北航最优化方法最新最全答案2015版详解

合集下载

最优化方法全部课件

最优化方法全部课件

f x0
据此有
ⅰ) 等号成立当且仅当 p 与f x0 同方向或与 f x0
同方向。且当
p与
f x0
同方向时,f x0
p
取到最大值
f x0 。当 p 与 f x0 同方向时,f x0 取到最小值 p
f x0
第1章 预备知识
1.1 经典极值问题 1. 例子, 2. 数学模型 第一,无约束极值问题
min f x1, x2, , xn 或 max f x1, x2, , xn
解法:解方程组 第二,仅含等式约束的极值问题
min f x1, x2, , xn s.t. hi x1, x2, , xn 0, i 1, 2, ,l(l n)
p
思考:f x 与
f x f x f x
,
,,
的异同。
p
x1 x2
xn
根据极限理论,易见

f x0
p

0,则p方向是 f
x
在点
x0 处的上升方向;
若 f x0 0,则 p方向是 f x在点 p
x0
处的下降方向。
因此,方向导数的正负决定了函数值的升降。
例1.8 P19
几个常用函数的梯度公式
(1)若 f x C ,则 f x 0
(2) bT x b ;
(3) xTQx 2Qx ;
(4) xT x 2x .
,即 C 0 ;
2. Hesse矩阵
问:函数 f x 关于变量 x 的二阶导数又是什么?
1.5 梯度和Hesse矩阵
本段讨论都基于对函数 f x 可微的假定。

最优化课后习题答案

最优化课后习题答案

最优化课后习题答案最优化课后习题答案最优化是一门重要的数学学科,它研究如何在给定的约束条件下,找到一个最优的解决方案。

在学习最优化课程时,我们通常会遇到一些习题,这些习题旨在帮助我们理解和应用最优化的原理和方法。

本文将为大家提供一些最优化课后习题的答案,以帮助大家更好地掌握这门学科。

1. 线性规划问题线性规划是最优化中的一个重要分支,它主要研究线性约束条件下的最优解。

下面是一个线性规划问题的示例:Maximize Z = 3x + 5ySubject to:x + y ≤ 62x + y ≤ 8x, y ≥ 0首先,我们需要将目标函数和约束条件转化为标准形式。

将不等式约束转化为等式约束,引入松弛变量,得到以下标准形式:Maximize Z = 3x + 5ySubject to:x + y + s1 = 62x + y + s2 = 8x, y, s1, s2 ≥ 0接下来,我们可以使用单纯形法求解该线性规划问题。

根据单纯形法的步骤,我们可以得到最优解为 Z = 22,x = 2,y = 4,s1 = 0,s2 = 0。

2. 非线性规划问题除了线性规划,最优化还涉及到非线性规划问题。

非线性规划是指目标函数或约束条件中存在非线性项的最优化问题。

下面是一个非线性规划问题的示例:Minimize f(x) = x^2 + 3x + 5Subject to:x ≥ 0对于这个问题,我们可以使用求导的方法来找到最优解。

首先,求目标函数的导数:f'(x) = 2x + 3将导数等于零,解得 x = -1.5。

由于约束条件x ≥ 0,所以最优解为 x = 0。

3. 整数规划问题整数规划是指在最优化问题中,决策变量必须取整数值的情况。

下面是一个整数规划问题的示例:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 10x, y ≥ 0x, y 为整数对于这个问题,我们可以使用分支定界法来求解。

最优化方法Lecture3_单纯形法1

最优化方法Lecture3_单纯形法1

cB 0 0 4
xB x3 x4 x1 T B1b 7 6 3T , xN x2 x5 T 0
f1 cB B1b 12, w cB B1 0 0 4
z2 c2 wP2 c2 4 z5 c5 wP5 c5 4 最大判别数是z2 c2, x2是进基变量。计算
xk
min
bi yik
|
yik
0
br yrk
0
则得新解 x x1, , xr1, 0, xr1, , xm , 0, , xk , 0, , 0T

f x f
x0
zk
ck
br yrk
f
x0
.
旧基为 P1, , Pr , , Pm 新基为 P1, , Pk , , Pm
xr 为离基变量 xk 为进基变量。
2 s.t.
BxB NxN b
xB B1b B1NxN
xB , xN 0
min
3 s.t.
f x cB B1b B1NxN cN xN
xB B1NxN B1b
1 等价于
xB , xN 0
min f x
4
s.t.
0 f x Im xB
B1NxN B1b
f x 0xB cB B1N cN xN cB B1b
y2 B1P2 1 5 1T , 而b B1b 7 6 3T
br yr1
min
b1 y12
,
b2 y22
min
7
1
,
6 5
6 5
b2 y22
x4为离基变量,用P2代替P4得到新基。
1 2 1 0 0
A P1
P2
P3
P4

最优化方法 第二版 孙文瑜 部分课后答案

最优化方法 第二版 孙文瑜 部分课后答案

T = {x|f (x) α}
为函数 f (x) 关于实数 α 的水平集. 证明对任意实数 α,集合 T 是凸集. 证: 对于 ∀x1, x2 ∈ T ,根据 T 的定义则有 f (x1) α, f (x2) α. 由于 D 是凸集,则对于 ∀λ ∈ [0, 1],必 有
λx1 + (1 − λ)x2 ∈ D 又由于 f (x) 是 D 上的凸函数,则有
11 − ,−
T
是否是可行点? 如果是可行点,是内点还是边界点? 是哪个约束的边界点?
22
解: 画出可行域 F,图如下
T

x2
1 x2 x1 0
x1 x12 x22 1
则 x(1) 是可行点,是 1 − x2 + x1 0 的边界点; x(2) 不是可行点;
x(3) 是可行点,是 x21 + x22 1 和 1 − x2 + x1 x(4) 是可行点,是 x1 0 的边界点; x(5) 是可行点,也是内点.
Ax 0, x 0, bTx > 0; ATy = b, y 0.
证: 先给这个系统标号:
Ax 0, x 0, bTx > 0; (1) ATy = b, y 0; (2)
要证 (1)(2) 中有且仅有一组解,即证 (1) 有解 ⇐⇒ (2) 无解。 先证充分性:若 (1) 有解,则说明 ∃x¯ 0 使得 Ax¯ 0, bTx¯ > 0. 用反证法证明 (2) 无解,若在 (1) 的条 件下,(2) 有解,则 ∃y¯ 0 使得 ATy¯ = b,即 y¯TA = bT,两边同时右乘 x¯,则有
λx1 + (1 − λ)y1 − λx2 − (1 − λ)y2 = λ(x1 − x2) + (1 − λ)(y1 − y2) 0

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题1、设n n A R ⨯∈是对称矩阵,,n b R c R ∈∈,求1()2TT f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵.解 2(),()f x Ax b f x A ∇=+∇=.2、设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ϕ''. 解 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+.3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令()()()()()T TT Tdd f x f x H I d f x f x f x ∇∇=--∇∇∇, 其中I 为单位矩阵,证明方向()p H f x =-∇也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ∇<,从而()()()T T f x p f x H f x ∇=-∇∇()()()()()()()()T TTT T dd f x f x f x I f x d f x f x f x ∇∇=-∇--∇∇∇∇()()()0T T f x f x f x d =-∇∇+∇<,所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ⊆是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ∀≥∀∈的一切凸组合都属于S .证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令11k i i i x x λ+==∑,其中,0,1,2,,1i i x S i k λ∈≥=+,且111k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈,结论成立),记111kii i k y x λλ=+=-∑,有111(1)k k k x y x λλ+++=-+,又1110,1,2,,,111kiii k k i k λλλλ=++≥==--∑,则由归纳假设知,y S ∈,而1k x S +∈,且S 是凸集,故x S ∈.5、设n R S ⊆为非空开凸集,R S f →:在S 上可微,证明:f 为S 上的凸函数的充要条件是2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.证明 必要性.设f 是S 上的凸函数,则12,x x S ∀∈及(0,1)λ∈,有2121((1))()(1)()f x x f x f x λλλλ+-≤+-,于是121121(())()()()f x x x f x f x f x λλ+--≤-,因S 为开集,f 在S 上可微,故令0λ+→,得12121()()()()T f x x x f x f x ∇-≤-,即2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈.充分性.若有2112112()()()(),,T f x f x f x x x x x S ≥+∇-∀∈, 则[0,1]λ∀∈,取12(1)x x x S λλ=+-∈,从而11()()()()T f x f x f x x x ≥+∇-,22()()()()T f x f x f x x x ≥+∇-,将上述两式分别乘以λ和1λ-后,相加得1212()(1)()()()((1))T f x f x f x f x x x x λλλλ+-≥+∇+--12()((1))f x f x x λλ==+-,所以f 为凸函数.6、证明:凸规划min ()x Sf x ∈的任意局部最优解必是全局最优解.证明 用反证法.设x S ∈为凸规划问题min ()x Sf x ∈的局部最优解,即存在x 的某个δ邻域()N x δ,使()(),()f x f x x N x S δ≤∀∈.若x 不是全局最优解,则存在x S ∈,使()()f x f x <.由于()f x 为S 上的凸函数,因此(0,1)λ∀∈,有((1))()(1)()()f x x f x f x f x λλλλ+-≤+-<.当λ充分接近1时,可使(1)()x x N x S δλλ+-∈,于是()((1))f x f x x λλ≤+-,矛盾.从而x 是全局最优解.7、设n R S ⊆为非空凸集,R S f →:是具有一阶连续偏导数的凸函数,证明:x 是问题min ()x Sf x ∈的最优解的充要条件是:()()0,T f x x x x S ∇-≥∀∈.证明 必要性.若x 为问题min ()x Sf x ∈的最优解.反设存在x S ∈,使得()()0T f x x x ∇-<,则d x x =-是函数()f x 在点x 处的下降方向,这与x 为问题min ()x Sf x ∈的最优解矛盾.故()()0,T f x x x x S ∇-≥∀∈.充分性.若()()0,T f x x x x S ∇-≥∀∈.反设存在x S ∈,使得()()f x f x <.(())()((1))()f x x x f x f x x f x λλλλλ+--+--=()(1)()()()()0((0,1)f x f x f x f x f x λλλλ+--≤=-<∀,因S 为凸集,f 在S 上可微,故令0λ+→,得()()()()0T f x x x f x f x ∇-≤-<,这与已知条件矛盾,故x 是问题min ()x Sf x ∈的最优解.8、设函数()f x 具有二阶连续偏导数,k x 是()f x 的极小点的第k 次近似,利用()f x 在点k x 处的二阶Taylor 展开式推导Newton 法的迭代公式为 211[()]()k k k k x x f x f x -+=-∇∇.证明 由于()f x 具有二阶连续偏导数,故21()()()()()()()()2T T k k k k k k f x x f x f x x x x x f x x x ϕ≈=+∇-+-∇-.且2()k f x ∇是对称矩阵,因此()x ϕ是二次函数.为求()x ϕ的极小点,可令()0x ϕ∇=,即2()()()0k k k f x f x x x ∇+∇-=,若2()k f x ∇正定,则上式解出的()x ϕ的平稳点就是()x ϕ的极小点,以它作为()f x 的极小点的第1k +次近似,记为1k x +,即211[()]()k k k k x x f x f x -+=-∇∇,这就得到了Newton 法的迭代公式.9、叙述常用优化算法的迭代公式.(1)0.618法的迭代公式:(1)(),().k k k k k k k k a b a a b a λτμτ=+--⎧⎨=+-⎩(2)Fibonacci 法的迭代公式:111(),(1,2,,1)()n k kk k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+⎧=+-⎪⎪=-⎨⎪=+-⎪⎩.(3)Newton 一维搜索法的迭代公式: 1()()k k k k t t t t ϕϕ+'=-''. (4)最速下降法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()()()()()T k k k k k Tk k f x f x x x f x f x Q f x +∇∇=-∇∇∇ (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-∇∇. (6)共轭方向法用于问题1min ()2TT f x x Qx b x c =++的迭代公式: 1()T k kk k k Tk kf x d x x d d Qd +∇=-. 10、已知线性规划:123123123123123min ()2;..360,2210,20,,,0.f x x x x s t x x x x x x x x x x x x =-+⎧⎪++≤⎪⎪-+≤⎨⎪+-≤⎪⎪≥⎩(1)用单纯形法求解该线性规划问题的最优解和最优值; (2)写出线性规划的对偶问题; (3)求解对偶问题的最优解和最优值.解 (1)引进变量456,,x x x ,将给定的线性规划问题化为标准形式:123123412351236126min ()2;..360,2210,20,,,,0.f x x x x s t x x x x x x x x x x x x x x x =-+⎧⎪+++=⎪⎪-++=⎨⎪+-+=⎪⎪≥⎩所给问题的最优解为(0,20,0)T x =,最优值为20f =-. (2)所给问题的对偶问题为:123123123123123max ()601020;..32,21,21,,,0.g y y y y s t y y y y y y y y y y y y =---⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩(1) (3)将上述问题化成如下等价问题:123123123123123min ()601020;..32,21,21,,,0.h y y y y s t y y y y y y y y y y y y =++⎧⎪---≤⎪⎪-+-≤-⎨⎪--+≤⎪⎪≥⎩引进变量456,,y y y ,将上述问题化为标准形式:123123412351236126min ()601020;..32,21,21,,,,0.h y y y y s t y y y y y y y y y y y y y y y =++⎧⎪---+=⎪⎪-+-+=-⎨⎪--++=⎪⎪≥⎩ (2)问题(2)的最优解为(0,0,1)T y =,最优值为20h =(最小值). 问题(1)的最优解为(0,0,1)T y =,最优值为20g =-(最大值).11、用0.618法求解 2min ()(3)t t ϕ=-,要求缩短后的区间长度不超过0.2,初始区间取[0,10]. 解 第一次迭代: 取11[,][0,10],0.2a b ε==. 确定最初试探点11,λμ分别为11110.382() 3.82a b a λ=+-=,11110.618() 6.18a b a μ=+-=.求目标函数值:21()(3.823)0.67ϕλ=-=,21()(6.183)10.11ϕμ=-=. 比较目标函数值:11()()ϕλϕμ<. 比较11 6.1800.2a με-=->=. 第二次迭代:212121210, 6.18, 3.82,()()0.67a a b μμλϕμϕλ========.2222220.382()0.382(6.180) 2.36,()(2.363)0.4a b a λϕλ=+-=-==-=.2222()(), 3.82a ϕλϕμμε<-=>.323232320, 3.82, 2.36,()()0.4a a b μμλϕμϕλ========.2333330.382()0.382(3.820) 1.46,()(1.463) 2.37a b a λϕλ=+-=-==-=.3333()(), 3.82 1.46b ϕλϕμλε>-=->. 第四次迭代:434343431.46, 3.82, 2.36,()()0.4a b b λλμϕλϕμ========.444440.618() 1.460.0.618(3.82 1.46) 2.918,()0.0067a b a μϕμ=+-=+-==. 4444()(), 3.82 2.36b ϕλϕμλε>-=->. 第五次迭代:545454542.36, 3.82, 2.918,()()0.0067a b b λλμϕλϕμ========.555550.618() 3.262,()0.0686a b a μϕμ=+-==. 5555()(), 3.262 2.36a ϕλϕμμε<-=->. 第六次迭代:656565652.36, 3.262, 2.918,()()0.0067a a b μμλϕμϕλ========.666660.382() 2.7045,()0.087a b a λϕλ=+-==.6666()(), 3.262 2.7045b ϕλϕμλε>-=->. 第七次迭代:767676762.7045, 3.262, 2.918,()()0.0067a b b λλμϕλϕμ========.777770.618() 3.049,()0.002a b a μϕμ=+-==. 7777()(),b ϕλϕμλε>->. 第八次迭代:878787872.918, 3.262, 3.049,()()0.002a b b λλμϕλϕμ========.888880.618() 3.131,()0.017a b a μϕμ=+-==. 8888()(),a ϕλϕμμε<->.989899982.918, 3.131, 3.049,()()0.002a a b μμλϕμϕλ========.999990.382() 2.999,()0.000001a b a λϕλ=+-==. 9999()(), 3.049 2.918a ϕλϕμμε<-=-<. 故993.0242x λμ+==.12、用最速下降法求解 22112212min ()2243f x x x x x x x =++--,取(0)(1,1)T x =,迭代两次.解 1212()(224,243)T f x x x x x ∇=+-+-, 将()f x 写成1()2TT f x x Qx b x =+的形式,则224,243Q b -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭. 第一次迭代:(0)(0)(1)(0)(0)(0)(0)()()()()()T T f x f x xxf x f x Q f x ∇∇=-∇∇∇ 0(0,3)1013220131/4(0,3)243⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭. 第二次迭代:(1)(1)(2)(1)(1)(1)(1)()()()()()T T f x f x xx f x f x Q f x ∇∇=-∇∇∇ 3/2(3/2,0)13/27/40223/21/401/4(3/2,0)240-⎛⎫- ⎪-⎛⎫⎛⎫⎛⎫⎝⎭=-= ⎪ ⎪ ⎪-⎛⎫⎛⎫⎝⎭⎝⎭⎝⎭- ⎪⎪⎝⎭⎝⎭. 13、用FR 共轭梯度法求解222123123123min ()()()()f x x x x x x x x x x =-++-++++-,取(0)11(,1,)22T x =,迭代两次.若给定0.01,ε=判定是否还需进行迭代计算. 解 222123121323()3()2()f x x x x x x x x x x =++-++,再写成1()2T f x x Gx =,622262226G --⎛⎫⎪=-- ⎪ ⎪--⎝⎭,()f x Gx ∇=.第一次迭代:(0)()(0,4,0)T f x ∇=,令(0)0()(0,4,0)T d f x =-∇=-,从(0)x 出发,沿0d 进行一维搜索,即求(0)200min ()21648f x d λλλλ≥+=-+的最优解,得(1)(0)0001/6,(1/2,1/3,1/2)T x x d λλ==+=.第一次迭代:(1)()(4/3,0,4/3)T f x ∇=.2(1)02(0)()29()f x f x α∇==∇, (1)100()(4/3,8/9,4/3)T d f x d α=-∇+=---.从(1)x 出发,沿1d 进行一维搜索,即求(1)10142362214181418min ()(,,)262233923392261423f x d λλλλλλλλ≥⎛⎫- ⎪--⎛⎫ ⎪⎪⎪+=------ ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪- ⎪⎝⎭的最优解,得(2)(1)1111/24/333,1/38/9(0,0,0)881/24/3T x x d λλ-⎛⎫⎛⎫ ⎪ ⎪==+=+-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.此时(2)(2)()(0,0,0),()00.01T f x f x ε∇=∇=<=.得问题的最优解为(0,0,0)T x =,无需再进行迭代计算.14、用坐标轮换法求解 2212112min ()242f x x x x x x =+--,取(0)(1,1)T x =,迭代一步.解 从点(0)(1,1)T x =出发,沿1(1,0)T e =进行一维搜索, 即求(0)210min ()43f x e λλλλ≥+=--的最优解,得(1)(0)0012,(3,1)T x x e λλ==+=.再从点(1)x 出发,沿2(0,1)T e =进行一维搜索, 即求(1)220min ()227f x e λλλλ≥+=--的最优解,得(2)(1)1121/2,(3,3/2)T x x e λλ==+=.15、用Powell 法求解2212112min ()3f x x x x x x =+--,取(0)(0,0)T x =,初始搜索方向组01(0,1),(1,0)T T d d ==,给定允许误差0.1ε=(迭代两次). 解 第一次迭代:令(0)(0)(0,0)T y x ==,从点(0)y 出发沿0d 进行一维搜索,易得(1)(0)0000,(0,0)T y y d λλ==+=;接着从点(1)y 出发沿1d 进行一维搜索,得(2)(1)11133,(,0)22T y y d λλ==+=由此有加速方向 (2)(0)23(,0)2T d y y =-=.因为23/2d ε=>,所以要确定调整方向.由于 (0)(1)(2)9()0,()0,()4f y f y f y ===-,按(8.4.17)式有(1)(2)()(1)()()max{()()|0,1}j j f y f y f y f y j +-=-=,因此1m =,并且()(1)(1)(2)9()()()()4m m f y f y f y f y +-=-=. 又因(2)(0)(2)0f y y -=,故(8.4.18)式不成立.于是,不调整搜索方向组,并令(1)(2)3(,0)2T x y ==.第二次迭代:取(0)(1)3(,0)2T y x ==,从点(0)y 出发沿0d 作一维搜索,得(1)(0)000333,(,)424T y y d λλ==+=.接着从点(1)y 出发沿方向1d 作一维搜索,得(2)(1)1113153,(,)884Ty y d λλ==+=. 由此有加速方向(2)(0)233(,)84T d y y =-=.因为2d ε=>,所以要确定调整方向.因(0)(1)(2)945189(),(),()41664f y f y f y =-=-=-, 故按(8.4.17)式易知0m =,并且()(1)(0)(1)9()()()()16m m f y f y f y f y +-=-=. 由于(2)(0)45(2)16f y y -=-, 因此(8.4.18)式成立。

最优化方法(试题+答案)

最优化方法(试题+答案)

一、 填空题1.若()()⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=212121312112)(x x x x x x x f ,则=∇)(x f ,=∇)(2x f .2.设f 连续可微且0)(≠∇x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。

3.向量T)3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算法: .6.以下约束优化问题:)(01)(..)(min 212121≥-==+-==x x x g x x x h t s x x f的K-K-T 条件为:. 7.以下约束优化问题:1..)(min 212221=++=x x t s x x x f的外点罚函数为(取罚参数为μ) .二、证明题(7分+8分)1.设1,2,1,:m i R R g n i =→和m m i R R h ni ,1,:1+=→都是线性函数,证明下面的约束问题:},,1{,0)(},1{,0)(..)(min 1112m m E j x h m I i x g t s x x f j i nk k+=∈==∈≥=∑=是凸规划问题。

2.设R R f →2:连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题:},1{,0}2,1{,0..)(min 11m m E i b x a m I i b x a t s x f i T i i Ti +=∈=-=∈≥-设d 是问题1||||,0,0..)(min ≤∈=∈≥∇d E i d a Ii d a t s d x f Ti Ti T的解,求证:d 是f 在x 处的一个可行方向。

三、计算题(每小题12分)1.取初始点T x )1,1()0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题(迭代2步):22212)(m in x x x f +=2.采用精确搜索的BFGS 算法求解下面的无约束问题:21222121)(min x x x x x f -+=3.用有效集法求解下面的二次规划问题:.0,001..42)(min 2121212221≥≥≥+----+=x x x x t s x x x x x f4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0()0(=x,计算到)2(x 即可):.0,033..221)(min 21211222121≥≥≤+-+-=x x x x t s x x x x x x f参考答案一、填空题 1. ⎪⎪⎭⎫⎝⎛++++3421242121x x x x ⎪⎪⎭⎫⎝⎛4224 2. 0)(<∇d x f T3. T)0,1,2(-,T)1,0,3(-(答案不唯一)。

最优化方法习题答案

最优化方法习题答案

习题一1.1利用图解法求下列线性规划问题: (1)21x x z max +=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 5x 2x 2x x 3.t .s 212121 解:根据条件,可行域为下面图形中的阴影部分,,有图形可知,原问题在A 点取得最优值,最优值z=5(2)21x 6x z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+-≤+0x ,x 7x x 1x x 2.t .s 212121 解:图中阴影部分表示可行域,由图可知原问题在点A 处取得最优值,最优值z=-6.(3)21x 2x 3z max +=⎪⎪⎩⎪⎪⎨⎧≥-≥-≤+-0x ,x 4x 2x 1x x .t .s 212121 解:如图所示,可行域为图中阴影部分,易得原线性规划问题为无界解。

(4)21x 5x 2z min -=⎪⎪⎩⎪⎪⎨⎧≥≤+≥+0x ,x 2x x 6x 2x .t .s 212121 解:由图可知该线性规划可行域为空,则原问题无可行解。

1.2 对下列线性规划问题,找出所有的基解,基可行解,并求出最优解和最优值。

(1)4321x 6x 3x 2x 5z min -+-=⎪⎪⎩⎪⎪⎨⎧≥=+++=+++0x ,x ,x ,x 3x 2x x x 27x 4x 3x 2x .t .s 432143214321 解:易知1x 的系数列向量⎪⎪⎭⎫ ⎝⎛=21p 1,2x 的系数列向量⎪⎪⎭⎫ ⎝⎛=12p 2,3x 的系数列向量⎪⎪⎭⎫⎝⎛=13p 3,4x 的系数列向量⎪⎪⎭⎫⎝⎛=24p 4。

①因为21p ,p 线性无关,故有⎪⎩⎪⎨⎧--=+--=+43214321x 2x 3x x 2x 4x 37x 2x ,令非基变量为0x x 43==,得⎪⎪⎩⎪⎪⎨⎧=-=311x 31x 21,所以得到一个基解)0,0,311,31(x )1(-=是非基可行解; ②因为31p ,p 线性无关,可得基解)0,511,0,52(x)2(=,543z 2=;③因为41p ,p 线性无关,可得基解611,0,0,31(x )3(-=,是非基可行解;④因为32p ,p 线性无关,可得基解)0,1,2,0(x )4(=,1z 4-=;⑤因为42p ,p 线性相关,42x ,x 不能构成基变量; ⑥因为43p ,p 线性无关,可得基解)1,1,0,0(x )6(=,3z 6-=;所以)6()4()2(x ,x ,x是原问题的基可行解,)6(x 是最优解,最优值是3z -=。

最优化基础理论与方法第二版答案

最优化基础理论与方法第二版答案

最优化基础理论与方法第二版答案
1.什么是最优化?
答:最优化是指从其中一种分析角度,通过确定目标,对已知的约束
条件,有效地分配资源,及早达到最优状态。

2.什么是约束条件?
答:约束条件是指有其中一种特定要求,必须满足一定的范围,方可
实现目标。

3.什么是对偶最佳化?
答:对偶最优化是指通过构建一个对偶函数来求解最优化问题的方法。

4.什么是凸优化?
答:凸优化是指求解连续函数的最优解时,对可行解所表示的约束集
合是一个凸集的一种最优化方法。

5.什么是线性规划?
答:线性规划是指求解一个或多个变量与多个约束条件之间关系的一
种规划方法,其中的目标函数及约束条件均可以用线性表达式表示。

6.什么是随机最优化?
答:随机最优化是指利用随机数学方法求解类优化问题的方法,因为
其优化问题的特殊性,通常不是算法专家所专注的领域。

7.什么是梯度优化?
答:梯度优化是一种利用梯度的方法来最优解的过程。

8.什么是动态规划?
答:动态规划是一种求解最优化问题的一种数学方法,它利用组合优选的思想,把复杂的最优化问题化解为若干子问题,优化问题的一个子问题里面包含优化问题的最优解。

9.什么是最优化算法?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学规划基础
部分习题参考解答
刘红英 编
北京航空航天大学数学与系统科学学院 2015 年 5 月
内容简介
本书是《数学规划基础》(刘红英,夏勇,周水生,北京航空航天大学出版社,2012.10)的 配套教学辅导材料,较详细地给出了该教材各章后部分习题的参考解答.
前言
本习题解答自 2008 年春季开始编写,当时由硕士研究生阎凤玉提供部分习题解答, 经讨论和确认后,由作者首次录入排版. 后来陆续参加习题解答修订的硕士研究生包括王 浩、欧林鑫、朱丽媛、易彩霞和杨茜,其中的数值结果由欧林鑫提供. 作者在此向他们的 辛勤劳动表示衷心的感谢.
本解答得到了?项目的资助,在此表示感谢. 由于这些参考解答尚未经过特别严格的校对,仅供参考. 任何意见、建议或其它反馈 都可以发送至liuhongying@,在此深表感谢.
刘红英 2015.5 于北京
目录
第一章 引言
1
第二章 线性规划: 基本理论与方法
3
第三章 线性规划:应用及扩展
maximize 200x + 60y + 206z
subject to 3x + y + 5z ≤ 8000000
5x + y + 3z ≤ 5000000
x, y, z ≥ 0, 且 x, y, z 是整数.
忽略掉整性要求后,调用 Matlab 中的 linprog.m 函数求解,得最优解 x = 0, y = 500000, z = 1500000,自动满足整性要求.
(x)(∇ri
(x))T
2A(x)T A(x).
1.6 考虑向量值函数 f (x) : Rn → Rm ,设 f 的每个分量函数 fi(x) 在 x′ 都可微. 写出 f 在 x′ 的Taylor展式,请用 A(x)T 表示 ∇f (x)T (= [∇f1(x), · · · , ∇fm(x)]).
pT g′ = ∥pT ∥2∥g′∥2 cos θ ≤ ∥pT ∥2∥g′∥2 = ∥g′∥2,
解: 设下个月利用第一个过程生产x次, 第二个过程生产y次, 第三个过程生产z次. 则 利润为
f (x, y, z) = (38 × 4 + 33 × 3 − 51)x + (38 + 33 − 11)y + (38 × 3 + 33 × 4 − 40)z = 200x + 60y + 206z
其数学模型为
写成向量形式,即
f (x) = f (x′) + A(x′)(x − x′) + o(∥x − x′∥),
(1.1)
这里 o(∥x − x′∥) 表示
f (x) − f (x′) − A(x′)(x − x′)
lim
x→x′
∥x − x′∥
= 0.
这里的式(1.1)即为 f 在 x′ 的Taylor展式,其中的矩阵 A(x) 称为雅可比(Jacob)矩阵, 它的第 i 行为 fi(x) 在 x 处的梯度向量的转置.
1.7 假设在点 x′ 有 g′ ̸= 0,证明在所有单位向量 pT p = 1 中,函数沿方向向量 p = g′/∥g′∥2 的斜率最大. 称该方向是函数的最速上升(steepest ascent)方向.
证:记 g′ = ∇f (x′) . 因为函数可微,由方向导数与梯度的关系知函数沿方向 p 的方 向导数,即斜率为 pT g′ . 设 θ 为方向向量 p 与梯度向量 g′ 的夹角,则由向量夹角 的定义和 ∥p∥2 = 1 ,有
(c)
1 2
xT
Ax

bT
x:
A 是对称的常矩阵,b 是常向量;
(d) r(x)T r(x): r(x) = (r1(x), · · · , rm(x))T 是依赖于 x 的 m 维向量,记 ∇rT 为 AT ,
它一般不是常量.
1
2
第一章 引言
解:
(a) ∇f (x) = a, ∇2f (x) = 0n×n; (b) ∇f (x) = (A + AT )x, ∇2f (x) = A + AT ;
(c) ∇f (x) = Ax − b, ∇2f (x) = A;
(d)
f (x)
=
∑m
i=1
ri2(x),
∇f
(x)
=
2
∑m
i=1
ri(x
= =
2 2
∑m ∑mi=1
i=1
ri(x)∇2ri(x) ri(x)∇2ri(x)
+ +
2
∑n
i=1
∇ri
解: 为了具体,考虑 m = 2, n = 3 给出,再表示成一般形式. 此时
(
)(
)
f (x) = f1(x) = f1(x1, x2, x3) .
f2(x)
f2(x1, x2, x3)
因为函数 f1(x) 和 f2(x) 可微,则由多元函数的Taylor展式,有
fi(x) = fi(x′) + ∇fi(x′)T (x − x′) + o(∥x − x′∥), i = 1, 2.
1.3 利用图解法和优化软件两种方法求解下列问题
minimize subject to
(x1 − 2)2 + (x2 − 1)2 x21 − x2 ≤ 0, x1 + x2 ≤ 2.
1.4 确定下列 n 元函数的梯度向量和 Hessian 阵:
(a) aT x: a 是常向量;
(b) xT Ax: A 是非对称的常矩阵;
输入原油A 输入原油B 输出汽油 输出燃料油 成本(单位:元)
过程1 3 5 4 3 51
过程2 1 1 1 1 11
过程3 5 3 3 4 40
除成本外,所有的量均以桶为单位. 例如,对于第一个过程而言,利用 3 桶原油 A 和 5 桶原油 B 可以生产 4 桶汽油和 3 桶民用燃料油,成本为 51 元. 表格中的成本指总 的成本(即原油成本和生产过程的成本). 将此问题建模成线性规划,其能使管理者极 大化下个月的净利润. 请利用Lingo,Cplex或Matlab在计算机上求解此问题.
23
第四章 无约束优化:基础
27
第六章 无约束优化:线搜索法
31
第六章 无约束优化:信赖域法
37
5
第一章 引言
1.2 (该练习的目的是提高你的建模技巧,同时熟悉利用计算机求解线性优化问题) 一个 原油精练场有 8 百万桶原油 A 和 5 百万桶原油 B 用以安排下个月的生产. 可用这些 资源来生产售价为 38 元/桶的汽油,或者生产售价为 33 元/桶的民用燃料油. 有三种 生产过程可供选择,各自的生产参数如下:
相关文档
最新文档