高数2-期末试题及答案
高等数学2期末复习题与答案(可编辑修改word版)

x 2 + y 2 - 1 3 1- y 2《高等数学》2 期末复习题一、填空题:1. 函 数 z = + ln(3 - x 2 - y 2 ) 的 定 义 域 是 1≦X^2+Y^2<3 . 2.设 z = (1 + x ) y, 则∂z =∂y(1+ x ) yln(1+ x ) .3.函数 z = ln(1+ x 2 + y 2 ) 在点(1, 2) 的全微分dz = 1dx + 2 dy(1,2)3 34.设 f (x + y , xy ) = x 2 + y 2 , 则 f (x , y ) =.设 f (x + y , y) = x 2 - y 2 , 则 f (x , y ) = .x5. 设 z = e u sin v 而 u = xy v = x + y 则 ∂z =∂ye xy [x sin(x + y ) + cos(x + y )]6. 函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点(2,2 + )的方向导数是1+ 222 y 17. 改换积分次序⎰0dy ⎰y 2f (x , y )dx =; ⎰0 dy ⎰y -1f (x , y )dx = .8. 若 L 是抛物线 y 2 = x 上从点 A (1,-1) 到点 B (1,1) 的一段弧,则⎰xydx =L9. 微分方程(1+ e 2x )dy + ye 2x dx = 0 的通解为.二、选择题: 1.lim ( x , y )→(2,0) tan(xy )y 等于 ()(上下求导)A .2,B. 12C.0D.不存在2. 函 数 z = 的定义域是( D )A. {(x , y ) x ≥ 0, y ≥ 0} C. {(x , y ) y ≥ 0, x 2 ≥ y }B. {(x , y ) x 2 ≥ y } D. {(x , y ) x ≥ 0, y ≥ 0, x 2 ≥ y }3 x - y23.∂f (x , y ) | ∂x( x0 ,y 0 ) = ( B )A. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 , y 0 )∆xB. lim∆x →0f (x 0 + ∆x , y 0 ) - f (x 0 , y 0 )∆xC. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 + ∆x , y 0 )∆xD. lim∆x →0 f (x 0 + ∆x , y 0 ) ∆x5. 设 z = F (x 2 + y 2 ) ,且 F 具有导数,则∂z + ∂z= (D )∂x ∂yA. 2x + 2 y ;B. (2x + 2 y )F (x 2 + y 2 ) ;C. (2x - 2 y )F '(x 2 + y 2 ) ;D. (2x + 2 y )F '(x 2 + y 2 ) .6. 曲线 x = a cos t , y = a sin t , z = amt ,在 t = 处的切向量是 ( D )4A . (1,1, 2)B. (-1,1, 2)C. (1,1, 2m )D. (-1,1, 2m )7. 对于函数 f (x , y ) = x 2 + xy ,原点(0,0)( A )A .是驻点但不是极值点B.不是驻点C.是极大值点D.是极小值点8.设 I= ⎰⎰5Dx 2 + y 2 -1dxdy , 其中 D 是圆环1 ≤ x 2 + y 2 ≤ 4 所确定的闭区域, 则必有( ) A .I 大于零 B.I 小于零C.I 等于零D.I 不等于零,但符号不能确定。
高数2试题及答案.(DOC)

模拟试卷一―――――――――――――――――――――――――――――――――― 注意:答案请写在考试专用答题纸上,写在试卷上无效。
(本卷考试时间100分)一、单项选择题(每题3分,共24分)1、已知平面π:042=-+-z y x 与直线111231:-+=+=-z y x L 的位置关系是( ) (A )垂直 (B )平行但直线不在平面上(C )不平行也不垂直 (D )直线在平面上 2、=-+→→1123lim0xy xy y x ( )(A )不存在 (B )3 (C )6 (D )∞3、函数),(y x f z =的两个二阶混合偏导数y x z ∂∂∂2及xy z∂∂∂2在区域D 内连续是这两个二阶混合偏导数在D 内相等的( )条件.(A )必要条件 (B )充分条件(C )充分必要条件 (D )非充分且非必要条件 4、设⎰⎰≤+=ay x d 224πσ,这里0 a ,则a =( )(A )4 (B )2 (C )1 (D )0 5、已知()()2y x ydydx ay x +++为某函数的全微分,则=a ( )(A )-1 (B )0 (C )2 (D )16、曲线积分=++⎰L z y x ds222( ),其中.110:222⎩⎨⎧==++z z y x L(A )5π(B )52π (C )53π (D )54π7、数项级数∑∞=1n na发散,则级数∑∞=1n nka(k 为常数)( )(A )发散 (B )可能收敛也可能发散(C )收敛 (D )无界 8、微分方程y y x '=''的通解是( )(A )21C x C y += (B )C x y +=2(C )221C x C y += (D )C x y +=221 二、填空题(每空4分,共20分)1、设xyez sin =,则=dz 。
2、交换积分次序:⎰⎰-222xy dy e dx = 。
高数二期末考试题及答案

高数二期末考试题及答案一、选择题(每题4分,共20分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = \sin(x) \)D. \( f(x) = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \infty \)答案:B3. 微分方程 \( y'' + y = 0 \) 的通解是?A. \( y = C_1 e^{-x} + C_2 e^x \)B. \( y = C_1 \cos(x) + C_2 \sin(x) \)C. \( y = C_1 x + C_2 \)D. \( y = C_1 \ln(x) + C_2 \)答案:B4. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是多少?A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( 1 \)D. \( 2 \)答案:A5. 曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线斜率是?A. 3B. 1C. 0D. \( \frac{1}{3} \)答案:A二、填空题(每题5分,共20分)1. 函数 \( f(x) = x^2 - 6x + 8 \) 的最小值是 ________。
答案:22. 函数 \( f(x) = e^x \) 的导数是 ________。
答案:\( e^x \)3. 函数 \( y = \ln(x) \) 的定义域是 ________。
答案:\( (0, +\infty) \)4. 函数 \( y = \frac{1}{x} \) 的图像关于 ________ 对称。
答案:原点三、计算题(每题10分,共30分)1. 求函数 \( y = x^3 - 3x^2 + 4 \) 在 \( x = 2 \) 处的导数。
第二学期高数下期末考试试卷及答案

第二学期期末高数(下)考试试卷及答案1一、 填空题(每空 3 分,共 15 分) 1.设()=⎰22t xFx e dt ,则()F x '=-22x xe.2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:=(),-⎰⎰2302xxdx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰ÑD LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5.级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1.当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0;B. 等于13;C. 等于14; D. 不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件;C.必要但非充分条件;D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA.e ;B. ()+e dx dy ;C. ()-+1edx dy ; D. ()+x e dx dy .4.若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定.5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3xae ; B.()+3x ax b e ;C. ()+3x xax b e ; D. ()+23x x ax b e .三.(8分)设一平面通过点(),,-312,而且通过直线-+==43521x y z,求该平面方程. 解:()(),,,,,--312430QA B(),,∴=-142u u u rAB 平行该平面∴该平面的法向量()()(),,,,,,=⨯-=--5211428922rn∴所求的平面方程为:()()()----+=83912220x y z即:---=8922590x y z四.(8分)设(),=yz fxy e ,其中(),f u v 具有二阶连续偏导数,试求∂∂z x 和∂∂∂2zx y. 解:令=u xy ,=y v e五.(8分)计算对弧长的曲线积分⎰L其中L 是圆周+=222xy R 与直线,==00x y在第一象限所围区域的边界.解:=++123L L L L其中: 1L :(),+=≥≥22200xy R x y2L :()=≤≤00x y R3L :()=≤≤00y x R而Re ==⎰⎰1202RR L e Rdt ππ故:()Re =+-⎰212R R Le π六、(8分)计算对面积的曲面积分∑⎛⎫++ ⎪⎝⎭⎰⎰423z x y dS ,其中∑为平面++=1234x y z在第一卦限中的部分. 解:Q xy D :≤≤⎧⎪⎨≤≤-⎪⎩023032x y x=3-==⎰⎰323200x dx七.(8分)将函数()=++2143f x x x ,展开成x 的幂级数.解:()⎛⎫=-=⋅-⋅ ⎪+++⎝⎭+111111121321613Q f x xx x x , 而 ()∞=⋅=-+∑01111212n nn x x , (),-11 ()∞=-⋅=+∑01116313nn n n x x , (),-33 ()()∞+=⎛⎫∴=-+ ⎪⎝⎭∑10111123nnn n f x x , (),-11八.(8分)求微分方程:()()+-+-+=42322253330xxy y dx x y xy y dy 的通解.解:∂∂==-∂∂263Q P Qxy y y x,∴原方程为:通解为:++-=532231332x y x y y x C九.幂级数:()()!!!!=++++⋅⋅⋅++⋅⋅⋅246212462nx x x x y x n1.试写出()()'+y x y x 的和函数;(4分)2.利用第1问的结果求幂级数()!∞=∑202nn x n 的和函数.(8分)解:1、()()!!!-'=+++⋅⋅⋅++⋅⋅⋅-35213521n x x x y x x n (),-∞∞于是()()!!'+=++++⋅⋅⋅=23123x x x y x y x x e (),-∞∞ 2、令:()()!∞==∑202nn x S x n由1知:()()'+=x S x S x e 且满足:()=01S通解:()()--=+=+⎰12x x x xx Sx e C e e dx Ce e 由()=01S ,得:=12C ;故:()()-=+12xx S x e e十.设函数()f t 在(),+∞0上连续,且满足条件其中Ωt 是由曲线⎧=⎨=⎩2z ty x ,绕z 轴旋转一周而成的曲面与平面=zt (参数>0t )所围成的空间区域。
高数2-期末试题及答案

北京理工大学珠海学院2010 ~ 2011学年第二学期《高等数学(A)2》期末试卷A (答案) 适用年级专业:2010级信息、计算机、机械与车、化工与材料学院各专业一.选择填空题(每小题3分,共18分) 1.设向量 a =(2,0,-2),b = (3,-4,0),则a ⨯b =分析:a ⨯b = 2234ij k-- = -6j – 8k – 8i = (-8,-6,-8) 2.设 u = 223x xy y ++.则 2u x y ∂∂∂ =分析:u x∂∂ = 22x y +, 则2u x y ∂∂∂ = 2'(2)x y += 2y3.椭球面 2222315x y z ++= 在点(1,-1,,2)处的切平面方程为分析:由方程可得,222(,,)2315F x y z x y z =++- ,则可知法向量n =( Fx, Fy, Fz ); 则有 Fx = 2x , Fy = 4y , Fz = 6z ,则过点(1,-1,,2)处的法向量为 n =(2,-4,,12) 因此,其切平面方程为:2(1)4(1)12(2)0x y z --++-= ,即 26150x y z -+-= 4.设D :y = x, y = - x, x = 2直线所围平面区域.则(2)Dy d σ+=⎰⎰___________分析:画出平面区域D (图自画),观图可得,2(2)(2)8xxDy d dx y dy σ-+=+=⎰⎰⎰⎰5.设L :点(0 , 0 )到点(1 , 1)的直线段.则2Lx ds =⎰_________分析:依题意可知:L 是直线y = x 上点(0 , 0 )与点(1 , 1)的一段弧,则有112Lx ds xx ===⎰⎰⎰ 6.D 提示:级数1nn u∞=∑发散,则称级数1nn u∞=∑条件收敛二.解答下列各题(每小题6分,共36分)1.设2ln()tan 2z x y x y =+++,求dz 分析:由z z dz dx dy x y ∂∂=+∂∂可知,需求z x ∂∂及z y∂∂ 12z xy x x y ∂=+∂+ , 21z x y x y∂=+∂+ , 则有 211(2)()z z dz dx dy xy dx x dy x y x y x y∂∂=+=+++∂∂++ 2.设(4,23),u f xy x y =-其中f 一阶偏导连续,求uy∂∂ 分析:设v = 4xy , t = 2x – 3y ,则'''4(3)(43)u f v f t f x f x f y v y t y∂∂∂∂∂=+=+-=-∂∂∂∂∂ 3.设(,)z z x y =由222100x y z xyz ++-=确定.求z y∂∂ 分析:由222100x y z xyz ++-=得,222(,,)100F x y z x y z xyz =++-- 则有由2()x Fx x yz xyz =-+,2()y Fy y xz xyz =-+,2Fz z xy =-则2()()222y y y xz xyz xz xyz y z Fyy Fz z xy z xy-++-∂=-=-=∂-- 4.求函数3322(,)339f x y x y x y x =-++-的极值 提示:详细答案参考高数2课本第111页例4 5.求二重积分22,x y Ded σ+⎰⎰其中D :2219x y ≤+≤分析:依题意,得 21902ρθπ≤≤≤≤⎧⎨⎩,即1302ρθπ≤≤≤≤⎧⎨⎩则有,22223901()x y Ded de d e e πρσσρρπ+==-⎰⎰⎰⎰6.求三重积分2xyz dV Ω⎰⎰⎰,Ω:平面x = 0, x = 3, y = 0, y = 2, z = 0, z = 1所围区域分析:依题意,得0201y z ≤≤≤≤⎪⎨⎪⎩ 则有 3212203xyz dV dx dy xyz dz Ω==⎰⎰⎰⎰⎰⎰三.解答下列各题(每题6分,共24分) 1.求Lydx xdy -⎰,L :圆周229x y +=,逆时针分析:令P=y , Q= - x , 则1Qx∂=-∂,1P y ∂=∂ 由格林公式得()(2)LDDQ Pydx xdy dxdy dxdy x y ∂∂-=-=-∂∂⎰⎰⎰⎰⎰ 作逆时针方向的曲线L :{cos sin x r y r θθ== ,02θπ≤≤则20()(2)24LDDQ Pydx xdy dxdy dxdy d x y πθπ∂∂-=-=-=-=-∂∂⎰⎰⎰⎰⎰⎰2.设:∑平面31x y z ++=位于第一卦限部分.试求曲面积分xdS ∑⎰⎰分析:由:∑平面31x y z ++=可得13z x y =--则 13yx y z zz x ∂∂==-=-∂∂,z = 则有DxyDxyxdS xdxdy ∑==⎰⎰⎰⎰由于xy D 是∑在xOy 面的第一卦限的投影区域,即由0,031x y x y ==+=及所围成的闭区域.因此1130xDxyxdS xdxdy dx xdy -∑===⎰⎰⎰3. 设∑是22z x y =+位于平面4,9z z ==之间部分且取下侧,求zdxdy ∑⎰⎰分析:依题意,可得0249z θπ≤≤≤≤⎪⎨⎪⎩,由于∑是取下侧,则有92463054zdxdy zdz d d ππθρρ∑=-=-⎰⎰⎰⎰4.设∑是锥面z =与平面z = 1 所围立体区域整个边界曲面的外侧。
《高等数学二》考试题及答案

《高等数学(二)》期末复习题一、选择题1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=⋅b a ,则=b ( A ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--.2、在空间直角坐标系中,方程组2201x y z z ⎧+-=⎨=⎩代表的图形为 ( C )(A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22()DI xy dxdy =+⎰⎰,其中区域D 由222x y a +=所围成,则I =( D )(A)224ad a rdr a πθπ=⎰⎰ (B) 22402ad a adr a πθπ=⎰⎰(C)2230023a d r dr a πθπ=⎰⎰ (D) 2240012a d r rdr a πθπ=⎰⎰4、 设的弧段为:230,1≤≤=y x L ,则=⎰L ds 6 ( A )(A )9 (B) 6 (C )3 (D)235、级数∑∞=-11)1(n nn的敛散性为 ( B ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑⎰⎰=→∆=ni i i i Df d y x f 10),(lim),(σηξσλ中的λ代表的是( D )(A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分⎰⎰-1010d ),(d xy y x f x 等于 ( B )(A )⎰⎰-1010d ),(d xx y x f y (B) ⎰⎰-1010d ),(d yx y x f y(C)⎰⎰-x x y x f y 1010d ),(d(D)⎰⎰101d ),(d x y x f y8、方程222z x y =+表示的二次曲面是 ( A )(A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面9、二元函数),(y x f z =在点),(00y x 可微是其在该点偏导数存在的( B ). (A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件 10、设平面曲线L 为下半圆周 21,y x =--则曲线积分22()Lx y ds +=⎰( C )(A) 0 (B) 2π (C) π (D) 4π 11、若级数1nn a∞=∑收敛,则下列结论错误的是 ( B )(A)12nn a∞=∑收敛 (B)1(2)nn a∞=+∑收敛 (C)100nn a∞=∑收敛 (D)13nn a∞=∑收敛12、二重积分的值与 ( C )(A )函数f 及变量x,y 有关; (B) 区域D 及变量x,y 无关; (C )函数f 及区域D 有关; (D) 函数f 无关,区域D 有关。
中国石油大学高数(2-2)历年期末试题参考答案
中国石油大学高数(2-2)历年期末试题参考答案2007—2008学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上.1. 平面1:0y z -=∏与平面2:0x y +=∏的夹角为3π. 2. 函数22y xz +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为321+.3. 设(,)f x y 是有界闭区域222:a y x D ≤+上的连续函数,则当→a 时,=⎰⎰→Da dxdy y x f a ),(1lim20π)0,0(f .4. 区域Ω由圆锥面222x y z +=及平面1=z 围成,则将三重积分22()f x y dv+⎰⎰⎰Ω在柱面坐标系下化为三次积分为211()πθ⎰⎰⎰rd dr f r rdz.5. 设Γ为由曲线32,,t z t y t x ===上相应于t 从0到1的有向曲线弧,R Q P ,,是定义在Γ上的连续三元函数,则对坐标的(D)37 .10. 曲面积分2z dxdy ⎰⎰∑在数值上等于( C ).(A) 流速场iz v 2=穿过曲面Σ指定侧的流量;(B) 密度为2z =ρ的曲面片Σ的质量;(C) 向量场kz F 2=穿过曲面Σ指定侧的通量;(D) 向量场k z F 2=沿Σ边界所做的功.11.若级数1(2)nn n c x ∞=+∑在 4x =- 处是收敛的,则此级数在1x = 处 ( D )(A)发散; (B)条件收敛; (C)绝对收敛; (D)收敛性不能确定. 12.级数121(1)n pn n -∞=-∑的敛散性为 ( A )(A) 当12p >时,绝对收敛; (B )当12p >时,条件收敛;(C) 当102p <≤时,绝对收敛; (D )当102p <≤时,发散.三、解答题:13~20小题,共58分.请将解答过程写在题目下方空白处.解答应写出文字说明、证明过程或演算步骤.13. (本题满分6分)设()x y z x y z e -++++=确定(,)z z x y =,求全微分dz .解:两边同取微分 ()(1)()x y z dx dy dz e dx dy dz -++++=⋅-⋅++ , 整理得 dz dx dy =--.14. (本题满分8分)求曲线2223023540xy z x x y z ⎧++-=⎨-+-=⎩ 在点(1,1,1)处的切线与法平面方程. 解:两边同时关于x 求导22232350dy dz x y z dx dx dy dz dx dx ⎧+⋅+⋅=⎪⎪⎨⎪-+=⎪⎩,解得(1,1,1)(1,1,1)9474dy dx dz dx ⎧=⎪⎪⎨⎪=-⎪⎩,所以切向量为:91{1,,}1616T =-, 切线方程为: 1111691x y z ---==-;法平面方程为:16(1)9(1)(1)0x y z -+---=,即169240x y z +--=. 15.(本题满分8分)求幂级数0(21)nn n x ∞=+∑的和函数.解:求得此幂级数的收敛域为(1,1)-,0(21)nn n x ∞=+∑02∞==+∑nn nx 0∞=∑nn x ,10122∞∞-===∑∑nn n n nxx nx,设11()∞-==∑n n A x nx ,则10011(),(11);1∞∞-=====-<<-∑∑⎰⎰xxn nn n x A x dx nx dx x x x 21(),1(1)'⎛⎫∴== ⎪--⎝⎭x A x x x即20222()(1)∞===-∑nn x nx xA x x ,0(21)∞=∴+∑n n n x 02∞==+∑nn nx 0∞=∑n n x 22211,(11)(1)1(1)+=+=-<<---x x x x x x .16.(本题满分6分)计算()∑=++⎰⎰I x y z dS ,其中∑为曲面5+=y z 被柱面2225+=xy 所截下的有限部分.解:()∑=++⎰⎰I x y z dS (5)∑=+⎰⎰x dS∑=⎰⎰xdS(∑关于yoz 平面对称,被积函数x 是x 的奇函数)5∑+⎰⎰dS05∑=+⎰⎰dS 222552+≤=⎰⎰x y dxdy 52251252π==.17.(本题满分8分)计算积分222(24)(2)=++-⎰LI xxy dx x y dy,其中L 为曲线22355()()222-+-=x y 上从点(1,1)A 到(2,4)B 沿逆时针方向的一段有向弧.解:4∂∂==∂∂Q P x x y,∴积分与路径无关,选折线AC +CB 为积分路径,其中(2,1)C ,,12:,1,0=≤≤⎧⎨==⎩x x x AC y dy 2,:.,14==⎧⎨=≤≤⎩x dx CB y y y222(24)(2)∴=++-⎰LI x xy dx x y dy222(24)(2)=++-⎰ACx xy dx x y dy 222(24)(2)+++-⎰CBx xy dx x y dy 24221141(24)(8).3=++-=⎰⎰x x dx y dy18.(本题满分8分)计算22()∑=+++⎰⎰I yzdydz y xz dzdx xydxdy,∑是由曲面224-=+y x z与平面0=y 围成的有界闭区域Ω的表面外侧.解:2222,(),,,∂∂∂==+=++=+∂∂∂P Q R P yz Q y x z R xy x z x y z由高斯公式, 22()∑=+++⎰⎰I yzdydz y x z dzdx xydxdy 22()Ω=+⎰⎰⎰x z dxdydz(利用柱面坐标变换cos sin ,θθ=⎧⎪=⎨⎪=⎩z x y y 则2:02,02,04.θπΩ≤≤≤≤≤≤-r y r )2224200032.3ππθ-==⎰⎰⎰r d rdr r dy19.(本题满分8分)在第Ⅰ卦限内作椭球面1222222=++cz b y a x 的切平面,使切平面与三个坐标面所围成的四面体体积最小,求切点坐标.解:设切点坐标为),,(0z y x ,则切平面的法向量为000222222{,,}x y z a b c, 切平面方程为0)()()(02020020=-+-+-z z c z y y b y x x a x ,即1202020=++czz b y y a x x ,则切平面与三个坐标面所围成的四面体体积为 22200016a b cV x y z=⋅, 令)1(ln ln ln ),,,(220220220000000-+++++=czb y a x z y x z y x L λλ解方程组⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++=+=+=+1021021021220220222002020c z b y ax c z z b y y a x x λλλ,得30a x =,30b y =,3c z=,故切点坐标为)3,3,3(c b a .20. (本题满分6分)设(),()f x g x 均在[,]a b 上连续,试证明柯西不等式:22[()][()]bbaaf x dxg x dx ⎰⎰2[()()].baf xg x dx ≥⎰证:设:,.D a x b a y b ≤≤≤≤则22[()][()]bba af x dxg x dx ⎰⎰22()()Df xg y dxdy =⎰⎰(D关于y x=对称)22()()Df yg x dxdy =⎰⎰221[()()2D f x g y dxdy =+⎰⎰22()()]Df yg x dxdy ⎰⎰22221[()()()()]2Df xg y f y g x dxdy =+⎰⎰1[2()()()()]2Df xg x f y g y dxdy ≥⋅⎰⎰[()()()()]Df xg x f y g y dxdy =⋅⎰⎰()()()()b b aaf xg x dx f y g y dy =⎰⎰2[()()]baf xg x dx =⎰.2008—2009学年第二学期 高等数学(2-2)期末试卷(A)参考答案一.选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内).1. 设三向量,,a b c 满足关系式a b a c ⨯=⨯,则( D ). (A )必有0a =; (B )必有0b c -=; (C )当0a ≠时,必有b c =; (D )必有()a b c λ=- (λ为常数).2. 直线34273x y z++==--与平面4223x y z --=的关系是( A ). (A )平行,但直线不在平面上; (B )直线在平面上;(C )垂直相交; (D )相交但不垂直.3. 二元函数225,(,)(0,0)(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( A )(A) 不连续,偏导数存在 (B) 连续,偏导数不存在(C) 连续,偏导数存在 (D) 不连续,偏导数不存在4. 已知2()()x ay dx ydyx y +++为某二元函数的全微分,则=a ( D ).(A )1-; (B )0; (C )1; (D )2.5. 设()f u 是连续函数,平面区域2:11,01D x y x -≤≤≤≤-,则22()Df x y dxdy +=⎰⎰( C ).(A )21122()x dx f x y dy-+⎰⎰; (B )211220()y dy f x y dx-+⎰⎰;(C )12()d f r rdr ⎰⎰πθ; (D )120()d f r dr⎰⎰πθ.6. 设a 为常数,则级数1(1)(1cos )nn a n∞=--∑( B ).(A )发散 ; (B )绝对收敛; (C )条件收敛; (D )收敛性与a 的值有关.二.填空题(本题共6小题,每小题4分,满分24分).1. 设函数222(,,)161218x y zu x y z =+++,向量{1,1,1}n =,点0(1,2,3)P , 则03.3P u n∂=∂2. 若函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数5.a =-3. L 为圆221x y +=的一周,则22()0.Lx y ds -=⎰4. 设1lim 2n n naa +→∞=,级数211n n n a x ∞-=∑的收敛半径为2.25. 设221()x y f x e dy-=⎰,则111()(1).4xf x dx e -=-⎰6. 设()f x 是以2为周期的周期函数,它在区间(1,1]-上的定义为32,10(),01x f x x x -<≤⎧=⎨<≤⎩, 则()f x 的以2为周期的傅里叶级数在1x =处收敛于3.2三.解答下列各题(本题共7小题,满分44分).1.(本小题6分)设()f u 是可微函数,(y z f =,求2z z x y x y ∂∂+∂∂. 解题过程是:令yu =,则()y zf u x ∂'=∂,()2zf u y x y∂'=∂,20.z zxy x y∂∂∴+=∂∂2. (本小题6分)计算二重积分2211Dxy dxdy x y +++⎰⎰,其中22{,)1,0}D x y x y x =+≤≥.解题过程是:D 关于x 轴对称,被积函数221xy x y ++关于y 是奇函数,221Dxy dxdy x y∴=++⎰⎰,故2211D xy dxdy x y +++⎰⎰221D xy dxdy x y =++⎰⎰221Ddxdy x y +++⎰⎰122020ln 2.12rdr d r -=+=+⎰⎰πππθ3. (本小题6分) 设曲面(,)z z x y =是由方程31x y xz +=所确定,求该曲面在点0(1,2,1)M -处的切平面方程及全微分(1,2)dz .解题过程是:令3(,,)1F x y z x y xz =+-,23x F x y z '=+,3y F x '=,zF x '=,则所求切平面的法向量为:0{,,}{5,1,1}x y zM n F F F '''==,切平面方程为:560.x y z ++-=23x zF z x y z x F x '∂+=-=-'∂,2y zF zx y F '∂=-=-'∂,0(1,2)5.M M z z dzdx dy dx dy x y ∂∂∴=+=--∂∂ 4. (本小题6分) 计算三重积分22x y dxdydzΩ+,其中Ω是由柱面21y x =-0,0y z ==,4x y z ++=所围成的空间区域. 解题过程是:利用柱面坐标变换,22x y dxdydz Ω+⎰⎰⎰14(cos sin )2000r d r dr dz -+=⎰⎰⎰πθθθ 12300[4(cos sin )]d r r dr =-+⎰⎰πθθθ04141[(cos sin )].3432d =-+=-⎰ππθθθ5. (本小题6分)求(2)x z dydz zdxdy ∑++⎰⎰,其中∑为曲面22(01)z x y z =+≤≤,方向取下侧.解题过程是:补2211,(,){1}.z x y D x y ∑=∈=+≤上:∑与1∑上所围立体为20201, 1.r r z Ω≤≤≤≤≤≤:,θπ 由高斯公式,得1(2)(201)x z dydz zdxdy dxdydz Ω∑+∑++=++⎰⎰⎰⎰⎰上下2211332r d rdr dz ππθ==⎰⎰⎰, (2)x z dydz zdxdy ∑∴++=⎰⎰13(2)2x z dydz zdxdy π∑-++⎰⎰上3012Ddxdy π=--⎰⎰3.22πππ=-=6. (本小题7分) 求幂级数211nn n x n∞=+∑的收敛域及和函数.解题过程是:因为1lim nn n a R a →∞+=2211lim 1(1)1n n n n n →∞++==++,故收敛区间为(1,1)-; 1±=x 时,极限21lim 0n n n→∞+≠,级数均是发散的;于是收敛域为(1,1)-,211()n n n S x x n ∞=+=∑1n n nx ∞==∑1nn x n∞=+∑10011n x x n n n x x nx dx dxn ∞∞-==''⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭∑∑⎰⎰0111x x x dx x x '⎛⎫=+ ⎪--⎝⎭⎰2ln(1),(1,1).(1)x x x x =--∈--7. (本小题7分)例1 计算22()I xy dS∑=+⎰⎰,∑为立体221x y z +≤≤的边界. 解题过程是: 设12∑=∑+∑,其中1∑为锥面22,01z x y z =+≤≤,2∑为221,1z xy =+≤部分,12,∑∑在xoy 面的投影为:D 221x y +≤.22112z z dS dxdy dxdyx y ⎛⎫∂∂⎛⎫=++= ⎪ ⎪∂∂⎝⎭⎝⎭,2dS dxdy=,22()I x y dS ∑∴=+⎰⎰122()x y dS ∑=++⎰⎰222()xy dS ∑+⎰⎰22()2Dx y dxdy =+⎰⎰22()Dx y dxdy++⎰⎰22(21)()Dx y dxdy =+⎰⎰2130(21)(21).2d r dr ππθ==⎰⎰四.证明题(8分).设函数(,)f x y 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d ,记2221()[()1]Ly f xy x y f xy I dx dy y y+-=+⎰, (1)证明曲线积分I 与路径L 无关; (2)当cd ab =时,求I 的值.证明: (1)记21()(,)y f xy P x y y +=,22[()1](,)x yf xy Q x y y -=,;1)()()](]1)([);(1)()](1[])()(2[22322222y xy f xy xy f y xy f y x xy f y x Q xy f xy y xy f y xy f y y x xy f y xy yf y P -'+='⋅+-=∂∂'+-=+-⋅'+=∂∂P Q y x∂∂∴=∂∂成立,积分I 与路径L 无关.(2)由于积分与路径无关,选取折线路径,由点(,)a b 起至点(,)c b ,再至终点(,)c d ,则(,)(,)(,)(,)(,)(,)c b c d a b c b I P x y dx Q x y dy =+⎰⎰21[()][()]cda ccbf bx dx cf cy dy b y=++-⎰⎰ ()()cb cd ab cb c a c c f t dt f t dt b d b -=+++-⎰⎰()().cd ab c a c af t dt ab cd d b d b=-+==-⎰2009—2010学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题(6530⨯=分分)1. 若向量,,a b c 两两互相垂直,且5,12,13a b c ===,则132.a b c ++=2.设函数22sin y z xy x=,求2.z z x y zx y∂∂+=∂∂3. 设函数(,)f x y 为连续函数, 改变下列二次积分的积分顺序:2221212201(,)(,)(,).y xx y dy f x y dx dx f x y dy f x y dy --=+⎰⎰⎰⎰⎰⎰ 4. 计算(1,2)2(0,0)7()(2).2y y I e x dx xe y dy e =++-=-⎰5. 幂级数213nnn nx ∞=∑(3,3).-6. 设函数2()()f x x x x πππ=+-<< 的傅里叶级数为:01(cos sin )2n n n a a nx b nx ∞=++∑,则其系数32.3bπ=二、选择题(4520⨯=分分)1.直线11321x y z --==-与平面342x y z +-=的位置关系是( A )(A) 直线在平面内; (B) 垂直; (C) 平行; (D) 相交但不垂直.2.设函数22(,)4()f x y x y x y =---, 则(,)f x y ( C )(A) 在原点有极小值; (B) 在原点有极大值;(C) 在(2,2)-点有极大值; (D) 无极值.3. 设L 是一条无重点、分段光滑,且把原点围在内部的平面闭曲线,L 的方向为逆时针方向,则22Lxdy ydxx y-=+⎰( C ) (A) 0; (B)π; (C) 2π; (D) 2π-.4. 设a 为常数,则级数21sin n nan n ∞=⎛ ⎝∑( B )(A) 绝对收敛; (B) 发散; (C) 条件收敛; (D) 敛散性与a 值有关.三、计算题 (7+7+7+7+6+8=42分)1. 设224,(,)(0,0),(,)0,(,)(0,0).xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩讨论(,)f x y 在原点(0,0)处是否连续,并求出两个偏导数(0,0)xf '和(0,0)yf '. (7分) 解:令422442,lim (,)lim 1y y ky k x ky f ky y k y y k →→===++,随k 的取值不同,其极限值不同,00lim (,)x y f x y →→∴不存在,故(,)f x y 在原点不连续;00(0,0)(0,0)00(0,0)limlim 0x x x f x f f xx ∆→∆→+∆--'===∆∆, 00(0,0)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→+∆--'===∆∆.2. 计算222I x y z dxdydzΩ=++其中Ω是由上半球面222z x y =--和锥面22z x y =+所围成的立体 . (7分) 解:作球面坐标变换:sin cos ,sin sin ,cos .x y z ρϕθρϕθρϕ=== 则2sin dxdydz d d d ρϕθϕρ=, :02,0,02.4πθπϕρΩ≤≤≤≤≤≤222I x y z dxdydz Ω=++2234000sin (22).d d d ππθϕϕρπ==-⎰⎰⎰3. 求锥面22z x y =+被柱面222x y x +=所割下部分的曲面面积 .(7分)解:锥面∑:22,(,)xy z x y x y D =+∈=22{2}.x y x +≤22xz x y'=+22yz x y '=+ 22122.xyxyx y D D S dS z z dxdy dxdy ∑''∴==++==⎰⎰4. 计算曲面积分222I y zdxdy z xdydz x ydzdx ∑=++⎰⎰,其中∑是由22z x y =+,221xy +=,0,0,0x y z ===围在第一卦限的立体的外侧表面 . (7分)解:设Ω为∑所围立体,222,,,P z x Q x y R y z ===222,P Q R x y z x y z∂∂∂++=++∂∂∂由Gauss 公式,222I y zdxdy z xdydz x ydzdx ∑=++⎰⎰222()xy z dxdydzΩ=++⎰⎰⎰作柱面坐标变换:cos ,sin ,.x r y r z z θθ=== 则dxdydz rd drdzθ=,2:0,01,0.2r z r πθΩ≤≤≤≤≤≤ 2122205().48r I d rdr r z dz πθπ∴=+=⎰⎰⎰5.讨论级数312ln n n n∞=∑的敛散性. (6分)解:543124ln ln lim lim0,n n n nn nn→∞→∞⋅==312ln n nn ∞=∴∑收敛 .6. 把级数121211(1)(21)!2n n n n xn -∞--=--∑的和函数展成1x -的幂级数.(8分)解:设级数的和函数为()S x ,则 121211(1)()(21)!2n n n n S x x n -∞--=-=-∑2111(1)sin (21)!22n n n x x n --∞=-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭∑,(,).x ∈-∞+∞即111111()sin sin sin cos cos sin2222222x x x x S x ---⎛⎫⎛⎫==+=⋅+⋅ ⎪ ⎪⎝⎭⎝⎭201(1)1sin 2(2)!2n n n x n ∞=--⎛⎫=⋅ ⎪⎝⎭∑2101(1)1cos 2(21)!2n n n x n +∞=--⎛⎫+⋅ ⎪+⎝⎭∑2201(1)sin (1)2(2)!2nnnn x n ∞=-=⋅-⋅∑212101(1)cos (1),(,).2(21)!2n n n n x x n ∞++=-+⋅-∈-∞+∞+⋅∑四、 设曲线L 是逆时针方向圆周22()()1,()x a y a x ϕ-+-=是连续的正函数,证明:()2()Lxdy y x dx y ϕπϕ-≥⎰. (8分)证明:设22:()()1,D x a y a -+-≤由Green 公式, ()()()LDxdy Q P y x dx dxdy y x y ϕϕ∂∂-=-∂∂⎰⎰⎰1(())()Dx dxdy y ϕϕ=+⎰⎰(而D 关于y x =对称)1(())()Dx dxdy x ϕϕ=+⎰⎰1[2()]22.()D Dx dxdy dxdy x ϕπϕ≥⋅==⎰⎰⎰⎰即 ()2()Lxdyy x dx y ϕπϕ-≥⎰.2010-1011学年第二学期高等数学(2-2)期末考试A 卷参考答案一. 填空题 (共4小题,每小题4分,共计16分) 1.22(1,0)ln(),yz xe x y dz =++=设则dy dx +3 .2.设xy y x y x f sin ),(+-=,则dx x x f dy y⎰⎰11 0),(=)1cos 1(21-.3.设函数21cos ,0()1,0xx f x xx x πππ+⎧<<⎪=-⎨⎪+-≤≤⎩以2π为周期,()s x 为的()f x 的傅里叶级数的和函数,则(3)s π-= 212π+ .4.设曲线C 为圆周222R y x =+,则曲线积分ds x y x C⎰+)—(322=32R π . 二.选择题(共4小题,每小题4分,共计16分)1. 设直线L 为32021030,x y z x y z ++=⎧⎨--+=⎩平面π为4220x y z -+-=,则 ( C ) .(A) L 平行于平面π (B) L 在平面π上(C) L 垂直于平面π (D) L 与π相交,但不垂直 2.设有空间区域2222:x y z R Ω++≤,则222x y z dvΩ++等于( B ).(A) 432R π (B) 4R π (C) 434R π (D) 42R π 3.下列级数中,收敛的级数是( C ).(A)∑∞=+-1)1()1(n nnn n (B) ∑∞=+-+11)1(n nn n(C) nn e n -∞=∑13(D)∑∞=+1)11ln(n n nn4. 设∑∞=1n na 是正项级数,则下列结论中错误的是( D )(A ) 若∑∞=1n na 收敛,则∑∞=12n na 也收敛 (B )若∑∞=1n na 收敛,则11+∞=∑n n na a 也收敛(C )若∑∞=1n na 收敛,则部分和nS 有界 (D )若∑∞=1n na 收敛,则1lim 1<=+∞→ρnn n a a 三.计算题(共8小题,每小题8分,共计64分) 1.设函数f 具有二阶连续偏导数,),(2y x y xf u +=,求yx u ∂∂∂2.解:212f xyf xu+=∂∂)()(22222121211212f f x f f x xy xf yx u++++=∂∂∂221221131)2(22f f x xy yf x xf++++=2.求函数y x xy z +-=23在曲线12+=x y 上点(1,2)处,沿着曲线在该点偏向x 轴正向的切线方向的方向导数.解:曲线⎩⎨⎧+==1:2x y xx L 在点(1,2)处的切向量)2,1(=T ,)2,1(51=T52cos ,51cos ==βα13|)16(|,11|)13(|)2,1()2,1()2,1(2)2,1(=+=∂∂=-=∂∂xy yzy x z 函数在点(1,2)沿)2,1(=T 方向的方向导数为5375213511|)2,1(=⨯+=∂T3.计算,)(2dxdy y x D⎰⎰+其中}4),({22≤+=y xy x D .解dxdy xy dxdy y xdxdy y x y x y x D⎰⎰⎰⎰⎰⎰≤+≤+++=+4422222222)()(223000d r dr πθ=+⎰⎰ =π84. 设立体Ω由锥面22z x y =+及半球面2211z x y =+--围成.已知Ω上任一点(),,x y z 处的密度与该点到x y o 平面的距离成正比(比例系数为0K >),试求立体Ω的质量. 解:由题意知密度函数||),,(z k z y x =ρ 法1:⎪⎩⎪⎨⎧≤≤≤≤≤≤Ωϕπϕπθcos 204020r :质量M =⎰⎰⎰⎰⎰⎰ΩΩ=dxdydz z k dxdydz z y x ||),,(ρk =drr r d d ϕϕϕθϕππsin cos 2cos 204020⎰⎰⎰ 76kπ= . 法2:222222:1,:11D x y x y z x y ⎧+≤⎪Ω⎨+≤≤--⎪⎩(,,)||M x y z dxdydz k z dxdydzρΩΩ==⎰⎰⎰⎰⎰⎰22111076r rkk d dr ππθ+-==⎰⎰⎰.法3:1222017||(1(1)).6kM k z dxdydz z z dz z z dz πππΩ==+--=⎰⎰⎰⎰⎰5.计算曲线积分⎰+++-=Cyx dyx y dx y x I 22)()(,其中C 是曲线122=+y x 沿逆时针方向一周.解:⎰++-=Cdyx y dx y x I 1)()(dxdy y Px Q y x ⎰⎰≤+∂∂-∂∂=122)(π2])1(1[122=--=⎰⎰≤+dxdy y x .6. 计算第二类曲面积分⎰⎰∑++dxdy zx xydxdz xyzdydz 2,其中∑为球面1222=++z y x的外侧.解:利用高斯公式,dxdydz x x yz dxdy zx xydxdz xyzdydz ⎰⎰⎰⎰⎰Ω∑++=++)()(22dxdydz x yz ⎰⎰⎰Ω+=)(dxdydz x ⎰⎰⎰Ω+2dxdydzz y x ⎰⎰⎰Ω+++=)(310222.154sin 31104020πϕϕθππ==⎰⎰⎰dr r d d 7.求幂级数nn x n ∑∞=+111的和函数 .解:幂级数的收敛半径1=R ,收敛域为)1,1[-0≠x 时,1111)(+∞=∑+=n n x n x xS =01x nn x dx ∞=∑⎰01x n n x dx ∞==∑⎰0ln(1)1xxdx x x x==----⎰0=x 时,0)0(=S ,⎪⎩⎪⎨⎧=⋃-∈---=∴00)1,0()0,1[)1ln(1)(x x xx x S四.证明题(本题4分)证明下列不等式成立:π≥⎰⎰Dx y dxdy ee ,其中}1|),{(D 22≤+=y x y x .证明:因为积分区域关于直线x y =对称, ⎰⎰⎰⎰=DDyxxy dxdy e edxdy e e⎰⎰=∴D x y dxdy e e 21)(⎰⎰⎰⎰+D D y xxy dxdy ee dxdy e e =π=≥+⎰⎰⎰⎰dxdy dxdy e e e e D y xx y 221(21)五.应用题(本题8分)设有一小山,取它的底面所在平面为xoy 坐标面,其底部所占的区域为},75:),{(22≤-+=xy y x y x D 小山的高度函数为.75),(22xy y x y x h +--= (1)设),(0y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为),(0y x g ,试写出),(0y x g 的表达式。
高数(二)期末考试试卷及答案
2017学年春季学期《高等数学Ⅰ(二)》期末考试试卷(B)注意: 1、本试卷共 3 页;2、考试时间110分钟; 3、姓名、学号必须写在指定地方一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A、B、C或D填入下表中.1.a与b是向量,若baba+=+,则必有()(A)⊥a b(B)0,0==a b或(C)a=b(D)⋅=a b a b2。
()(),0,1sin()limx yxyx→=( )。
(A)不存在(B)1(C) 0(D) ∞3.二元函数),(yxfz=在),(yx处可微的充要条件是()(A)),(yxf在),(yx处连续(B)),(yxfx',),(yxfy'在),(yx的某邻域内存在(C)),(yxfx',),(yxfy'在),(yx的某邻域内连续(D)当0)()(22→∆+∆yx时,yyxfxyxfzyx∆'-∆'-∆),(),(是4.对函数(,)f x y=(0,0)是(,)f x y的( )。
(A)驻点与极值点(B)驻点,非极值点(C)极值点,非驻点(D)非驻点,非极值点5.设平面区域D:1)1()2(22≤-+-yx,若21()dDI x yσ=+⎰⎰,32()dDI x yσ=+⎰⎰则有()(A)21II<(B)21II=(C)21II>(D)不能比较6.设椭圆L:13422=+yx的周长为l,则()dLx y s+=⎰()(A)0 (B)l(C) l3 (D)l47.下列结论正确的是()(A)若11nnuu+<(1,2,)n=成立,则正项级数1nnu∞=∑收敛(B)当0lim=∞→nnu时,交错级数1(1)nnnu∞=-∑收敛(C)若级数1nnu∞=∑收敛,则对级数的项任意加括号后所成的新级数也收敛(D)若对级数1nnu∞=∑的项适当加括号后所成的新级数收敛,则原级数也收敛8。
设∑∞=1nnnxa的收敛半径为(0)R R>,则∑∞=12nnnxa的收敛半径为( A )(A) (B)R(C)2R(D) 不能确定二、填空题(7个小题,每小题2分,共14分).1.过点(1,2,3)且方向向量为(1,2,3)=n的直线方程为;2。
高等数学第二学期期末考试试题真题及完整答案(第2套)
高等数学第二学期期末考试试题真题及完整答案一、填空题(将正确答案填在横线上)(本大题共5小题,每小题4分,总计20分)1、设函数,则=2、曲面在点处的切平面方程为____3、= .4、曲面积分= ,其中,为与所围的空间几何形体的封闭边界曲面,外侧.5、幂级数的收敛域为。
二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,总计20分)1、函数在(1,1)点沿方向的方向导数为( )。
(A) 0 (B) 1 (C) 最小 (D)最大2、函数在处( ).(A)不连续,但偏导数存在 (B)不连续,且偏导数不存在(C)连续,但偏导数不存在 (D)连续,且偏导数存在3、计算=( ),其中为(按逆时针方向绕行).(A)0 (B)(C) (D)4、设连续,且,其中D由所围成,则( )。
(A)(B) (C) (D)5、设级数收敛,其和为,则级数收敛于( )。
(A)(B)(C)(D)三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、设函数由方程所确定,计算,。
2、计算,其中,为曲线,.3、求幂级数的和函数.三、解答下列各题(本大题共3小题,每小题8分,总计24分)1、求内接于半径为的球面的长方体的最大体积.2、计算,其中平面区域.3、计算,其中为平面被柱面所截得的部分.五、解答下列各题(本大题共2小题,每小题6分,总计12分)1、计算其中为上从点到点.2、将函数展开成的幂级数.答案及评分标准一、填空题 (本大题分5小题,每小题4分,共20分)1、 2、3、 4、 5、二、选择题(将选项填在括号内)(本大题共5小题,每小题4分,共20分)1、C2、A3、B4、D5、B三、解答下列各题(本大题共3小题,每小题8分,共24分)1、解:方程两端同时对分别求偏导数,有,………………6分解得:.…………………………………………8分2、解:作图(略)。
原式=………………………2分.………………………8分3、解:经计算,该级数的收敛域为。
高数期末考试题及答案选择
高数期末考试题及答案选择一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是:A. 0B. 1C. 2D. 4答案: A2. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{2}{3} \)D. \( \frac{3}{4} \)答案: A3. 若 \( \lim_{x \to 0} \frac{f(x)}{g(x)} \) 存在,则\( \lim_{x \to 0} f(x) \) 与 \( \lim_{x \to 0} g(x) \) 必须:A. 都存在B. 都不存在C. 至少有一个存在D. 至少有一个不存在答案: D4. 函数 \( y = \sin(x) \) 的周期是:A. \( 2\pi \)B. \( \pi \)C. \( \frac{\pi}{2} \)D. \( \frac{1}{2} \)答案: A5. 根据泰勒公式,函数 \( e^x \) 在 \( x = 0 \) 处的泰勒展开式为:A. \( 1 + x \)B. \( 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \)C. \( 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots \)D. \( 1 + x - \frac{x^2}{2!} + \frac{x^3}{3!} - \cdots \)答案: B6. 级数 \( \sum_{n=1}^{\infty} \frac{1}{n^2} \) 收敛于:A. \( \frac{1}{2} \)B. \( \frac{\pi^2}{6} \)C. \( \frac{e}{2} \)D. \( \frac{1}{e} \)答案: B7. 若 \( \lim_{x \to \infty} f(x) = L \),则函数 \( f(x) \) 必须:A. 在 \( x \) 足够大时,值接近 \( L \)B. 在 \( x \) 足够大时,值等于 \( L \)C. 在 \( x \) 足够大时,值小于 \( L \)D. 在 \( x \) 足够大时,值大于 \( L \)答案: A8. 函数 \( y = x^3 - 3x^2 + 2x \) 的拐点是:A. \( x = 0 \)B. \( x = 1 \)C. \( x = 2 \)D. \( x = 3 \)答案: B9. 若 \( f(x) \) 在区间 \( I \) 上连续,则 \( \int_{a}^{b}f(x) dx \) 存在,其中 \( a, b \) 是区间 \( I \) 上的任意两点:A. 正确B. 错误答案: A10. 函数 \( y = \ln(x) \) 的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)答案: A二、填空题(每题2分,共20分)11. 函数 \( f(x) = \frac{1}{x} \) 在 \( x = 1 \) 处的导数是_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京理工大学珠海学院2010 ~ 2011学年第二学期《高等数学(A)2》期末试卷A (答案) 适用年级专业:2010级信息、计算机、机械与车、化工与材料学院各专业一.选择填空题(每小题3分,共18分) 1.设向量 a =(2,0,-2),b = (3,-4,0),则a ⨯b =分析:a ⨯b = 2234ij k-- = -6j – 8k – 8i = (-8,-6,-8) 2.设 u = 223x xy y ++.则 2u x y ∂∂∂ =分析:u x∂∂ = 22x y +, 则2u x y ∂∂∂ = 2'(2)x y += 2y3.椭球面 2222315x y z ++= 在点(1,-1,,2)处的切平面方程为分析:由方程可得,222(,,)2315F x y z x y z =++- ,则可知法向量n =( Fx, Fy, Fz ); 则有 Fx = 2x , Fy = 4y , Fz = 6z ,则过点(1,-1,,2)处的法向量为 n =(2,-4,,12) 因此,其切平面方程为:2(1)4(1)12(2)0x y z --++-= ,即 26150x y z -+-= 4.设D :y = x, y = - x, x = 2直线所围平面区域.则(2)Dy d σ+=⎰⎰___________分析:画出平面区域D (图自画),观图可得,2(2)(2)8xxDy d dx y dy σ-+=+=⎰⎰⎰⎰5.设L :点(0 , 0 )到点(1 , 1)的直线段.则2Lx ds =⎰_________分析:依题意可知:L 是直线y = x 上点(0 , 0 )与点(1 , 1)的一段弧,则有112Lx ds xx ===⎰⎰⎰ 6.D 提示:级数1nn u∞=∑发散,则称级数1nn u∞=∑条件收敛二.解答下列各题(每小题6分,共36分)1.设2ln()tan 2z x y x y =+++,求dz 分析:由z z dz dx dy x y ∂∂=+∂∂可知,需求z x ∂∂及z y∂∂ 12z xy x x y ∂=+∂+ , 21z x y x y∂=+∂+ , 则有 211(2)()z z dz dx dy xy dx x dy x y x y x y∂∂=+=+++∂∂++ 2.设(4,23),u f xy x y =-其中f 一阶偏导连续,求uy∂∂ 分析:设v = 4xy , t = 2x – 3y ,则'''4(3)(43)u f v f t f x f x f y v y t y∂∂∂∂∂=+=+-=-∂∂∂∂∂ 3.设(,)z z x y =由222100x y z xyz ++-=确定.求z y∂∂ 分析:由222100x y z xyz ++-=得,222(,,)100F x y z x y z xyz =++-- 则有由2()x Fx x yz xyz =-+,2()y Fy y xz xyz =-+,2Fz z xy =-则2()()222y y y xz xyz xz xyz y z Fyy Fz z xy z xy-++-∂=-=-=∂-- 4.求函数3322(,)339f x y x y x y x =-++-的极值 提示:详细答案参考高数2课本第111页例4 5.求二重积分22,x y Ded σ+⎰⎰其中D :2219x y ≤+≤分析:依题意,得 21902ρθπ≤≤≤≤⎧⎨⎩,即1302ρθπ≤≤≤≤⎧⎨⎩则有,22223901()x y Ded de d e e πρσσρρπ+==-⎰⎰⎰⎰6.求三重积分2xyz dV Ω⎰⎰⎰,Ω:平面x = 0, x = 3, y = 0, y = 2, z = 0, z = 1所围区域分析:依题意,得0201y z ≤≤≤≤⎪⎨⎪⎩ 则有 3212203xyz dV dx dy xyz dz Ω==⎰⎰⎰⎰⎰⎰三.解答下列各题(每题6分,共24分) 1.求Lydx xdy -⎰,L :圆周229x y +=,逆时针分析:令P=y , Q= - x , 则1Qx∂=-∂,1P y ∂=∂ 由格林公式得()(2)LDDQ Pydx xdy dxdy dxdy x y ∂∂-=-=-∂∂⎰⎰⎰⎰⎰ 作逆时针方向的曲线L :{cos sin x r y r θθ== ,02θπ≤≤则20()(2)24LDDQ Pydx xdy dxdy dxdy d x y πθπ∂∂-=-=-=-=-∂∂⎰⎰⎰⎰⎰⎰2.设:∑平面31x y z ++=位于第一卦限部分.试求曲面积分xdS ∑⎰⎰分析:由:∑平面31x y z ++=可得13z x y =--则 13yx y z zz x ∂∂==-=-∂∂,z = 则有DxyDxyxdS xdxdy ∑==⎰⎰⎰⎰由于xy D 是∑在xOy 面的第一卦限的投影区域,即由0,031x y x y ==+=及所围成的闭区域.因此1130xDxyxdS xdxdy dx xdy -∑===⎰⎰⎰3. 设∑是22z x y =+位于平面4,9z z ==之间部分且取下侧,求zdxdy ∑⎰⎰分析:依题意,可得0249z θπ≤≤≤≤⎪⎨⎪⎩,由于∑是取下侧,则有92463054zdxdy zdz d d ππθρρ∑=-=-⎰⎰⎰⎰4.设∑是锥面z =与平面z = 1 所围立体区域整个边界曲面的外侧。
试求232.xdydz yzdzdx z dxdy ∑-+⎰⎰分析:依题意,可令 23,2,P x Q yz R z ==-=,则有3,2,2P Q R z z x y z∂∂∂==-=∂∂∂ 所以,232()3P Q R xdydz yzdzdx z dxdy dv dv x y z ∑ΩΩ∂∂∂-+=++=∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰ 又∑是锥面z =与平面z = 1 所围立体区域整个边界曲面的外侧,则有00201zz ρθπ≤≤≤≤≤≤⎧⎪⎨⎪⎩,则有1223233zxdydz yzdzdx z dxdy dv dz d d πθρρπ∑Ω-+===⎰⎰⎰⎰⎰⎰⎰⎰四.解答下列各题(第1,2题每题6分,第3,4题每题5分,共22分)1.判断正项级数13(1)!n n n n ∞=+∑的敛散性。
分析:设3(1)!n n n a n +=,则113(2)(1)!n n n a n +++=+则有,113(2)3(1)!lim lim lim 013(1)1!n n nx x x nn a n n a n n ++→∞→∞→∞++===<++ , 所以,正项级数13(1)!n n n n ∞=+∑是收敛的2.试将函数1()1f x x=+ (1)展开成x 的幂级数 (2)展开成x – 1 的幂级数.分析:(1)展开成x 的幂级数为:11()(1),(11)1n n n f x x x x ∞===--<<+∑(2)11111111()..(1)(),(11)112(1)222212n n n x x f x x x x ∞=--====--<<-++-+∑ 则展开成x–1的幂级数为:n+1111111().(1)()=(1)(1)=,(13)1222n nn n n n x f x x x x ∞∞==-==----<<+∑∑3.求幂级数1nn x n ∞=∑的收敛域及和函数.分析:因为 11lim lim (1)n n nx x na nx x a n x ρ++→∞→∞===+当1x <时级数收敛;当1x >时级数发散.所以收敛半径R=1. 则收敛区间为1x <,即11x -<<当x = 1 时,级数成为11n n∞=∑ ,这级数发散;当x = - 1 时,级数成为1(1)n n n ∞=-∑,这级数收敛.所以,原级数的收敛域为[ - 1, 1 ).设和函数为S(x),即 1(),[1,1)nn x S x x n∞==∈-∑. 11101[()]'()',(1)1n n nn n n x S x x x x n x ∞∞∞-=======<-∑∑∑则01()ln(1),[1,1)1xS x dx x x x==--∈--⎰4.设()f x 连续,221:,0.x y u z πΩ+≤≤≤(1)试用柱面坐标化简三重积分22[()1].f x y dv Ω++⎰⎰⎰ (2)若22()[()1].f u f x y dv Ω=++⎰⎰⎰试求()f u .分析:(1)依题意,得00210z ρθππ≤≤≤≤≤⎧⎪⎨⎪⎩,则12222220[()1](1)(1)(1)f x y dv dz d f d f d ππθρρρρρΩ++=+=++⎰⎰⎰⎰⎰(2)若22()[()1].f u f x y dv Ω=++⎰⎰⎰ 则有220()(1)(1)f u f d ρρ=++。