高等数学下期末考试题
(完整版)高等数学下册期末考试试题及答案,推荐文档

又
1 zx2
z
2 y
a
a2 x2 y2 ,…..………【3】
第3页共2页
高数
故
dS z
Dxy
adxdy a2 x2 y2
a
2 d
0
a2 h2 0
d a2 2
2
a
1 2
ln(a2
2
)0
a2 h2
2 a ln a ..【7】 h
三、【9 分】解:设 M (x, y, z) 为该椭圆上的任一点,则点 M 到原点的距离为 d x2 y2 z2 ……【1】
n1
n
4、设 z f (xy, x ) sin y ,其中 f 具有二阶连续偏导数,求 z ,
2z
.
y
x xy
5、计算曲面积分 dS , 其中 是球面 x2 y2 z2 a2 被平面 z h (0 h a) 截出的顶部.
z
三、(本题满分 9 分) 抛物面 z x2 y2 被平面 x y z 1 截成一椭圆,求这椭圆上的点到原点的距离
第1页共2页
的最大值与最小值.
高数
(本题满分 10 分)
计算曲线积分 (ex sin y m)dx (ex cos y mx)dy , L
其中 m 为常数, L 为由点 A(a, 0) 至原点 O(0, 0) 的上半圆周 x2 y2 ax (a 0) .
四、(本题满分 10 分)
xn
3 , 1 2
3 ,2
3),
1 M2( 2
3 , 1 2
3 ,2
3). …………………【7】
又由题意知,距离的最大值和最小值一定存在,所以距离的最大值与最小值分别在这两点处取得.
高数-下-期末考试试卷及答案

2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)注意:1、本试卷共 3 页;2、考试时间110分钟;3、姓名、学号必须写在指定地方一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中.1.已知a 与b都是非零向量,且满足-=+a b a b ,则必有( )。
(A)-=0a b (B)+=0a b (C)0⋅=a b (D)⨯=0a b 2。
极限2222001lim()sinx y x y x y →→+=+( ).(A ) 0(B) 1 (C) 2(D )不存在 3.下列函数中,d f f =∆的是( )。
(A )(,)f x y xy = (B )00(,),f x y x y c c =++为实数(C )(,)f x y =(D )(,)e x y f x y +=4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ).(A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域22:(1)(1)2D x y -+-≤,若1d 4D x y I σ+=⎰⎰,2DI σ=,3DI σ=,则有( )。
(A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I <<6.设椭圆L :13422=+y x 的周长为l ,则22(34)d L x y s +=⎰( ). (A) l (B ) l 3 (C) l 4 (D ) l 127.设级数∑∞=1n na为交错级数,0()n a n →→+∞,则( )。
(A)该级数收敛 (B )该级数发散(C )该级数可能收敛也可能发散 (D )该级数绝对收敛 8.下列四个命题中,正确的命题是( )。
(A )若级数1nn a∞=∑发散,则级数21nn a∞=∑也发散(B)若级数21nn a∞=∑发散,则级数1nn a∞=∑也发散 (C)若级数21nn a∞=∑收敛,则级数1nn a∞=∑也收敛(D )若级数1||nn a∞=∑收敛,则级数21n n a ∞=∑也收敛二、填空题(7个小题,每小题2分,共14分).1。
第二学期高数下期末考试试卷及答案

第二学期期末高数(下)考试试卷及答案1一、 填空题(每空 3 分,共 15 分) 1.设()=⎰22t xFx e dt ,则()F x '=-22x xe.2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:=(),-⎰⎰2302xxdx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰ÑD LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5.级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1.当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0;B. 等于13;C. 等于14; D. 不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件;C.必要但非充分条件;D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA.e ;B. ()+e dx dy ;C. ()-+1edx dy ; D. ()+x e dx dy .4.若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定.5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3xae ; B.()+3x ax b e ;C. ()+3x xax b e ; D. ()+23x x ax b e .三.(8分)设一平面通过点(),,-312,而且通过直线-+==43521x y z,求该平面方程. 解:()(),,,,,--312430QA B(),,∴=-142u u u rAB 平行该平面∴该平面的法向量()()(),,,,,,=⨯-=--5211428922rn∴所求的平面方程为:()()()----+=83912220x y z即:---=8922590x y z四.(8分)设(),=yz fxy e ,其中(),f u v 具有二阶连续偏导数,试求∂∂z x 和∂∂∂2zx y. 解:令=u xy ,=y v e五.(8分)计算对弧长的曲线积分⎰L其中L 是圆周+=222xy R 与直线,==00x y在第一象限所围区域的边界.解:=++123L L L L其中: 1L :(),+=≥≥22200xy R x y2L :()=≤≤00x y R3L :()=≤≤00y x R而Re ==⎰⎰1202RR L e Rdt ππ故:()Re =+-⎰212R R Le π六、(8分)计算对面积的曲面积分∑⎛⎫++ ⎪⎝⎭⎰⎰423z x y dS ,其中∑为平面++=1234x y z在第一卦限中的部分. 解:Q xy D :≤≤⎧⎪⎨≤≤-⎪⎩023032x y x=3-==⎰⎰323200x dx七.(8分)将函数()=++2143f x x x ,展开成x 的幂级数.解:()⎛⎫=-=⋅-⋅ ⎪+++⎝⎭+111111121321613Q f x xx x x , 而 ()∞=⋅=-+∑01111212n nn x x , (),-11 ()∞=-⋅=+∑01116313nn n n x x , (),-33 ()()∞+=⎛⎫∴=-+ ⎪⎝⎭∑10111123nnn n f x x , (),-11八.(8分)求微分方程:()()+-+-+=42322253330xxy y dx x y xy y dy 的通解.解:∂∂==-∂∂263Q P Qxy y y x,∴原方程为:通解为:++-=532231332x y x y y x C九.幂级数:()()!!!!=++++⋅⋅⋅++⋅⋅⋅246212462nx x x x y x n1.试写出()()'+y x y x 的和函数;(4分)2.利用第1问的结果求幂级数()!∞=∑202nn x n 的和函数.(8分)解:1、()()!!!-'=+++⋅⋅⋅++⋅⋅⋅-35213521n x x x y x x n (),-∞∞于是()()!!'+=++++⋅⋅⋅=23123x x x y x y x x e (),-∞∞ 2、令:()()!∞==∑202nn x S x n由1知:()()'+=x S x S x e 且满足:()=01S通解:()()--=+=+⎰12x x x xx Sx e C e e dx Ce e 由()=01S ,得:=12C ;故:()()-=+12xx S x e e十.设函数()f t 在(),+∞0上连续,且满足条件其中Ωt 是由曲线⎧=⎨=⎩2z ty x ,绕z 轴旋转一周而成的曲面与平面=zt (参数>0t )所围成的空间区域。
第二学期高等数学期末考试试卷及答案1

第二学期高等数学期末考试试卷答案一.填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中.1.过点()121-,,P 且与直线1432-=-=+-=t z t y t x ,,,垂直的平面方程为_____________________________. 2.设()22ln y x z +=,则=∂∂==11y x xz , ________________________.3.交换累次积分的顺序()=⎰⎰12xxdyy x f dx, ______________________.4.设222lnz y x u ++=,则()=u grad div ___________________.5.设幂级数∑∞=0n nn x a 的收敛半径为1R ,幂级数∑∞=0n n n x b 的收敛半径为2R ,且+∞<<<210R R ,则幂级数()∑∞=+0n nn n x b a 的收敛半径为_____________.答案:⒈ 043=+--z y x ; ⒉ 1;⒊ ()⎰⎰1yydx y x f dy ,;⒋2221zy x ++;⒌ 1R .二.选择填空题(本题满分15分,共有5道小题,每道小题3分)。
以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效. 1.函数()y x f ,在点()00y x ,处连续是函数()y x f ,在该点处存在偏导数的【 】. (A ).充分条件; (B ).必要条件; (C ).充分必要条件; (D ).既不是必要,也不是充分条件.2.设D 是xOy 平面上以()11,、()11,-、()11--,为顶点的三角形区域,1D 是D 在第一象限的部分,则积分()⎰⎰+Ddxdyy x xy sin cos等于【 】.(A ).⎰⎰1sin cos 2D ydxdy x ; (B ).⎰⎰12D xydxdy ;(C ).()⎰⎰+1sin cos 4D dxdy y x xy ; (D ).0.3.下列级数中,属于条件收敛的是【 】.(A ).()()∑∞=+-111n nnn ; (B ).()∑∞=-1si n 1n nn nn π ;(C ).()∑∞=-121n nn; (D ).()∑∞=+-1131n nn .4.设函数()x f 是以π2为周期的周期函数,它在[)ππ,-上的表达式为()⎩⎨⎧<≤<≤-=ππx x xx f 000 ,再设()x f 的Fourier (傅立叶)级数的和函数为()x s ,则()=πs 【 】. (A ).2π-; (B ).π- ; (C ).0 ; (D ).π .5.设向量a 、b 、c 满足:0c b a =++,则=⨯+⨯+⨯a c c b b a【 】.(A ).0 ; (B ).c b a⨯⨯;(C ).c b ⨯; (D ).()b a⨯3. 答案: ⒈ (A ); ⒉ (C ); ⒊ (B ); ⒋ (A ); ⒌ (D ). 三.(本题满分7分)设()xy y x f z ,22-=,其中函数f 具有二阶连续的偏导数,试求xz ∂∂,yx z ∂∂∂2.解:212f y f x xz '+'=∂∂ ,()2221222112224f xyffyx xyf yx z ++-+-=∂∂∂ .四.(本题满分7分) 计算三重积分()⎰⎰⎰Ω+=dxdydzz x I ,其中Ω是由曲面22y x z +=及221y x z --=所围成的空间区域.解:作球坐标变换θϕρcos sin =x ,θϕρsin sin =y ,ϕρcos =z , 则空间区域Ω变为,104020≤≤≤≤≤≤Ω'ρπθπθ,,:,因此,()⎰⎰⎰Ω+=dxdydzz x I()⎰⎰⎰Ω+=ρϕθϕρϕρθϕρd d d s i n c o s c o s s i n 2()⎰⎰⎰+=12420s i n c o s c o s s i n ρϕρϕρθϕρϕθππd d d8π=五.(本题满分8分) 计算曲面积分()()⎰⎰∑-+++=dxdy z dzdx z y dydz xz I 322912其中∑为曲面122++=y x z ()21≤≤z ,取下侧.解:取平面21=∑z :,取上侧.则∑与1∑构成封闭曲面,取外侧.令∑与1∑所围空间区域为Ω,由Gauss 公式,得 ⎰⎰⎰⎰∑∑+∑-=11I()⎰⎰⎰⎰⎰≤+Ω--=132229y x dxdydxdydz⎰⎰⎰⎰⎰≤+--=121120222y x rdxdydz rdr d πθ2π-=六.(本题满分8分) 判别级数()()()()()∑∞=++++12222!2!!3!2!1n n n的敛散性.解: ()()()()()!2!!3!2!102222n n u n ++++=≤()()()()()!2!!!!2222n n n n n ++++≤, ()()n v n n n =⋅=!2!2而()()()()()()()!2!!12!11limlim221n n n n n n v v n nn n ⋅++⋅+=→∞+→∞()()()14122121lim3<=+++=→∞n n n n n所以,由比值判别法,知级数()()∑∑∞=∞=⋅=121!2!n n n n n n v 收敛.再由比较判别法知级数()()()()()∑∑∞=∞=++++=122221!2!!3!2!1n n nn n u 收敛.七.(本题满分8分) 选取a 与b ,使得dy yx b y x dx yx y ax 2222++--++成为某一函数()y x u ,的全微分,并求()y x u ,. 解:()22y x y ax y x P ++=,,()22y x by x y x Q ++-=, 由()()()dy y x Q dx y x P y x du ,,,+=,得xQ yP ∂∂=∂∂即有()()()()222222222222yxxb y x y x yxyy ax y x +⋅+--+=+⋅+-+解得,1=a ,0=b .所以,()()()()()⎰+--+=y x yx dyy x dx y x y x u ,,,0122⎰⎰+--=yxdy yxyx xdx 0221()⎰⎰+++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=yyyx y x d x y x y d x 0222202211ln()x yx xy x ln ln 21arctan ln 22-++-=()xyyx a r c t a n ln 2122-+=八.(本题满分8分) 过直线⎩⎨⎧=-+=-+0272210z y x z y x 作曲面273222=-+z y x 的切平面,求此切平面的方程. 解:过已知直线作平面束方程()0272210=-++--+z y x z y x λ,即()()()0272210=-+-+++z y x λλλ,其法向量为{}λλλ--++=2210,,n.设所求切平面的切点坐标为()000z y x ,,,则有()()()⎪⎪⎩⎪⎪⎨⎧=-+-+++=-+---=+=+02722102732222610000202020000z y x z y x z y x λλλλλλ , 解得1113000-====λ,,,z y x .或1917173000-=-=-=-=λ,,,z y x .因此,所求切平面方程为027339=--+z y x ,或02717179=-+--z y x .九.(本题满分8分)求极限:()422221lim xx tu t x x eduedt ---→-⎰⎰+.解:交换积分()⎰⎰--222x tu t x du edt 中的顺序,有()()⎰⎰⎰⎰----=uu t x x tu t x dt edu du edt 022222,u t v -=,则有()⎰⎰-----=uvuu t dv edt e22所以()()4242222221lim 1lim xuu t xx xx tu t x x edt edueduedt---→---→-=-⎰⎰⎰⎰++4242002222221l i m 1l i mxx vx xxuvx ex d veed ud v e---→---→⎰⎰⎰-=-⎪⎪⎭⎫ ⎝⎛-=++212lim lim 1lim424222==-⋅=-→--→-→+++⎰xx x vx xx ex dvee十.(本题满分8分)利用⎪⎭⎫ ⎝⎛-x x dx d 1cos 的幂级数展开式,求级数()()∑∞=⎪⎭⎫⎝⎛--122!2121n nn n n π的和.解: 设()⎪⎭⎫⎝⎛-=x x dx d x s 1cos ,由于()()()()∑∑∞=-∞=-=--=-11202!211!211c o s n n nn nnn xxn xxx ()-∞<<∞-x因此,()()()⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=∑∞=-112!211c o s n n n n xdx d x x dx d x s()()∑∞=---=122!2121n n nxn n另一方面, ()21c o s s i n 1c o s x x x x x x dxd x s +--=⎪⎭⎫ ⎝⎛-=所以,()()∑∞=---=+--1222!21211c o s s i n n n nxn n xx x x ()-∞<<∞-x当2π=x 时,()()∑∞=-⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛1222!21212n n nn n s ππ,所以,()()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛--∑∞=222!2121212πππs n n n nn2221c o s s i n 2ππ=+--⋅⎪⎭⎫ ⎝⎛=x x x x x22212c o s 2s i n24⎪⎭⎫ ⎝⎛+--⋅=πππππ21π-=十一.(本题满分8分)已知x 、y 、z 为实数,而且32=++z y e x证明:32≤z y e x.(提示:考虑函数()()223ye y e y xf xx--=,.) 解: 设()()223ye y e y xf xx--=,,由题设32=++z y e x , 得 32≤+y e x, 即 32=+y e x为其边界.下面只需证明:()()223ye y e y xf xx--=,在区域32≤+y ex上的最大值为1.令:()()()()⎪⎩⎪⎨⎧=--='=--='0232023222y e y e y x f y e y e y x f x x y x x x ,,, 解方程组得驻点()10,,()10-,和()0,x .对于驻点()10,和()10-,,有 ()110=,f ,()110=-,f对于驻点()0,x ,()00=,x f ;在边界32=+y e x 上,()002=⋅=y e y x f x,,所以,函数()()223y e y e y x f x x --=,的最大值为1,即()()1322≤--=ye y e y xf xx,即32≤z ye x.。
高数下期末考试试题及答案解析

WORD 格式整理⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯2017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)注意:1、本试卷共3页;2、考试时间110 分钟; 3 、姓名、学号必须写在指定地方题号一二三四总分得分阅卷人得分一、单项选择题( 8 个小题,每小题 2 分,共 16 分)将每题的正确答案的代号 A、 B、 C或 D 填入下表中.题号12345678答案1.已知 a 与 b都是非零向量,且满足a b a b ,则必有().(A)a b0(B) a b0(C) a b0(D)a b02. 极限 lim( x2y2 )sin212().x0x yy0(A) 0(B) 1(C) 2(D)不存在3.下列函数中, df f 的是 ().( A) f (x, y)xy( B) f (x, y)x y c0 ,c0为实数( C) f (x, y)x2y2( D) f (x, y)e x y4.函数 f ( x, y)xy (3x y) ,原点 (0,0)是 f (x, y) 的 ().( A)驻点与极值点( B)驻点,非极值点( C)极值点,非驻点( D)非驻点,非极值点5 .设平面区域 D : (x1)2( y 1)2 2 ,若 I 1x yd, I 2x y d ,D4D4I 33x yd,则有() .4D( A) I1I2I3( B) I 1I 2I 3( C) I 2I1I 3( D) I 3 I 1I 26.设椭圆 L :x2y 21的周长为 l ,则(3x2 4 y2 )ds() .43Ll3l4l12l(A)(B)(C)(D)7.设级数a n为交错级数, a n0 (n) ,则() .n 1(A) 该级数收敛(B)该级数发散(C) 该级数可能收敛也可能发散(D)该级数绝对收敛8. 下列四个命题中,正确的命题是() .( A)若级数a n发散,则级数a n2也发散n 1n 1( B)若级数an2发散,则级数a n也发散n 1n 1( C)若级数an2收敛,则级数a n也收敛n 1n 1( D)若级数| a n |收敛,则级数an2也收敛n 1n 1阅卷人得分二、填空题 (7 个小题,每小题 2 分,共 14 分) .3x 4 y2z60a 为.1. 直线3y z a与 z 轴相交,则常数x02.设 f ( x, y)ln( xy ), 则 fy(1,0)___________.x3.函数 f (x, y)x y 在 (3, 4) 处沿增加最快的方向的方向导数为.4.设 D : x2y22x ,二重积分( x y)d=.D5.设 f x 是连续函数,{( x, y , z) | 0z9x2y2 } , f (x 2y 2 )dv 在的三次积分为.6. 幂级数( 1)n 1x n的收敛域是.n!n 17. 将函数 f ( x)1,x0为周期延拓后,其傅里叶级数在点1x2,0 x以 2于.专业资料值得拥有--学习资料分享----⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大峡.三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分三、综合解答题一( 5 个小题,每小题7 分,共 35 分,解答题应写出文字说明、证明过程或演算步骤)1.设 u xf ( x, x) ,其中 f 有连续的一阶偏导数,求u ,u.y x y解:4.设是由曲面z xy, y x, x 1 及 z 0 所围成的空间闭区域,求 I xy2 z3dxdydz .解:2.求曲面 e z z xy 3 在点 (2,1,0) 处的切平面方程及法线方程.解:5.求幂级数nx n 1的和函数 S(x) ,并求级数n n的和.n 1n 1 2解:3. 交换积分次序,并计算二次积分dxxsin y dy.y解:专业资料值得拥有--学习资料分享----⋯⋯⋯⋯⋯⋯⋯名⋯姓⋯⋯⋯⋯.⋯号⋯学⋯⋯线封号序密过超号班要学教不纸题卷试答⋯学⋯大.峡三⋯⋯⋯⋯⋯⋯⋯⋯阅卷人得分四、综合解答题二( 5 个小题,每小题7 分,共 35 分,解答题应写出文字说明、证明过程或演算步骤)1.从斜边长为 1 的一切直角三角形中,求有最大周长的直角三角形.解4.计算xdS ,为平面x y z 1在第一卦限部分.解:2.计算积分( x2y2 )d s,其中 L 为圆周 x2y2ax ( a0 ) .L解:5.利用高斯公式计算对坐标的曲面积分蝌dxdy + dydz + dzdx,S其中为圆锥面 z2x2y2介于平面 z0 及 z 1之间的部分的下侧解:3.利用格林公式,计算曲线积分 I(x2y 2)d x (x 2xy)dy ,其中 L 是由抛物线 y x2和Lx y2所围成的区域 D 的正向边界曲线.yy x2x y2D专业资料值得拥有O x--学习资料分享----2017 学年春季学期《高等数学Ⅰ(二)》期末考试试卷(A)答案及评分标准一、单项选择题(8 个小题,每小题 2 分,共 16 分)题号12345678答案D A B B A D C D1.已知 a 与 b 都是非零向量,且满足a b a b ,则必有(D)(A) a b0 ;(B)a b 0 ;(C) a b0 ; (D) a b0 .2. 极限 lim( x2y2 )sin212( A )x0x yy0(A) 0;(B) 1;(C) 2;(D)不存在 .3.下列函数中, df f 的是 ( B );( A) f ( x, y)xy ;( B) f ( x, y)x y c0 , c0为实数;( C) f (x, y)x2y2;( D) f (x, y)e x y.4.函数 f ( x, y)xy (3x y) ,原点 (0,0)是 f (x, y) 的 ( B).(A)驻点与极值点;(B)驻点,非极值点;(C)极值点,非驻点;( D)非驻点,非极值点 .5 .设平面区域 D: ( x 1)2( y 1)2 2 ,若 I1x y d , I2x ydD4D4WORD 格式整理3 x yd ,则有( A)I 34D(A) I 1I2I 3;(B) I 1I2I 3;( C) I 2I1I 3;(D) I 36.设椭圆 L :x2y 21的周长为 l ,则(3 x24y 2 )ds( D)43L(A) l ;(B)3l;(C)4l ;(D)12l7.设级数a n为交错级数, a n0(n) ,则(C)n 1(A) 该级数收敛;(B)该级数发散;(C) 该级数可能收敛也可能发散;(D)该级数绝对收敛.8. 下列四个命题中,正确的命题是(D)( A)若级数a n发散,则级数an2也发散;n1n 1( B)若级数an2发散,则级数a n也发散;n1n 1( C)若级数an2收敛,则级数a n也收敛;n1n 1( D)若级数| a n |收敛,则级数a n2也收敛.n1n 1二、填空题 (7 个小题,每小题 2 分,共 14 分 ) .3x 4 y2z60a 为31. 直线3y z a与 z 轴相交,则常数。
高等数学A(下册)期末考试试题

高等数学A(下册)期末考试试题大题 一 二 三 四 五 六 七 小题1 234 5得分一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a r 、b r满足0a b +=r r r ,2a =r ,2b =r ,则a b ⋅=r r .2、设ln()z x xy =,则32zx y∂=∂∂ . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 .4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 .5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4、设(,)sin x z f xy y y =+,其中f 具有二阶连续偏导数,求2,z zx x y∂∂∂∂∂. 5、计算曲面积分,dS z ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部. 三、(本题满分9分) 抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.(本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.四、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.五、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx zdxdy ∑=++-⎰⎰,其中∑为曲面221(0)z x y z =--≥的上侧.六、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]t F t z f xy z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z =与z =所围成的闭区域,求 3()lim t F t t +→.-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。
2021-2022学年高等数学期末考试试卷

2021~2022 学年《高等数学》期末考试试卷一、 选择题(每小题3分,共30分)1. 下列微分方程是线性的是( )A.22y x y '=+B.2x y y e '+=C.2y x y '+=D.2y y xy '-=.2.若()f x 为可导、可积函数,则( )A. ()d ()f x x f x '⎡⎤=⎣⎦⎰B. d ()()f x dx f x ⎡⎤=⎣⎦⎰ C. ()d ()f x x f x '=⎰ D. d ()()f x f x =⎰3.ln d xx x =⎰( )A. 21ln 2x x C +B. 21ln 2x C +C. ln x C x +D. 221ln x C x x-+ 4. 若2()f x dx x C =+⎰,则2(1)xf x dx -=⎰( )。
A. 222(1)x C ++ B. 222(1)x C --+ C.221(1)2x C ++ D. 221(1)2x C --+ 5. 设)(x f 在],[b a 上连续,且⎰=badx x f 0)(,则( )。
A.在],[b a 的某个子区间上,0)(=x f ;B. 在],[b a 上,0)(≡x f ;C. 在],[b a 内至少有一点c ,0)(=c f ;D. 在],[b a 内不一定有x ,使0)(=x f 。
6.下列所给级数,发散的是( )A .()∑∞=11.0n n nB .∑∞=12321n n C .()∑∞=+-18100101n nn D .∑∞=11sin n n n7.设(,)f x y是连续函数,则二次积分011(,)x dx f x y dy -+⎰改变积分顺序为( )A.1120111(,)(,)y dy f x y dx dy f x y dx ---+⎰⎰⎰ B .111(,)y dy f x y dx --⎰⎰C.11111(,)(,)y dy f x y dx f x y dx ---+⎰⎰⎰D.21(,)dy f x y dx -⎰⎰8. 设∑∞=1n na收敛,则∑∞=1n na( )A .必收敛,且收敛于∑∞=1n na的和 B .不一定收敛C .必收敛,但不一定收敛于∑∞=1n na的和 D .一定发散9. 设)(x f 是区间[]02,上的连续函数,且20()xf t dt x =-⎰(1)f =( )A . 2B . -2C . 0D .110.设12()()y x y x ,是二阶线性齐次微分方程()()0y P x y Q x y '''++=的两个解,12c c ,是任意常数,则1122()()y c y x c y x =+ ( )A .是此方程的通解B .是此方程的特解C .不一定是该方程的解D .是该方程的解二、填空题(每小题2分,共10分)11. 微分方程4230xy y y ''''++=的阶数为 ;12. 如果x e -是函数()f x 的一个原函数,则()f x dx =⎰ ;13. 幂级数(21)nn n x∞=+∑的收敛域为 ;14. 设:00D y x a ≤≤≤≤,由二重积分的几何意义知2Ddxdy =⎰⎰___________;15.设()f x 是连续函数,且0()sin ()d f x x xf x x π=+⎰,则()f x = ;二、 计算题(每小题6分,共48分)16.⎰ 17. 2arctan 1xdx x +⎰18. ⎰--112d x x x19. 计算二重积分d d Dx x y ⎰⎰,其中D 是由抛物线2y x =及直线2y x =+所围成的区域;20.利用极坐标计算二重积分arctan d d Dy x y x ⎰⎰,其中22:14,0,D x y y y x ≤+≤≥≤;21.判断级数的收敛性:1!n n n n ∞=∑;22. 求解微分方程232x y y y e -'''++=的通解;23.求幂级数11n n nx∞-=∑的和函数.四、证明应用题(每小题6分,共12分 )24.证明:设)(x f 在区间)0(],[>-a a a 上连续,证明:[]0()()()a a af x dx f x f x dx -=-+⎰⎰25.求一曲线的方程,这曲线通过原点,并且它在点(,)x y 处的切线的斜率等于2x y +.。
高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z=log(a,(x+y))的定义域为D={(x,y)|x+y>0}。
2、二重积分22ln(x+y)dxdy的符号为负号。
3、由曲线y=lnx及直线x+y=e+1,y=1所围图形的面积用二重积分表示为∬(x+y-e-1)dxdy,其值为1/2.4、设曲线L的参数方程表示为{x=φ(t),y=ψ(t)}(α≤t≤β),则弧长元素ds=sqrt(φ'(t)^2+ψ'(t)^2)dt。
5、设曲面∑为x+y=9介于z=0及z=3间的部分的外侧,则∬(x+y+1)ds=27√2.6、微分方程y'=ky(1-y)的通解为y=Ce^(kx)/(1+Ce^(kx)),其中C为任意常数。
7、方程y(4)d^4y/dx^4+tan(x)y'''=0的通解为y=Acos(x)+Bsin(x)+Ccos(x)e^x+Dsin(x)e^x,其中A、B、C、D为任意常数。
8、级数∑n(n+1)/2的和为S=1/2+2/3+3/4+。
+n(n+1)/(n+1)(n+2)=n/(n+2),n≥1.二、选择题(每小题2分,共计16分)1、二元函数z=f(x,y)在(x,y)处可微的充分条件是(B)f_x'(x,y),f_y'(x,y)在(x,y)的某邻域内存在。
2、设u=yf(x)+xf(y),其中f具有二阶连续导数,则x^2+y^2等于(B)x。
3、设Ω:x+y+z≤1,z≥0,则三重积分I=∭Ω2z dV等于(C)∫0^π/2∫0^1-rsinθ∫0^1-r sinθ-zrdrdφdθ。
4、球面x^2+y^2+z^2=4a^2与柱面x^2+y^2=2ax所围成的立体体积V=(A)4∫0^π/4∫0^2acosθ∫0^4a-rsinθ rdrdφdθ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学一(下)》期末考试模拟试题一、选择题(本大题共5个小题,每小题4分,满分20分)。
1.函数()3xf x =的一个原函数是13ln 3x( )A .正确B .不正确2.定积分11430d d x x x x >⎰⎰( )A .正确B .不正确3.( )是2sin x x 的一个原函数( )A .22cos x -B . 22cos xC .21cos 2x -D .21cos 2x 4.设函数0()sin ,xf x tdt =⎰则()f x '=( )A .sin xB . sin x -C .cos xD . cos x -5.微分方程xy e '=的通解是( )( )A .xy Ce -=B . xy eC -=+C .xy Ce =D . xy e C =+二、填空题(本大题共4个小题,每小题4分,满分16分)。
1.219dx x =+⎰ .2.()cos ,f x dx x C =-+⎰,则()f x '= .3. 定积分20cos d 1sin xx xπ=+⎰.4.微分方程440y y y '''-+=的通解为 .三、计算下列各题(本大题共5个小题,每小题8分,共40分)1.求不定积分cos 2cos sin xdx x x -⎰.2.求不定积分⎰.3.已知()f x 的一个原函数是2x e-,求()xf x dx '⎰.4.求定积分4x ⎰.5.求定积分1x xe dx ⎰四、(8分)求椭圆22221x y a b+=绕x 轴旋转构成的旋转体的体积.五、(8分)求方程22(1)(1)0x y dx y x dy +-+=的通解.六、(8分)求方程22sin y y x x x'-=的通解.《高等数学一(下)》期末考试模拟试题一答案一、选择题(本大题共5个小题,每小题4分,满分20分)。
1.A 2.B 3.C 4.A 5.D二、填空题(本大题共4个小题,每小题4分,满分16分)。
1.1arctan33xC + 2.cos x 3.ln 2 4.212()x y c c x e =+ 三、计算下列各题(本大题共5个小题,每小题8分,共40分)1.解cos 2cos sin xdx x x -⎰22cos sin cos sin (cos sin )(cos sin )cos sin (cos sin )sin cos x x dxx xx x x x dx x x x x dx x x C-=--+=-=+=-+⎰⎰⎰.2.解121x =+⎰⎰2C==⎰3. 解 2()x f x dx e C -=+⎰,2()2x f x xe -=-,()()xf x dx x df x '=⎰⎰()()xf x f x dx =-⎰ 2222x x x e e C --=--+4. 解2,t x t ==4x ⎰202d 1t t t=+⎰2020201112(1)d(1+)2(1)d 2[(1+)ln (1+)]421ln 3t tt t t t+=-=-==-+-⎰⎰5. 解1101110||1x xxx x xde xe e dx e xe dx e =-=-==⎰⎰⎰四、 解y ==222022aaax aV y dx y dx dx πππ-===⎰⎰⎰ 2232222022042()2[]33aa b b x a x dx a x ab aaπππ=-=-=⎰五、解 可分离变量的方程22(1)(1)y x dy x y dx +=+2211y xdy dx y x=++ 2211y xdy dx y x =++⎰⎰ 22ln(1)ln(1)ln y x C +=++ 22ln(1)ln (1)y C x +=+通解为 221(1)y C x +=+六、解 方程为一阶线性非齐次方程 22sin y y x x x'-=22(),()sin P x Q x x x x=-=通解为:()()[()]P x dxP x dx y eQ x e dx C -⎰⎰=+⎰2222ln 22ln 22[sin ][sin ][sin ][cos ]dxx x x x dxex x e dx C e x x e dx C x x dx C x x C ----⎰⎰=⋅+=⋅+=⋅+=-+⎰⎰⎰《高等数学一(下)》期末考试模拟二一、选择题(本大题共5个小题,每小题4分,满分20分)。
1.函数1()f x x=的全体原函数是ln ||x C + ( )A .正确B .不正确 2.不定积分ln d ln x x x x xC =-+⎰.( )A .正确B .不正确3.定积分133d 4ax x =⎰, 则常数a =. ( )A. 4B. 3C. 2D. 14.下列积分等于零的是( )A .121cos d x x x -⎰B .11sin d x x x -⎰ C .11(sin )d x x x -+⎰D .11()d x e x x -+⎰5.微分方程34()0xyy xy y y y ''''+-=是( )阶微分方程.( )A .1B .2C .3D .4二、填空题(本大题共4个小题,每小题4分,满分16分)。
1.=⎰.2. (())f x dx '=⎰.3. 02arctan limx x t dt x →=⎰ .4.微分方程0127=+'-''y y y 的通解为 .三、计算下列各题(本大题共5个小题,每小题8分,共40分) 1.求不定积分xdx ⎰3cos .2.求不定积分⎰.3.求定积分⎰--223cos cos ππdx x x4.求定积分21(1ln )edxx x +⎰.5.求定积分1arctan xdx ⎰.四、(8分)求抛物线22y x x =-与0y =所围成图形的面积。
五、(8分)求方程0xy y '''+=的通解。
六、(8分)求微分方程x x y y sec tan =+'满足初始条件1|0==x y 的特解.《高等数学一(下)》期末考试模拟二一、选择题(本大题共5个小题,每小题4分,满分20分)。
1.A 2.A 3.D 4.C 5.B二、填空题(本大题共4个小题,每小题4分,满分16分)。
1.arcsin2x C + 2.()f x 3.124.3412x x y c e c e =+ 三、计算下列各题(本大题共5个小题,每小题8分,共40分)1.解xdx ⎰3cos =C xx x d x xdx x +-=-=⎰⎰3sin sin sin )sin 1(cos cos 322. 2. 解31,3t t x -=331113()3t t d t -+-=⎰41(2)3t t dt =+⎰ 521()35t t C =++C =++3. 解 ⎰2=⎰2=⎰42(cos )3x =-=⎰4. 解122111ln arctan ln |4(1ln )1ln ee e dx d x x x x xπ===++⎰⎰ 5. 解2ln 214|)1ln(2141|arctan arctan 12102101-=+-=+-=⎰⎰ππx dx x x x x xdx 四、(8分)解 220y x x y ⎧=-⎨=⎩得交点:(0,0),(2,0)222320014A (2)[]33x x dx x x =-=-=⎰五、(8分)解 1) 令y p '=,则dp y dx''=2)代入方程得 0dpxp dx+=,1dp dx p x =- 1dp dx p x=-⎰⎰ 1ln ln ln lnC p x C x=-+= 1C p x=3)11,,C C dy dy dx dx x x==1C dy dx x=⎰⎰通解为:12ln y C x C =+六、(8分)解 方程为一阶线性非齐次方程 ()tan ()sec P x x Q x x ==通解为:()()[()]P x dx P x dx y e Q x e dx C -⎰⎰=+⎰tan tan [sec ]xdx xdx e xe dx C -⎰⎰=+⎰2cos [sec ]x xdx C =+⎰cos [tan ]x x C =+特解 ()1tan cos +=x x y《高等数学一(下)》期末考试模拟一、选择题(本大题共5个小题,每小题4分,满分20分)。
1.设()F x 为()f x 的一个原函数,则5()F x +也为函数()f x 的一个原函数( ) A .正确 B .不正确2.()f x '的不定积分是()f x C +.( ) A .正确 B .不正确3.设()f x 为连续函数,则()xa f t dt ⎰为( ) A.()f x 的一个原函数 B. ()f x '的一个原函数C.()f x 的全体原函数D. ()f x '的全体原函数4.设()f x 为连续函数,则下列各式中不成立的是( ) A .()d ()d b b a a f x x f t t =⎰⎰ B .()d ()d ba ab f x x f x x =-⎰⎰C .()d 0aa f x x =⎰ D .若()d 0b a f x x =⎰,则()0f x =5.方程x e y y 224=-''的特解*y 的形式为 ( )A. x Ae y 2*=B. x Axe y 2*=C.x e B Ax y 2*)(+=D. x e Ax y 22*=二、填空题(本大题共4个小题,每小题4分,满分16分)。
1.214dx x =-⎰ .2. 已知C x F dx x f +=⎰)()(,则()x x e f e dx =⎰ .3. 0x e dx +∞⎰的收敛性为 .4.微分方程22()30x y dx xydy ++=是 类型的方程.三、计算下列各题(本大题共5个小题,每小题8分,共40分)1.求不定积分⎰+x e dx 1.2.求不定积分21ln x dx x ⎰.3.求不定积分23sin cos .x xdx ⋅⎰4.求定积分40x ⎰.5.求定积分20cos x xdx π⎰.四、(8分)计算曲线3223y x =上相应于x 从a 到b 的的一段弧的长度. 五、(8分)求方程tan dy y y dx x x=+的通解。
六、(8分)求微分方程23x y y e-'+=满足初始条件0|3x y ==的特解.《高等数学一(下)》期末考试模拟试题三答案一、选择题(本大题共5个小题,每小题4分,满分20分)。