴与焊件的距离是指喷嘴端面和工件间的距离,这个距离越小,保护效果越好。
所以,喷嘴与焊件间的距离应尽可能小些,但过小将不便于观察熔池,因此通常取喷嘴至焊件间的距离为7mm~15mm。
3.钨极伸出长度为防止电弧过热烧坏喷嘴,通常钨极端部应伸出喷嘴以外。
钨极端头至喷嘴端面的距离为钨极伸出长度,钨极伸出长度越小,喷嘴与工件间距离越近,保护效果越好,但过小会妨碍观察熔池。
通常焊对接缝时,钨极伸出长度为5mm~6mm较好;焊角焊缝时,钨极伸出长度为7mm~8mm较好。
4.气体保护方式及流量钨极氩弧焊除采用圆形喷嘴对焊接区进行保护外,还可以根据施焊空间将喷嘴制成扁状(如窄间隙钨极氩弧焊)或其他形状。
焊接根部焊缝时,焊件背部焊缝会受空气污染氧化,因此必须采用背部充气保护。
tig焊接工艺参数选择方法

钨极 直径 (mm)
0.5 1
1.6 2
2.4 2.5 3.2
4 4.8
5 6.3
8
直流
正接(钨极接正极)
反接(钨极接负极)
纯钨
钍钨、铈钨
纯钨
钍钨、铈钨
5~20
5~20
—
—
10~75
10~75
—
—
40~130
60~150
10~20
10~20
75~180
100~200
15~25
15~25
—
150~250
—
钍钨、铈钨 5~15 15~70 60~125 85~160
100~180 120~210 150~250 240~350 290~390 330~460 430~575 650~830
五、钨极直径与端部形状(续)
(2)钨极端部形状 钨极端部的形状对焊接许用电流的大小、电弧燃烧的稳 定性、焊缝成形也有影响。
4~ 9.5 4~ 9.5 4~ 13 8~ 13 13~ 16
4~ 5 4~ 7 6~ 8 8~ 9 9~ 12
8~ 9.5 9.5~ 11 11~ 13 13~ 16 16~ 19
6~ 8 7~ 10 7~ 10 8~ 15 8~ 15
十、喷嘴孔径与氩气流量(续)
选用氩气流量时,还应考虑以下因 素:
极大的影响。
电弧长度增加: 焊道宽度增加, 熔深减小,保护效果变差。
钨极
电弧长度减少: 不宜观察熔池,
填充焊丝易与钨极短路。
喷嘴
L =(1~1.5)倍板厚
最大小于6 ㎜ 钨极伸出长度: 对焊时: 5 ~ 6 ㎜ 角焊时: 7 ~ 8 ㎜ (过长时钨极易氧化)
tig焊焊接参数

tig焊焊接参数
TIG焊接是一种常见的金属焊接方法,其主要焊接参数包括以下几点:
1.焊接电流:根据焊接材料的类型和厚度,以及所需的焊缝形状,选择合适的焊接电流。
一般来说,焊接电流在0、1.6、
2.4和
3.2安培之间。
2.焊接电压:焊接电压会影响焊缝的形状和宽度,通常在10-15伏特之间。
3.焊接速度:焊接速度是指焊接过程中焊接头移动的速度,它会影响到焊缝的宽度、形状和质量。
焊接速度适中,可以保证焊缝的饱满和光滑。
4.钨极直径:钨极直径根据焊缝宽度和个人喜好选择,一般为2-6毫米。
5.气体流量:保护气体的流量要适当,流量过大或过小都会影响到焊接质量。
通常,氩气的流量在10-15升/分钟之间。
6.焊接角度:焊接角度是指焊接头与焊接面的夹角,一般为90度。
7.焊接顺序:根据焊缝的形状和焊接材料的布局,合理选择焊接顺序,以保证焊缝的质量。
8.焊接温度:焊接温度会影响到焊缝的质量和性能,一般控制在熔池的形成温度以下。
以上就是TIG焊接的主要参数,实际操作中,还需要根据具体的焊接条件和个人经验进行调整。
氩弧焊焊接工艺参数-百度文库(精)

氩弧焊焊接工艺参数一、电特性参数1.焊接电流钨极氩弧焊的焊接电流通常是根据工件的材质、厚度和接头的空间位置来选择的,焊接电流增加时,熔深增大,焊缝的宽度和余高稍有增加,但增加很少,焊接电流过大或过小都会使焊缝成形不良或产生焊接缺陷。
2.电弧电压钨极氩弧焊的电弧电压主要是由弧长决定的,弧长增加,电弧电压增高,焊缝宽度增加,熔深减小。
电弧太长电弧电压过高时,容易引起未焊透及咬边,而且保护效果不好。
但电弧也不能太短,电弧电压过低、电弧太短时,焊丝给送时容易碰到钨极引起短路,使钨极烧损,还容易夹钨,故通常使弧长近似等于钨极直径。
3.焊接速度焊接速度增加时,熔深和熔宽减小,焊接速度过快时,容易产生未熔合及未焊透,焊接速度过慢时,焊缝很宽,而且还可能产生焊漏、烧穿等缺陷。
手工钨极氩弧焊时,通常是根据熔池的大小、熔池形状和两侧熔合情况随时调整焊接速度。
二、其它参数1.喷嘴直径喷嘴直径(指内径增大,应增加保护气体流量,此时保护区范围大,保护效果好。
但喷嘴过大时,不仅使氩气的消耗增加,而且不便于观察焊接电弧及焊接操作。
因此,通常使用的喷嘴直径一般取8mm~20mm为宜。
2.喷嘴与焊件的距离喷嘴与焊件的距离是指喷嘴端面和工件间的距离,这个距离越小,保护效果越好。
所以,喷嘴与焊件间的距离应尽可能小些,但过小将不便于观察熔池,因此通常取喷嘴至焊件间的距离为7mm~15mm。
3.钨极伸出长度为防止电弧过热烧坏喷嘴,通常钨极端部应伸出喷嘴以外。
钨极端头至喷嘴端面的距离为钨极伸出长度,钨极伸出长度越小,喷嘴与工件间距离越近,保护效果越好,但过小会妨碍观察熔池。
通常焊对接缝时,钨极伸出长度为5mm~6mm较好;焊角焊缝时,钨极伸出长度为7mm~8mm较好。
4.气体保护方式及流量钨极氩弧焊除采用圆形喷嘴对焊接区进行保护外,还可以根据施焊空间将喷嘴制成扁状(如窄间隙钨极氩弧焊或其他形状。
焊接根部焊缝时,焊件背部焊缝会受空气污染氧化,因此必须采用背部充气保护。
焊接工艺规范及焊接通用工艺参数

焊接工艺规范1 范围本规范规定了焊接(手工电弧焊)工艺的技术要求。
本规范适用于本公司火力发电厂用涉压碳钢制水处理环保设备(容器)产品的焊接。
2 规范性引用文件下列文件中的条款通过本规范的引用而成为本规范的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本规范。
GB 9448-1999 焊接与切割安全3 焊工3.1 焊工必须经专门的理论学习和实际操作培训,经考试合格和主管部门的同意,方可担任合格证中指定项目的焊接工作。
3.2 具有合格证书的焊工,一般每两年应重新考核一次。
对中断焊接工作六个月以上者,必须重新考核。
3.3焊工在施焊前应认真熟悉图纸和焊接工艺。
3.4核查待焊焊缝坡口的装配质量和组对要求,对不符合装配质量和组对要求的焊缝应拒焊,并向有关部门反映。
3.5进行焊缝质量的自检,做好自检记录、焊缝标记或焊缝跟踪记录等工作。
4 焊接设备4.1 应根据焊接施工时需用的焊接电流和实际负载持续率,选用焊机。
4.2 每台焊接设备都应有接地装置,并可靠接地。
4.3 焊接设备应处于正常工作状态,安全可靠,仪表应检定合格。
5 焊接材料5.1 焊接材料(焊条)应为进货验收合格品。
对材质有怀疑时,应进行复验,合格后才能使用。
5.2 焊接材料的选用按附录A的规定。
5.3 焊前应根据焊条使用说明的规定对焊条进行必要的烘干处理。
5.4 烘干后的焊条应放入100℃~150℃的保温箱(筒)内,随用随取。
重新烘干次数不应超过三次。
6 焊前准备6.1 坡口加工材料为碳素钢的坡口可采用冷加工或热加工方法制备。
6.2 焊接坡口应符合图样规定。
6.3 焊接坡口应保持平整,不得有裂纹、分层、夹渣等缺陷。
6.4 焊前应将坡口表面及两侧的水、氧化物、油污、锈、熔渣等杂质清除干净。
清理范围为:对接焊缝坡口表面及两侧(距坡口边20mm宽度范围内);角焊缝焊脚尺寸K + 10mm~20mm。
焊接工艺参数表

各种弧焊工艺方法在不同作业方式时的实际负载持续率
说明:
1、选用焊机是根据焊件厚度、焊接位置、焊接材料直径大小,选取最大实际焊接电流值。
确认作业方式,估算实际负载持续率。
当实际负载持续率超过额定负载持续率时,其实际焊接电流低于焊机额定电流,方正常使用,以免焊机损坏。
2、如CO2焊机200KR,其额定负载持续率60%时,额定电流200A;当用于小批量连续作
业半自动焊时,实际负载持续率为60%,最大焊接电流200A;当自动化大批量连续作业时,可允许最大电流值155A,仍满足板厚6mm工件的焊接生产。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊条电弧焊是用手工操纵焊条进行 焊接的电弧焊方法(又称手工电弧 焊)。可以采用各种与焊接母材相 配的的焊条焊制优质的焊接接头。
1、焊条电弧焊的优点
所使用的焊接设备简单 焊条电弧焊所需的焊条供应充足,且品种规 格齐全,可焊接除活性金属和难熔金属以外 的所有结构材料,且接头的质量可达到高标 准的要求; 工艺适用性强;
焊接电压的选择
焊接电压与弧长有关,一般长弧电压高, 短弧电压低;(短弧指弧长为0.5~1.0倍的 焊条直径,超过此值为长弧) 有一经验公式可供参考:当电流I小于600A 时,一般取电压为20+0.04I,当电流大于 600A时,取电压为44V;
焊条的选择
焊条牌号的前两位为融敷金属的抗拉强度 值,最后一位是药皮类型,比如J422,抗拉 强度为420MPa,最后的2代表氧化钛钙药皮;
药皮类型
0:不规定药皮类型,不规定适用电流类型 1:氧化钛型药皮,交直流两用 2:氧化钛钙型药皮,交直流两用 3:钛钙型药皮,交直流两用 4:氧化铁型药皮,交直流两用 5:高纤维素型药皮,交直流两用 6:低氢钾型药皮,交直流两用 7:低氢钠型药皮,交直流两用 8:石墨型药皮,交直流两用 9:盐基型药皮,直流专用 (1~5为酸性焊条,6~9为碱性焊条)
咬边 1.焊接速度太高2.电弧电压太高3.电流过大4.停留 时间不足5.焊枪角度不正确 1.减慢焊速2.降低 电压3.降低焊速4.增加在熔池边缘停留时间5.改变 焊枪角度,使电弧力推动金属流动 未融合 1.焊缝区有氧化皮和锈2.热输入不足3.焊接熔池太 大4.焊接技术不高5.接头设计不合理 1.仔细清 理氧化皮和锈2.提高送丝速度和电弧电压,减慢焊 接速度3.采用摆动技术时应在靠近坡口面的边缘 停留,焊丝应指向熔池的前沿4.坡口角度应足够 大, 以便减小焊丝伸出长度,使电弧直接加热熔池底部
3.2~4 4~5 4~6
焊接电流的选择
1) 实际生产过程中焊工都是根据试焊的试验结 果,并根据自己的实践经验选择焊接电流的。
2) 电流太小,很难引弧,焊条容易粘在焊件上, 鱼鳞纹粗,两侧融合不好。 3) 电流太大,焊接时飞溅和烟雾大,焊条发红, 熔池表面很亮,容易烧穿、咬边。 4) 电流合适,容易引弧电弧稳定,飞溅很小, 能听到均匀的劈啪声,焊缝两侧圆滑的过渡到 母材,表面鱼鳞纹很细,焊渣容易敲掉。
选择焊条的原则
等强度:工件的抗拉强度是多少,选择的 焊条抗拉强度一般就取多少;
材料:母材和焊条成分要相似;碳钢、不 锈钢、铸铁等都有专门的焊条 承受冲击载荷的工件,需要选择碱性焊条, 因为其韧性和塑性较高;
焊接层数的确定
在焊接厚度较大时,往往要多层焊接。多层焊接 时,若每层的厚度过大时,对焊缝金属的塑性 (主要表现在冷弯角上)将有不利的影响。所以 对质量要求较高的焊缝最好不大于4mm。 根据实际情况与实际经验,每层厚度约等于焊条 (焊芯)直经的0.8—1.2倍,气体保护焊时为焊丝 直经的1.6—2倍。开坡口的对接焊缝内第一层焊缝 特别重要,为保证焊后结构件形成一定的刚性, 在保证焊透的情况下,应尽量焊厚一点(如采用 3.2mm焊条时,焊缝层厚应控制在3.5—4mm)
3、焊条电弧焊的应用范围
焊条电弧焊是一种优质焊接方法,其主要 应用范围:碳钢、低合金钢、高合金钢和 镍铬不锈钢等。有色金属亦可用焊条电弧 焊,但接头质量不如钨极氩弧焊和熔化极 惰性气体保护焊;
4、焊接参数的选择
焊件厚度(mm) 2 焊条直径(mm) 1.6~2
3
4~5 6~12 ﹥13
2~3.2
二氧化碳保护焊常见缺陷
焊缝金属裂纹 1.焊缝深宽比太大2.焊道太窄3.焊缝末端冷却快 1.增大焊 接电弧电压,减小焊接电流2.减慢焊接速度3.适当填充弧坑 夹杂 1.采用多道焊短路电弧2.高的行走速度 减小行走速度,提高电弧电压
1.仔细清理渣壳2.
气孔 1.保护气体覆盖不足2.焊丝污染3.工件污染4.电弧电压太高5. 喷嘴与工件距离太远 1.增加气体流量,清除喷嘴内的飞 溅,减小工件到喷嘴的距离2.清除焊丝上的润滑剂3.清除工 件上的油锈等杂物.4.减小电压5.减小焊丝的伸出长度
未焊透 1.坡口加工不合适2.焊接技术不高3.热输入不合适 1.加 大坡口角度,减小钝边尺寸,增大间隙2.调整行走角度3.提高 送丝的速度以获得较大的焊接电流 ,保持喷嘴与工件的距 离合适 飞溅 1.电压过低或过高2.焊丝与工件清理不良3.焊丝不均匀4.导 电嘴磨损5.焊机动特性不合适 1.根据电流调电压2.清理 焊丝和坡口3.检查送丝轮和送丝软管4.更新导电嘴5.调节直 流电感 蛇行焊道 1.焊丝伸出过长2.焊丝的矫正机构调整不良3.导电嘴磨 损 1.调焊丝伸出长度2.调整矫正机构3.更新导电嘴
2、焊条电弧焊的缺点
焊接生产率低:焊接电流的限制较大,难以大 电流焊接;更换焊条,清除焊渣等辅助时间延 长了焊接周期;焊条的熔深较浅,厚度大于 5mm对接接头就需要开坡口及背面清根; 焊接劳动条件差;
焊件厚度的适用范围较窄:从工艺适应性角度 看,焊件的最小的厚度极限为1.5mm,而从经济 性考虑,焊件的最大厚度极限为20mm; 对焊工的技术要求较高;
焊条直径(mm)
1.6 2.0
焊接电流(A)
25~45 40~65
2.5
3.2 4 5
50~80
100~130 160~210 260~270底焊时,或单面焊双面成型时,一般 选取较小的焊条直径,较小的焊接电流; 碱性焊条一般应比酸性焊条电流小10%左右, 不锈钢焊条比碳钢小15%左右; 横、立、仰焊电流比平焊小10~20%;角焊 电流应稍大;
二、二氧化碳保护焊
CO2气体保护焊是以可熔化的金属焊丝作电 极,并有CO2气体作保护的电弧焊。是焊接 黑色金属的重要焊接方法之一。
工艺特点
1. CO2焊穿透能力强,焊接电流密度大(100300A/m2 ),变形小,生产效率比焊条电弧焊高1-3倍 2. CO2气体便宜,焊前对工件的清理可以从简,其焊接成 本只有焊条电弧焊的40%-50% 3. 焊缝抗锈能力强,含氢量低,冷裂纹倾向小。 4. 焊接过程中金属飞溅较多,特别是当工艺参数调节不匹 配时,尤为严重。 5. 不能焊接易氧化的金属材料,抗风能力差,野外作业时 或漏天作业时,需要有防风措施。 6. 焊接弧光强,注意弧光辐射。