高数2_期末试题及答案
高数期末考试题及答案解析

高数期末考试题及答案解析一、选择题(每题2分,共10分)1. 函数 \( f(x) = \sin x + 2x^2 \) 在区间 \( [0,\frac{\pi}{2}] \) 上是:A. 单调递增B. 单调递减C. 先递增后递减D. 先递减后递增答案解析:首先求导数 \( f'(x) = \cos x + 4x \)。
在区间\( [0, \frac{\pi}{2}] \) 上,\( \cos x \) 始终大于等于0,而\( 4x \) 也是非负的,因此 \( f'(x) \geq 0 \),说明函数 \( f(x) \) 在该区间上单调递增。
所以答案是 A。
2. 若 \( \lim_{x \to 0} \frac{f(x)}{g(x)} = 0 \),则下列哪个选项是正确的?A. \( \lim_{x \to 0} f(x) = 0 \)B. \( \lim_{x \to 0} g(x) = 0 \)C. \( \lim_{x \to 0} f(x) = 1 \)D. \( \lim_{x \to 0} g(x) = 1 \)答案解析:根据极限的性质,如果 \( \lim_{x \to 0}\frac{f(x)}{g(x)} = 0 \),则 \( g(x) \) 不能趋向于0,否则分母为0,极限不存在。
同时,\( f(x) \) 趋向于0。
因此,选项 A 是正确的。
3. 曲线 \( y = x^3 - 3x \) 在点 \( (1, -2) \) 处的切线斜率是:A. 0B. 2C. -2D. 4答案解析:求导数 \( y' = 3x^2 - 3 \),将 \( x = 1 \) 代入得到 \( y' = 0 \)。
因此,曲线在点 \( (1, -2) \) 处的切线斜率为 0,答案是 A。
4. 若 \( \int_{0}^{1} x^2 dx = \frac{1}{3} \),则\( \int_{0}^{1} x^3 dx \) 的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( \frac{2}{3} \)答案解析:根据积分的基本公式,\( \int x^n dx =\frac{x^{n+1}}{n+1} + C \),所以 \( \int_{0}^{1} x^3 dx =\left[\frac{x^4}{4}\right]_{0}^{1} = \frac{1}{4} \)。
高等数学2期末复习题与答案(可编辑修改word版)

x 2 + y 2 - 1 3 1- y 2《高等数学》2 期末复习题一、填空题:1. 函 数 z = + ln(3 - x 2 - y 2 ) 的 定 义 域 是 1≦X^2+Y^2<3 . 2.设 z = (1 + x ) y, 则∂z =∂y(1+ x ) yln(1+ x ) .3.函数 z = ln(1+ x 2 + y 2 ) 在点(1, 2) 的全微分dz = 1dx + 2 dy(1,2)3 34.设 f (x + y , xy ) = x 2 + y 2 , 则 f (x , y ) =.设 f (x + y , y) = x 2 - y 2 , 则 f (x , y ) = .x5. 设 z = e u sin v 而 u = xy v = x + y 则 ∂z =∂ye xy [x sin(x + y ) + cos(x + y )]6. 函数 z = x 2 + y 2 在点(1,2)处沿从点(1,2)到点(2,2 + )的方向导数是1+ 222 y 17. 改换积分次序⎰0dy ⎰y 2f (x , y )dx =; ⎰0 dy ⎰y -1f (x , y )dx = .8. 若 L 是抛物线 y 2 = x 上从点 A (1,-1) 到点 B (1,1) 的一段弧,则⎰xydx =L9. 微分方程(1+ e 2x )dy + ye 2x dx = 0 的通解为.二、选择题: 1.lim ( x , y )→(2,0) tan(xy )y 等于 ()(上下求导)A .2,B. 12C.0D.不存在2. 函 数 z = 的定义域是( D )A. {(x , y ) x ≥ 0, y ≥ 0} C. {(x , y ) y ≥ 0, x 2 ≥ y }B. {(x , y ) x 2 ≥ y } D. {(x , y ) x ≥ 0, y ≥ 0, x 2 ≥ y }3 x - y23.∂f (x , y ) | ∂x( x0 ,y 0 ) = ( B )A. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 , y 0 )∆xB. lim∆x →0f (x 0 + ∆x , y 0 ) - f (x 0 , y 0 )∆xC. lim ∆x →0 f (x 0 + ∆x , y 0 + ∆y ) - f (x 0 + ∆x , y 0 )∆xD. lim∆x →0 f (x 0 + ∆x , y 0 ) ∆x5. 设 z = F (x 2 + y 2 ) ,且 F 具有导数,则∂z + ∂z= (D )∂x ∂yA. 2x + 2 y ;B. (2x + 2 y )F (x 2 + y 2 ) ;C. (2x - 2 y )F '(x 2 + y 2 ) ;D. (2x + 2 y )F '(x 2 + y 2 ) .6. 曲线 x = a cos t , y = a sin t , z = amt ,在 t = 处的切向量是 ( D )4A . (1,1, 2)B. (-1,1, 2)C. (1,1, 2m )D. (-1,1, 2m )7. 对于函数 f (x , y ) = x 2 + xy ,原点(0,0)( A )A .是驻点但不是极值点B.不是驻点C.是极大值点D.是极小值点8.设 I= ⎰⎰5Dx 2 + y 2 -1dxdy , 其中 D 是圆环1 ≤ x 2 + y 2 ≤ 4 所确定的闭区域, 则必有( ) A .I 大于零 B.I 小于零C.I 等于零D.I 不等于零,但符号不能确定。
高等数学二(含答案)

高等数学(二)一、选择题1函数1ln xy x-=的定义域是 ( D ) ](0,1) B (0,1)(1,4)C (0,4) D (0,1)(1,4A ⋃⋃2 设2,0,(x)sin ,0a bx x f bx x x ⎧+≤⎪=⎨>⎪⎩ 在x=0处连续,则常数a ,b 应满足的关系是 ( C )A a<bB a>bC a=bD a ≠b3 设(sin )cos 21f x x =+ 则(sin )(cos )f x f x += ( D ) A 1 B -1 C -2 D 24 若(x)xln(2x)f = 在0x 处可导,且'00()2,()f x f x ==则 ( B )221 B C D e 2e A e5 设(x)f 的一个原函数为xlnx ,则(x)dx xf =⎰ ( B )22221111x (lnx)C B x (lnx)C24421111C x (lnx)CD x (lnx)C4224A ++++-+-+6 设'(x)(x 1)(2x 1),x (,)f =-+∈-∞+∞ ,则在(12,1)内,f (x )单调( B ) A 增加,曲线y=f (x )为凹的 B 减少,曲线y=f (x )为凹的 C 减少,曲线y=f (x )为凸的 D 增加,曲线y=f (x )为凸的 7 设(0,0)z(x y)e ,xy z y ∂=+=∂则( C ) A -1 B 1 C 0 D 2 8 设2239k x dx =⎰ ,则k= ( 0 )9 011lim sin sin x x x x x →⎛⎫+= ⎪⎝⎭( B ) A 0 B 1 C 2 D +∞ 10 {A ,B ,C 三个事件中至少有一个发生}这一事件可以用事件的关系表示为( A )A A ⋃B ⋃C B A ⋂B ⋃C C A ⋃B ⋂CD A ⋂B ⋂C 二 填空题11 设21(x)x f x=+ 则"(1)f =____4_____12 与曲线3235y x x =+- 相切且与直线6x+2y-1=0平行的直线方程__y=-3x-6__ 13()sin x x dx +=⎰21cos 2x x C -+ 14 设ln ,z y x dz ==则 _y/x*dx+lnxdy_________ 15 0sin 2lim3x xx→= __2/3_______16函数z = 的定义域为__{(x,y)|x 2+y 2≤1}______ 17 设函数y=xcosx ,则y ’=_cosx-xsinx____18 设函数332,0(x),0x x f x x +≤⎧=⎨>⎩ 则f (0)=____2__________19 曲线32113y x x =-+ 的拐点是__(1,1/3)_________20 若2n x y x e =+ 则(n)y = ___22n n x n A e + _____ 三、计算题 21 求极限02sin 2lim sin 3x x xx x→+-解:原式=00224lim lim 232x x x x xx x x→→+==---22计算lim x x →+∞22 lim limlimx x x x →+∞====解:原式 1=23 计算sin x xdx ⎰cos cos cos cosx sinx xd x x x xdx x =-=-+=-+⎰⎰解:原式24 计算4211xdx xπ++⎰442200424021=dx dx 1+x 1+x 1 =arctan ln(1x )21 =arctan ln(1)4216x x ππππππ+++++⎰⎰解:原式25 设z (x ,y )是由方程2224x y z z ++= 所确定的隐函数,求dz222(x,y,z)x 42,2,242242224222F y z z F F Fx y z x y z F z x x x F x z z z F z x y y F y z z z z z x y dz dx dy dx dyx y z z=++-∂∂∂===-∂∂∂∂∂∂=-=-=∂∂--∂∂∂∂=-=-=∂∂--∂∂∂∴=+=+∂∂--解:设则有:26 设sin x y e x =,证明"'220y y y -+='""'sin cos sin cos cos sin 2cos 222cos 2(sin cos )2sin =0x x x x x x x xxxxy e x e xy e x e x e x e x e x y y y e x e x e x e x =+=++-=∴-+=-++解:27 (1)求曲线x y e = 及直线x=1,x=0,y=0所围成的图形D 的面积S (2)求平面图形D 绕x 轴旋转一周所成旋转体的体积V110011222001e e 1e =ee 222xx x xx x dx ee y e dx ππππ===-==-⎰⎰解:由题知曲线直线的交点:(1,) 则(1) (2))和(28 讨论函数21x y x=+ 的单调区间和凹凸区间,并求出极值和拐点的坐标。
自考高等数学2试题及答案

自考高等数学2试题及答案一、选择题(每题3分,共30分)1. 下列函数中,满足f(2+x)=f(2-x)的是:A. f(x) = sin(x)B. f(x) = cos(x)C. f(x) = x^2D. f(x) = e^x答案:B2. 设函数f(x)在点x=a处可导,且f'(a)≠0,那么曲线y=f(x)在点(x=a, y=f(a))处的切线斜率为:A. f(a)B. f'(a)C. f(a+1)D. 0答案:B3. 不等式e^x > x^2在区间(0, +∞)上成立的充要条件是:A. x > 0B. x > 1C. x > 2D. x > 3答案:A4. 设数列{an}是等差数列,且a1=1,a2=3,a3=5,则此等差数列的公差d为:A. 1B. 2C. 3D. 4答案:B5. 曲线y=x^3在点(1,1)处的法线方程为:A. y=3x-2B. y=-3x+4C. y=3x+2D. y=-3x-2答案:B6. 设函数f(x)在区间[a,b]上连续,若f(x)在[a,b]上单调递增,则f(x)在[a,b]上:A. 有最大值和最小值B. 有最大值或最小值C. 有界但不一定有最大值或最小值D. 无界答案:A7. 二元函数z=xy^2在点(1,1)处的偏导数分别为:A. 1, 2B. 2, 1C. 1, 1D. 2, 28. 设函数f(x)在区间(-∞, +∞)上满足f(x)=f(x+3),则f(x)的周期为:A. 1B. 3C. 6D. 不确定答案:B9. 利用定积分的几何意义,计算曲边梯形的面积,其公式为:A. ∫[a,b] f(x) dxB. ∫[b,a] f(x) dxC. ∫[a,b] f(x) + g(x) dxD. ∫[a,b] f(x) - g(x) dx答案:A10. 微积分基本定理指出,若函数f(x)在区间[a,b]上连续,且F(x)是f(x)的一个原函数,则:A. F(b) - F(a) = f(b) - f(a)B. F(b) - F(a) = ∫[a,b] f(x) dxC. F(b) - F(a) = f(a) - f(b)D. F(b) - F(a) = ∫[b,a] f(x) dx答案:B二、填空题(每题4分,共20分)11. 若函数f(x)=x^2+1在区间[-1,2]上的最大值为M,则M=________。
《高等数学二》考试题及答案

《高等数学(二)》期末复习题一、选择题1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=⋅b a ,则=b ( A ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--.2、在空间直角坐标系中,方程组2201x y z z ⎧+-=⎨=⎩代表的图形为 ( C )(A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22()DI xy dxdy =+⎰⎰,其中区域D 由222x y a +=所围成,则I =( D )(A)224ad a rdr a πθπ=⎰⎰ (B) 22402ad a adr a πθπ=⎰⎰(C)2230023a d r dr a πθπ=⎰⎰ (D) 2240012a d r rdr a πθπ=⎰⎰4、 设的弧段为:230,1≤≤=y x L ,则=⎰L ds 6 ( A )(A )9 (B) 6 (C )3 (D)235、级数∑∞=-11)1(n nn的敛散性为 ( B ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑⎰⎰=→∆=ni i i i Df d y x f 10),(lim),(σηξσλ中的λ代表的是( D )(A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分⎰⎰-1010d ),(d xy y x f x 等于 ( B )(A )⎰⎰-1010d ),(d xx y x f y (B) ⎰⎰-1010d ),(d yx y x f y(C)⎰⎰-x x y x f y 1010d ),(d(D)⎰⎰101d ),(d x y x f y8、方程222z x y =+表示的二次曲面是 ( A )(A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面9、二元函数),(y x f z =在点),(00y x 可微是其在该点偏导数存在的( B ). (A ) 必要条件 (B ) 充分条件 (C ) 充要条件 (D ) 无关条件 10、设平面曲线L 为下半圆周 21,y x =--则曲线积分22()Lx y ds +=⎰( C )(A) 0 (B) 2π (C) π (D) 4π 11、若级数1nn a∞=∑收敛,则下列结论错误的是 ( B )(A)12nn a∞=∑收敛 (B)1(2)nn a∞=+∑收敛 (C)100nn a∞=∑收敛 (D)13nn a∞=∑收敛12、二重积分的值与 ( C )(A )函数f 及变量x,y 有关; (B) 区域D 及变量x,y 无关; (C )函数f 及区域D 有关; (D) 函数f 无关,区域D 有关。
高数b2期末考试试题及答案

高数b2期末考试试题及答案一、选择题(每题5分,共30分)1. 设函数f(x)=x^3-3x+1,求f'(x)的值。
A. 3x^2 - 3B. x^2 - 3xC. 3x^2 - 3xD. x^3 - 3x^2答案:A2. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1/4答案:B3. 求极限lim(x→0) (sin x) / x。
A. 1B. 0C. 2D. ∞答案:A4. 判断下列级数是否收敛。
∑(1/n^2),n从1到∞。
A. 收敛B. 发散答案:A5. 判断函数f(x)=e^x在实数域R上的连续性。
A. 连续B. 不连续答案:A6. 求二阶偏导数f''(x,y),其中f(x,y)=x^2y+y^2。
A. 2xyB. 2xC. 2yD. 2答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=ln(x+1),求f'(x)=______。
答案:1/(x+1)2. 计算定积分∫(0,2π) sin(x) dx=______。
答案:03. 求极限lim(x→∞) (1+1/x)^x=______。
答案:e4. 判断级数∑(1/n),n从1到∞是否收敛,答案是______。
答案:发散三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1,x=11/3。
经检验,x=1为极大值点,x=11/3为极小值点。
2. 计算定积分∫(0,1) e^x dx。
答案:∫(0,1) e^x dx = [e^x](0,1) = e^1 - e^0 = e - 1。
3. 求极限lim(x→0) (e^x - 1) / x。
答案:根据洛必达法则,lim(x→0) (e^x - 1) / x = lim(x→0) e^x = 1。
高数二真题及答案解析
高数二真题及答案解析高等数学二是高等数学的一门重要课程,它主要涉及到微积分的相关知识和技巧。
通过学习高等数学二,可以为后续的数学学科打下坚实的基础,并在实际问题的解决过程中发挥重要作用。
本文将就高等数学二的一道真题进行分析和解答,希望能对大家的学习有所帮助。
真题:设f(x)在区间[-1,1]上连续,在(-1,1)内可导,且f'(x)在(-1,1)内变号,试证存在c∈(-1,1)使得f(c)=0。
解析:首先,我们要清楚题目所给出的条件以及需要证明的结论。
题目给出f(x)在区间[-1,1]上连续,在(-1,1)内可导,且f'(x)在(-1,1)内变号,我们需要证明存在一个点c∈(-1,1),使得f(c)=0。
为了证明这个结论,我们可以运用罗尔定理。
罗尔定理是微积分中的一个重要定理,它给出了连续函数在某个区间内取得最值的条件。
根据罗尔定理,如果函数f(x)在区间[a,b]上连续,在开区间(a,b)内可导,并且在区间的两个端点上取得相等的函数值,那么在开区间内至少存在一个点c,使得f'(c)=0。
回到我们的题目,我们可以设函数g(x)=f(x)-kx,其中k是一个常数。
由于f(x)在区间[-1,1]上连续,并在(-1,1)内可导,而kx是一条直线,所以g(x)也具备这两个条件。
另外,由于f'(x)在(-1,1)内变号,那么在区间的两个端点上,f'(x)的值必然相等,即f'(-1)=f'(1)。
根据罗尔定理的条件,我们可以得知,在开区间(-1,1)内存在一个点c,使得g'(c)=0。
接下来,我们来求解g'(x)。
根据求导法则,我们可以得到g'(x)=f'(x)-k。
由于g'(c)=0,所以f'(c)=k。
继续推导,我们知道根据题目给定的条件,f'(x)在(-1,1)内变号,即f'(x)在开区间(-1,1)内有正有负的取值。
高数期末考试题及答案选择
高数期末考试题及答案选择一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是:A. 0B. 1C. 2D. 4答案: A2. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{2}{3} \)D. \( \frac{3}{4} \)答案: A3. 若 \( \lim_{x \to 0} \frac{f(x)}{g(x)} \) 存在,则\( \lim_{x \to 0} f(x) \) 与 \( \lim_{x \to 0} g(x) \) 必须:A. 都存在B. 都不存在C. 至少有一个存在D. 至少有一个不存在答案: D4. 函数 \( y = \sin(x) \) 的周期是:A. \( 2\pi \)B. \( \pi \)C. \( \frac{\pi}{2} \)D. \( \frac{1}{2} \)答案: A5. 根据泰勒公式,函数 \( e^x \) 在 \( x = 0 \) 处的泰勒展开式为:A. \( 1 + x \)B. \( 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \)C. \( 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots \)D. \( 1 + x - \frac{x^2}{2!} + \frac{x^3}{3!} - \cdots \)答案: B6. 级数 \( \sum_{n=1}^{\infty} \frac{1}{n^2} \) 收敛于:A. \( \frac{1}{2} \)B. \( \frac{\pi^2}{6} \)C. \( \frac{e}{2} \)D. \( \frac{1}{e} \)答案: B7. 若 \( \lim_{x \to \infty} f(x) = L \),则函数 \( f(x) \) 必须:A. 在 \( x \) 足够大时,值接近 \( L \)B. 在 \( x \) 足够大时,值等于 \( L \)C. 在 \( x \) 足够大时,值小于 \( L \)D. 在 \( x \) 足够大时,值大于 \( L \)答案: A8. 函数 \( y = x^3 - 3x^2 + 2x \) 的拐点是:A. \( x = 0 \)B. \( x = 1 \)C. \( x = 2 \)D. \( x = 3 \)答案: B9. 若 \( f(x) \) 在区间 \( I \) 上连续,则 \( \int_{a}^{b}f(x) dx \) 存在,其中 \( a, b \) 是区间 \( I \) 上的任意两点:A. 正确B. 错误答案: A10. 函数 \( y = \ln(x) \) 的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)答案: A二、填空题(每题2分,共20分)11. 函数 \( f(x) = \frac{1}{x} \) 在 \( x = 1 \) 处的导数是_______。
高数(二)期末复习题
1 0
dρ
1 0
ρ3
sin
θ
cos
θ
dz
(C)
π
2
0
dθ
1 0
dρ
1 0
ρ2
sin
θ
cos
θ
dz
(B)
2π 0
1 0
dρ
1 0
ρ2
sin
θ
cos
θ
dz
(D)
π
2
0
dθ
1 0dρFra bibliotek1 0
ρ3
sin
θ
cos
θ
dz
6. 设 L 是 xoy 平面上的有向曲线, 下列曲线积分中, ( ) 是与路径无关的
(A) L 3yx2 dx + x3 dy (C) L 2x y dx − x2 dy
高数(二)期末复习题
只是把高数(二)期末复习题单独拿出来
作者: sikouhjw、xajzh 组织: 临时组织起来的重排小组 时间: May 29, 2019 版本: 1.00
“不论一个人的数学水平有多高, 只要对数学拥有一颗真诚的心, 他就在自己的心灵上得到了升华。”—SCIbird
目录
1 声明
7. 设 Σ 是上半圆锥面 z = x2 + y2(0
z
1)
,
则曲面积分
∬
Σ
x2 + y2
dS =
8. 级数
∞ n=1
1 n(n+1)
−
1 2n
的和为
三、综合题( 8 小题, 共 52 分)
1.
求方程
dy dx
=
xy 1+x2
高数(2-2)历年期末试题参考答案
2006—2007学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内). 1.设三向量→→→c b a ,,满足关系式→→→→⋅=⋅c a b a ,则( D ). (A )必有→→=0a 或者→→=c b ; (B )必有→→→→===0c b a ; (C )当→→≠0a 时,必有→→=c b ; (D )必有)(→→→-⊥c b a . 2. 已知2,2==→→b a ,且2=⋅→→b a ,则=⨯→→b a ( A ).(A )2 ; (B )22; (C )22; (D )1 . 3. 设曲面)0,0(:2222>≥=++a z a z y x S ,1S 是S 在第一卦限中的部分,则有( C ).(A )⎰⎰⎰⎰=14S SxdS xdS ; (B )⎰⎰⎰⎰=14S SxdS ydS ;(C )⎰⎰⎰⎰=14S SxdS zdS ; (D )⎰⎰⎰⎰=14S SxyzdS xyzdS .4. 曲面632222=++z y x 在点)1,1,1(--处的切平面方程是:(D ). (A )632=+-z y x ; (B )632=-+z y x ; (C )632=++z y x ; (D )632=--z y x .5. 判别级数∑∞=⋅1!3n nn n n 的敛散性,正确结果是:( B ).(A )条件收敛; (B )发散;(C )绝对收敛; (D )可能收敛,也可能发散.6. 平面0633=--y x 的位置是(B ).(A )平行于xoy 平面; (B )平行于z 轴,但不通过z 轴; (C )垂直于z 轴 ; (D )通过z 轴 .二、填空题(本题共4小题,每小题5分,满分20分). 1. 已知xy e z =,则2x xdy ydx e dz xy -⋅-=.2. 函数zx yz xy u ++=在点)3,2,1(P 处沿向量→OP 的方向导数是71411,函数u 在点P 处的方向导数取最大值的方向是}3,4,5{,该点处方向导数的最大值是25.3. 已知曲线1:22=+y x L ,则π2)(2=+⎰Lds y x .4. 设函数展开傅立叶级数为:)(,cos 02ππ≤≤-=∑∞=x nx ax n n,则12=a .三、解答下列各题(本题共7小题,每小题7分,满分49分). 1. 求幂级数∑∞=+01n nn x 收敛域及其和函数. 解 nn n a a 1lim+∞→ ,121lim =++=∞→n n n ∴收敛半径为1, 当1=x 时,级数∑∞=+011n n 发散,当1-=x 时,级数∑∞=+-01)1(n nn 收敛, 故所求的收敛域为)1,1[-;令;)1,1[,1)(0-∈+=∑∞=x n x x S n n于是.1,1)(01<+=∑∞=+x n x x S x n n 逐项求导,得.1,11)1(])([001<-=='+='∑∑∞=∞=+x x x n x x S x n n n n.1),1ln(1])([)(00<--=-='=∴⎰⎰x x t dtdt t tS x xS x x1,)1ln(1)(<--=∴x x xx S 且.0≠x而,2ln )1ln(1lim )(lim )1(11=--==-++-→-→x x x S S x x 1)0(=S ,故⎪⎩⎪⎨⎧=<<<≤---=.01,1001,)1ln()(x x x xx x S 2. 计算二重积分⎰⎰≤++42222y x y xdxdy e.解 令⎩⎨⎧==θθsin cos r y r x ,则⎰⎰≤++42222y x y x dxdy e⎰⎰=20202rdr e d r πθ ⎰=22)(2r d e r π202r eπ=).1(4-=e π3. 已知函数),(y x f z =的全微分ydy xdx dz 22-=,并且2)1,1(=f . 求),(y x f z =在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.解 由,22ydy xdx dz -=得),1(2x xf=∂∂ ),2(2y y f -=∂∂)1(两边关于x 积分,得)(2),(y C xdx y x f +=⎰)(2y C x +=,此式两边关于y 求偏导,再由)2(知,2)(y y C -=',)(2C y y C +-=⇒.),(22C y x y x f +-=∴ 由2)1,1(=f 知,2=C ,故.2),(22+-=y x y x f令,0202⎪⎪⎩⎪⎪⎨⎧=-=∂∂==∂∂y yf x x f得驻点)0,0(在D 内部,且2)0,0(=f ,在D 的边界1422=+y x 上:.11,252)44(222≤≤--=+--=x x x x z 其最大值是,3)0,1(1=±=±=f z x 最小值是2)2,0(0-=±==f z x ;故),(y x f z =在椭圆域}14),{(22≤+=y x y x D 上的最大值是3}2,3,2max{=-, 最小值是.2}2,3,2min{-=-.4. 设Ω是由4,22=+=z y x z ,所围成的有界闭区域,计算三重积分⎰⎰⎰Ω++dxdydz z y x)(22.解 令,sin cos ⎪⎩⎪⎨⎧===z z r y r x θθ则.4,20,20:2≤≤≤≤≤≤Ωz r r πθ⎰⎰⎰⎰⎰⎰+=++∴Ω422020222)()(rdz z r rdr d dxdydz z y x πθ⎰⎰+=42202)(2rdz z r rdr π⎰==+=204222]2[2dr z z r r z r z π⎰-+=2053)2384(2dr r r r π.32]44[220624ππ=-+=r r r 5. 设AB L 为从点)0,1(-A 沿曲线21x y -=到点)0,1(B 一段曲线,计算⎰++ABL y x ydy xdx 22. 解 ⎩⎨⎧-=-=≤≤-==,2,1.11,,:2xdx dy x y x dx dx x x L AB.0)1()2)(1(11222222=-+--+=++∴⎰⎰-dx x x x x x y x ydy xdx ABL6. 设∑是上半球面221y x z --=的下侧,计算曲面积分⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz)2()(2322.解 ,2,,2322z y xy R z y x Q xz P +=-== ,222z y x zRy Q x P ++=∂∂+∂∂+∂∂ 作.1,0:22≤+=∑y x z 上补与下∑所围成的立体为Ω,由高斯公式,⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322 ⎰⎰∑+∑++-+=上补下dxdy z y xy dzdx z y x dydz xz )2()(2322⎰⎰∑++-+-上补dxdy z y xy dzdx z y x dydz xz )2()(2322⎰⎰⎰⎰⎰≤+Ω⋅+---∂∂+∂∂+∂∂-=1222)02(00y x dxdy y xy dxdydz z R y Q x P )(000222---++-=⎰⎰⎰Ωdxdydz z y x )((作球面坐标变换)⎰⎰⎰⋅-=1222020sin ρϕρρϕθππd d d .52sin 21420πρρϕϕππ-=-=⎰⎰d d 7. 将函数61)(2--=x x x f 展开成关于1-x 的幂级数 .解.1,110<=-∑∞=x x x n n.1,)1(110<-=+∑∞=x x x n n n )2131(51)3)(2(161)(2+--=-+=--=∴x x x x x x x f ]3)1(12)1(1[51+----=x x]311131211121[51-+⋅---⋅-=x x ]311131211121[51-+⋅+--⋅-=x x∑∞=+--=012)1(51n n n x ∑∞=+---013)1()1(51n n nn x ( 121<-x 且131<-x ) 21,)1](3)1(21[51011<---+-=∑∞=++x x n n n nn 即).3,1(-∈x四、证明题(7分). 证明不等式:2)sin (cos 122≤+≤⎰⎰Dd x yσ,其中D 是正方形区域:.10,10≤≤≤≤y x证D 关于y x =对称,⎰⎰∴Dd yσ2(cos ⎰⎰=D d x σ2cos ,⎰⎰+∴Dd x y σ)sin (cos 22.)sin (cos 22⎰⎰+=Dd x x σ又 ),4sin(2)cos 21sin 21(2cos sin 22222π+=+=+x x x x x而,102≤≤x ,2)4sin(22212≤+≤=∴πx 即 ,2cos sin 122≤+≤x x,22)cos (sin 1122=≤+≤⋅=∴⎰⎰⎰⎰⎰⎰DDDd d x x d σσσ即 .2)sin (cos 122≤+≤⎰⎰Dd x y σ2007—2008学年第二学期 高等数学(2-2)期末试卷(A)参考答案一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上. 1. 平面1:0y z -=∏与平面2:0x y +=∏的夹角为3π.2. 函数22y x z +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为321+.3. 设(,)f x y 是有界闭区域222:a y x D ≤+上的连续函数,则当0→a 时,=⎰⎰→Da dxdy y x f a ),(1lim20π)0,0(f .4. 区域Ω由圆锥面222x y z +=及平面1=z 围成,则将三重积分f dv ⎰⎰⎰Ω在柱面坐标系下化为三次积分为211()πθ⎰⎰⎰rd dr f r rdz .5. 设Γ为由曲线32,,t z t y t x ===上相应于t 从0到1的有向曲线弧,R Q P ,,是定义在Γ上的连续三元函数,则对坐标的曲线积分化为对弧长的曲线积分有:Pdx Qdy Rdz Γ++=⎰6. 将函数()1(0)f x x x π=+≤≤展开成余弦级数为)0()5cos 513cos 31(cos 412122πππ≤≤+++-+=+x x x x x .二、单项选择题:7~12小题,每小题3分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京理工大学珠海学院2010 ~ 2011学年第二学期《高等数学(A)2》期末试卷A (答案) 适用年级专业:2010级信息、计算机、机械与车、化工与材料学院各专业一.选择填空题(每小题3分,共18分) 1.设向量 a =(2,0,-2),b = (3,-4,0),则a ⨯b =分析:a ⨯b = 2234ij k-- = -6j – 8k – 8i = (-8,-6,-8) 2.设 u = 223x xy y ++.则 2u x y ∂∂∂ =分析:u x∂∂ = 22x y +, 则2u x y ∂∂∂ = 2'(2)x y += 2y3.椭球面 2222315x y z ++= 在点(1,-1,,2)处的切平面方程为分析:由方程可得,222(,,)2315F x y z x y z =++- ,则可知法向量n =( Fx, Fy, Fz ); 则有 Fx = 2x , Fy = 4y , Fz = 6z ,则过点(1,-1,,2)处的法向量为 n =(2,-4,,12) 因此,其切平面方程为:2(1)4(1)12(2)0x y z --++-= ,即 26150x y z -+-= 4.设D :y = x, y = - x, x = 2直线所围平面区域.则(2)Dy d σ+=⎰⎰___________分析:画出平面区域D (图自画),观图可得,2(2)(2)8xxDy d dx y dy σ-+=+=⎰⎰⎰⎰5.设L :点(0 , 0 )到点(1 , 1)的直线段.则2Lx ds =⎰_________分析:依题意可知:L 是直线y = x 上点(0 , 0 )与点(1 , 1)的一段弧,则有112Lx ds xx ===⎰⎰⎰ 6.D 提示:级数1nn u∞=∑发散,则称级数1nn u∞=∑条件收敛二.解答下列各题(每小题6分,共36分)1.设2ln()tan 2z x y x y =+++,求dz 分析:由z z dz dx dy x y ∂∂=+∂∂可知,需求z x ∂∂及z y∂∂ 12z xy x x y ∂=+∂+ , 21z x y x y∂=+∂+ , 则有 211(2)()z z dz dx dy xy dx x dy x y x y x y∂∂=+=+++∂∂++ 2.设(4,23),u f xy x y =-其中f 一阶偏导连续,求uy∂∂ 分析:设v = 4xy , t = 2x – 3y ,则'''4(3)(43)u f v f t f x f x f y v y t y∂∂∂∂∂=+=+-=-∂∂∂∂∂ 3.设(,)z z x y =由222100x y z xyz ++-=确定.求z y∂∂ 分析:由222100x y z xyz ++-=得,222(,,)100F x y z x y z xyz =++-- 则有由2()x Fx x yz xyz =-+,2()y Fy y xz xyz =-+,2Fz z xy =-则2()()222y y y xz xyz xz xyz y z Fyy Fz z xy z xy-++-∂=-=-=∂-- 4.求函数3322(,)339f x y x y x y x =-++-的极值 提示:详细答案参考高数2课本第111页例4 5.求二重积分22,x y Ded σ+⎰⎰其中D :2219x y ≤+≤分析:依题意,得 21902ρθπ≤≤≤≤⎧⎨⎩,即1302ρθπ≤≤≤≤⎧⎨⎩则有,22223901()x y Ded de d e e πρσσρρπ+==-⎰⎰⎰⎰6.求三重积分2xyz dV Ω⎰⎰⎰,Ω:平面x = 0, x = 3, y = 0, y = 2, z = 0, z = 1所围区域分析:依题意,得0201y z ≤≤≤≤⎪⎨⎪⎩ 则有 3212203xyz dV dx dy xyz dz Ω==⎰⎰⎰⎰⎰⎰三.解答下列各题(每题6分,共24分) 1.求Lydx xdy -⎰,L :圆周229x y +=,逆时针分析:令P=y , Q= - x , 则1Qx∂=-∂,1P y ∂=∂ 由格林公式得()(2)LDDQ Pydx xdy dxdy dxdy x y ∂∂-=-=-∂∂⎰⎰⎰⎰⎰ 作逆时针方向的曲线L :{cos sin x r y r θθ== ,02θπ≤≤则20()(2)24LDDQ Pydx xdy dxdy dxdy d x y πθπ∂∂-=-=-=-=-∂∂⎰⎰⎰⎰⎰⎰2.设:∑平面31x y z ++=位于第一卦限部分.试求曲面积分xdS ∑⎰⎰分析:由:∑平面31x y z ++=可得13z x y =--则 13yx y z zz x ∂∂==-=-∂∂,z = 则有DxyDxyxdS xdxdy ∑==⎰⎰⎰⎰由于xy D 是∑在xOy 面的第一卦限的投影区域,即由0,031x y x y ==+=及所围成的闭区域.因此1130xDxyxdS xdxdy dx xdy -∑===⎰⎰⎰3. 设∑是22z x y =+位于平面4,9z z ==之间部分且取下侧,求zdxdy ∑⎰⎰分析:依题意,可得0249z θπ≤≤≤≤⎪⎨⎪⎩,由于∑是取下侧,则有92463054zdxdy zdz d d ππθρρ∑=-=-⎰⎰⎰⎰4.设∑是锥面z =与平面z = 1 所围立体区域整个边界曲面的外侧。
试求232.xdydz yzdzdx z dxdy ∑-+⎰⎰分析:依题意,可令 23,2,P x Q yz R z ==-=,则有3,2,2P Q R z z x y z∂∂∂==-=∂∂∂ 所以,232()3P Q R xdydz yzdzdx z dxdy dv dv x y z ∑ΩΩ∂∂∂-+=++=∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰ 又∑是锥面z =与平面z = 1 所围立体区域整个边界曲面的外侧,则有00201zz ρθπ≤≤≤≤≤≤⎧⎪⎨⎪⎩,则有1223233zxdydz yzdzdx z dxdy dv dz d d πθρρπ∑Ω-+===⎰⎰⎰⎰⎰⎰⎰⎰四.解答下列各题(第1,2题每题6分,第3,4题每题5分,共22分)1.判断正项级数13(1)!n n n n ∞=+∑的敛散性。
分析:设3(1)!n n n a n +=,则113(2)(1)!n n n a n +++=+则有,113(2)3(1)!lim lim lim 013(1)1!n n nx x x nn a n n a n n ++→∞→∞→∞++===<++ , 所以,正项级数13(1)!n n n n ∞=+∑是收敛的2.试将函数1()1f x x=+ (1)展开成x 的幂级数 (2)展开成x – 1 的幂级数.分析:(1)展开成x 的幂级数为:11()(1),(11)1n n n f x x x x ∞===--<<+∑(2)11111111()..(1)(),(11)112(1)222212n n n x x f x x x x ∞=--====--<<-++-+∑ 则展开成x–1的幂级数为:n+1111111().(1)()=(1)(1)=,(13)1222n nn n n n x f x x x x ∞∞==-==----<<+∑∑3.求幂级数1nn x n ∞=∑的收敛域及和函数.分析:因为 11lim lim (1)n n nx x na nx x a n x ρ++→∞→∞===+当1x <时级数收敛;当1x >时级数发散.所以收敛半径R=1. 则收敛区间为1x <,即11x -<<当x = 1 时,级数成为11n n∞=∑ ,这级数发散;当x = - 1 时,级数成为1(1)n n n ∞=-∑,这级数收敛.所以,原级数的收敛域为[ - 1, 1 ).设和函数为S(x),即 1(),[1,1)nn x S x x n∞==∈-∑. 11101[()]'()',(1)1n n nn n n x S x x x x n x ∞∞∞-=======<-∑∑∑则01()ln(1),[1,1)1xS x dx x x x==--∈--⎰4.设()f x 连续,221:,0.x y u z πΩ+≤≤≤(1)试用柱面坐标化简三重积分22[()1].f x y dv Ω++⎰⎰⎰ (2)若22()[()1].f u f x y dv Ω=++⎰⎰⎰试求()f u .分析:(1)依题意,得00210z ρθππ≤≤≤≤≤⎧⎪⎨⎪⎩,则12222220[()1](1)(1)(1)f x y dv dz d f d f d ππθρρρρρΩ++=+=++⎰⎰⎰⎰⎰(2)若22()[()1].f u f x y dv Ω=++⎰⎰⎰ 则有220()(1)(1)f u f d ρρ=++。