初中数学数学第五章 相交线与平行线的专项培优练习题(及答案

合集下载

第五章相交线与平行线单元试卷(培优篇)(Word版 含解析)

第五章相交线与平行线单元试卷(培优篇)(Word版 含解析)
【详解】
解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,
根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,
故△ABC的面积等于△PBC的面积.
故选D.
【点睛】
本题考查平行线之间的距离;三角形的面积.
2.A
解析:A
【分析】
根据两直线平行,内错角相等、同旁内角互补逐一判断可得.
(1)求a、b的值;
(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
请把下面的证明过程补充完整:
证明:过点E作EF∥AB,
∵AB∥DC(已知),EF∥AB(辅助线的作法),
∴EF∥DC()
∴∠C=∠CEF.()
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C=(等量代换)
即∠B+∠C=∠BEC.
(2)拓展探究
如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.
27.如图1.已知直线 .点 为 , 内部的一个动点,连接 , ,作 的平分线交直线 于点 ,作 的平分线交直线 于点 , 和 交于点 .
(1)若 ,猜想 和 的位置关系,并证明;
(2)如图2,在(1)的基础上连接 ,则在点 的运动过程中,当满足 且 时,求 的度数.
28.如图1,直线 与直线 交于点 , .小明将一个含 的直角三角板 如图1所示放置,使顶点 落在直线 上,过点 作直线 交直线 于点 (点 在 左侧).

八年级数学第五章相交线与平行线单元测试卷(培优篇)(Word版 含解析)

八年级数学第五章相交线与平行线单元测试卷(培优篇)(Word版 含解析)

八年级数学第五章相交线与平行线单元测试卷(培优篇)(Word 版 含解析)一、选择题1.下列各命题中,原命题成立,而它逆命题不成立的是( ) A .平行四边形的两组对边分别平行 B .矩形的对角线相等 C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和2.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角 ③∠1=∠4 ④∠4+∠5=180° 其中,正确的是( )A .①③B .②④C .②③D .③④3.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180° 4.如果A ∠与B 的两边分别平行,A ∠比B 的3倍少36,则A ∠的度数是( ) A .18B .126C .18或126D .以上都不对5.如图,五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为( )A .180°B .270°C .360°D .450°6.如图,直线a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=60°,则∠2的度数为( )A .45°B .35°C .30°D .25°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③8.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.102°B.108°C.124°D.128°9.两条平行线被第三条直线所截,则下列说法错误的是()A.一对邻补角的平分线互相垂直 B.一对同位角的平分线互相平行C.一对内错角的平分线互相平行 D.一对同旁内角的平分线互相平行10.如图,将ABC沿BC的方向平移1cm得到DEF,若ABC的周长为6cm,则四边形ABFD的周长为()A.6cm B.8cm C.10cm D.12cm⊥于点B,在直线l上取一点C,连接11.如图,A是直线l外一点,过点A作AB l=,P在线段BC上,连接AP.若3AC,使2AC ABAB=,则线段AP的长不可能是()A.4B.5C.2D.5.512.在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相垂直二、填空题13.如图,已知AD //BC ,BD 平分∠ABC ,∠A =112°,且BD ⊥CD ,则∠ADC =_____.14.如图,在△ABC 中,6BC cm =,将△ABC 以每秒2cm 的速度沿BC 所在直线向右平移,所得图形对应为△DEF ,设平移时间为t 秒,若要使2AD CE =成立,则t 的值为_____秒.15.已知:如图放置的长方形ABCD 和等腰直角三角形EFG 中,∠F=90°,FE=FG=4cm ,AB=2cm ,AD=4cm ,且点F ,G ,D ,C 在同一直线上,点G 和点D 重合.现将△EFG 沿射线FC 向右平移,当点F 和点C 重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm 2,则△EFG 向右平移了____cm .16.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB =12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是_______.17.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.18.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.19.如图,AC ⊥AB ,AC ⊥CD ,垂足分别是点A 、C ,如果∠CDB=130°,那么直线AB 与BD 的夹角是________度.20.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.三、解答题21.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________. 问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.22.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由. 23.已知AB ∥CD(1)如图1,求证:∠ABE +∠DCE -∠BEC =180°(2)如图2,∠DCE 的平分线CG 的反向延长线交∠ABE 的平分线BF 于F①若BF ∥CE ,∠BEC =26°,求∠BFC②若∠BFC -∠BEC =74°,则∠BEC =________°24.如图,直线MN ∥GH ,直线l 1分别交直线MN 、GH 于A 、B 两点,直线l 2分别交直线MN 、GH 于C 、D 两点,且直线l 1、l 2交于点E ,点P 是直线l 2上不同于C 、D 、E 点的动点.(1)如图①,当点P 在线段CE 上时,请直写出∠NAP 、∠HBP 、∠APB 之间的数量关系: ;(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 .25.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由. 26.如图1,AB//CD ,在AB 、CD 内有一条折线EPF . (1)求证:AEP CFP EPF ∠∠∠+=.(2)如图2,已知BEP ∠的平分线与DFP ∠的平分线相交于点Q ,试探索EPF ∠与EQF ∠之间的关系;(3)如图3,已知BEQ ∠=1BEP 3∠,1DFQ DFP 3∠∠=,则P ∠与Q ∠有什么关系,请说明理由.27.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点. (1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明; (2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.28.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项. 【详解】解:A 、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B 、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C 、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D 、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意; 故选:B . 【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.2.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.3.A解析:A【分析】运用平行线的判定方法进行判定即可.【详解】解:选项A中,∠1=∠2,只可以判定AC//BD(内错角相等,两直线平行),所以A错误;选项B中,∠3=∠4,可以判定AB//CD(内错角相等,两直线平行),所以正确;选项C中,∠5=∠B,AB//CD(内错角相等,两直线平行),所以正确;选项D中,∠B +∠BDC=180°,可以判定AB//CD(同旁内角互补,两直线平行),所以正确;故答案为A.【点睛】本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.4.C解析:C【分析】由∠A与∠B的两边分别平行,即可得∠A与∠B相等或互补,然后分两种情况,分别从∠A与∠B相等或互补去分析,即可求得∠A的度数.【详解】解:∵∠A与∠B的两边分别平行,∴∠A与∠B相等或互补.分两种情况:①如图1,当∠A+∠B=180°时,∠A=3∠B-36°,解得:∠A=126°;②如图2,当∠A=∠B,∠A=3∠B-36°,解得:∠A=18°.所以∠A=18°或126°.故选:C.【点睛】此题考查的是平行线的性质,如果两角的两边分别平行,则这两个角相等或互补.此题还考查了方程组的解法.解题要注意列出准确的方程组.5.C解析:C【分析】首先过点D作DF∥AE,交AB于点F,由AE∥BC,可证得AE∥DF∥BC,然后由两直线平行,同旁内角互补,证得∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,继而证得结论.【详解】过点D作DF∥AE,交AB于点F,∵AE∥BC,∴AE∥DF∥BC,∴∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,∴∠C+∠CDE+∠E=360°,故选C.【点睛】本题考查了平行线的性质,解题时掌握辅助线的作法,注意数形结合思想的应用.6.C解析:C【分析】由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.【详解】【解答】解:∵a∥b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.【点睛】本题考查了根据平行线的性质求角的度数,利用直角转化角是一种比较常见的方法,在一条直线上,3个角共顶点,且有一个角为直角,则另两个角的和为90°.7.C解析:C【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行;同位角相等,两直线平行.8.A解析:A【解析】【分析】先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE,∠CFE=∠CFG-∠EFG即可.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠BFE=∠DEF=26°,∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,故选:A.【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.9.D解析:D【解析】试题分析:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误;故选:D.10.B解析:B【分析】先根据平移的性质得出AD=1,BF=BC+CF=BC+1,DF=AC,再根据四边形ABFD的周长=AD+AB+BF+DF即可得出结论.【详解】∵将周长为6的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=6,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=8.故选:B.【点睛】本题考查了平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.11.C解析:C【分析】根据题意计算出AC的长度,由垂线段最短得出AP的范围,选出AP的长度不可能的选项即可.【详解】3AB=,∴==,26AC AB cm结合垂线段最短,得:36AP ≤≤. 故选:C . 【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.12.B解析:B 【分析】分别利用对顶角的性质以及平行线的性质和推论进而判断得出即可. 【详解】解:A 、相等的角不一定是对顶角,故此选项错误; B 、平行于同一条直线的两条直线互相平行,正确; C 、两直线平行,同旁内角互补,故此选项错误;D 、垂直于同一条直线的两条直线互相平行,故此选项错误. 故选B . 【点睛】此题主要考查了命题与定理,熟练掌握平行线的性质与判定是解题关键.二、填空题13.124° 【分析】先由平行线的性质求得∠ABC,然后根据角平分线的定义求得∠DBC,然后再根据平行线的性质求得∠ADB,最后结合BD⊥CD 即可求得∠ADC. 【详解】 解:∵AD//BC ∴∠AB解析:124° 【分析】先由平行线的性质求得∠ABC ,然后根据角平分线的定义求得∠DBC ,然后再根据平行线的性质求得∠ADB ,最后结合BD ⊥CD 即可求得∠ADC . 【详解】 解:∵AD //BC∴∠ABC=180°-∠A=180°-112°=68°, ∵BD 平分∠ABC , ∴∠DBC=12∠ABC=34° ∵AD //BC∴∠ADB=∠DBC=34°∵BD⊥CD,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=90°+34°=124°.故答案为124°.【点睛】本题考查了平行线的性质、角平分线的性质、垂直的性质,其中掌握平行线的性质是解答本题的关键.14.2或6.【解析】【分析】分两种情况:(1)当点E在C的左边时;(2)当点E在C的右边时.画出相应的图形,根据平移的性质,可得AD=BE,再根据AD=2CE,可得方程,解方程即可求解.【详解】解析:2或6.【解析】【分析】分两种情况:(1)当点E在C的左边时;(2)当点E在C的右边时.画出相应的图形,根据平移的性质,可得AD=BE,再根据AD=2CE,可得方程,解方程即可求解.【详解】解:分两种情况:(1)当点E在C的左边时,如图根据图形可得:线段BE和AD的长度即是平移的距离,则AD=BE,设AD=2tcm,则CE=tcm,依题意有2t+t=6,解得t=2.(2)当点E在C的右边时,如图根据图形可得:线段BE和AD的长度即是平移的距离,则AD=BE ,设AD=2tcm ,则CE=tcm ,依题意有 2t-t=6, 解得t=6. 故答案为2或6. 【点睛】本题考查了平移的性质,解题的关键是理解平移的方向,由图形判断平移的方向和距离.注意分类讨论.15.3或2+ 【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG 是等腰直角三角形,重合部分为△HDG,则重合面积=DG2=4,解得DG=,而DC <,故这种情况不成立; ②如图解析:3或2+ 【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG 是等腰直角三角形,重合部分为△HDG ,则重合面积=12DG 2=4,解得DG =DC <,故这种情况不成立; ②如图2,由平移的性质得到△HDG 、△CGI 是等腰直角三角形,重合部分为梯形HDCI ,则重合面积=S △HDG -S △CGI ,把各部分面积表示出来,解方程即可;③如图3,由平移的性质得到△CGI 是等腰直角三角形,重合部分为梯形EFCI ,则重合面积=S △EFG -S △CGI ,把各部分面积表示出来,解方程即可.详解:分三种情况讨论:①如图1.∵△EFG 是等腰直角三角形,∴△HDG 是等腰直角三角形,重合部分为△HDG ,则重合面积=12DG 2=4,解得:DG =,而DC =2<,故这种情况不成立;②如图2.∵△EFG 是等腰直角三角形,∴△HDG 、△CGI 是等腰直角三角形,重合部分为梯形HDCI ,则重合面积=S △HDG -S △CGI =12DG 2-12CG 2=4,即:12DG 2-12(DG -2)2=4,解得:DG =3;③如图3.∵△EFG 是等腰直角三角形,∴△CGI 是等腰直角三角形,重合部分为梯形EFCI ,则重合面积=S △EFG -S △CGI =12EF 2-12CG 2=4,即:12×42-12(DG -2)2=4,解得:DG =2+ 或2-故答案为:3或222.点睛:本题主要考查了平移的性质以及等腰三角形的知识,解题的关键是分三种情况作出图形,并表示出重合部分的面积.16.①②③【解析】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,则①正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴解析:①②③【解析】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,则①正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+1 2(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,则②正确;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且EG⊥CG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,则③正确;④无法证明CA平分∠BCG,则④错误.故答案为①②③.17.80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80解析:80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.18.55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180解析:55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.19.50【分析】先根据平行线的判定可得,再根据平行线的性质、两直线的夹角的定义即可得.∵,, ∴, ∵, ∴,∴直线AB 与BD 的夹角是50度, 故答案为:50. 【点睛】 本题考查了平解析:50 【分析】先根据平行线的判定可得//AB CD ,再根据平行线的性质、两直线的夹角的定义即可得. 【详解】∵AC AB ⊥,AC CD ⊥, ∴//AB CD , ∵130CDB ∠=︒,∴18050ABD CDB ∠=︒-∠=︒, ∴直线AB 与BD 的夹角是50度, 故答案为:50. 【点睛】本题考查了平行线的判定与性质、两直线的夹角的定义,熟练掌握平行线的判定与性质是解题关键.20.40 【解析】根据平行线的性质,先求出∠BEF 和∠CEF 的度数,再求出它们的差就可以了. 解:∵AB∥EF, ∴∠BEF=∠ABE=70°; 又∵EF∥CD,∴∠CEF=180°-∠ECD=18解析:40 【解析】根据平行线的性质,先求出∠BEF 和∠CEF 的度数,再求出它们的差就可以了. 解:∵AB∥EF, ∴∠BEF=∠ABE=70°; 又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°, ∴∠BEC=∠BEF -∠CEF=40°;“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.三、解答题21.(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)1()2ANE αβ∠=∠+∠ 【分析】(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠.【详解】解:(1)如图1,过点P 作//PG AB ,则//PG CD ,由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=, 又∵125PBA ︒∠=,155PCD ︒∠=, ∴36012515580BPC ︒︒︒︒∠=--=, 故答案为:80︒;(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠; 过点P 作PM∥FD,则PM∥FD∥CG, ∵PM∥FD, ∴∠1=∠α, ∵PM∥CG, ∴∠2=∠β, ∴∠1+∠2=∠α+∠β, 即:APE αβ∠=∠+∠,②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由: 过P 作//PQ DF ,∵//DF CG , ∴//PQ CG ,∴QPA β∠=∠,QPE α∠=∠, ∴APE APQ EPQ βα∠=∠-∠=∠-∠; (3)如图,由①可知,∠N=∠3+∠4, ∵EN 平分∠DEP,AN 平分∠PAC, ∴∠3=12∠α,∠4=12∠β, ∴1()2ANE αβ∠=∠+∠,∴ANE ∠与α∠,β∠之间的数量关系为1()2ANE αβ∠=∠+∠. 【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.22.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC的解析式为y=12x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.【详解】解:(1)由题意知:a=−b,a−b+4=0,解得:a=−2,b=2,∴ A(−2,0),B(2,0),C(2,2),∴S△ABC=1AB BC=4 2;(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=12×90°=45°;(3)存在.理由如下:设P点坐标为(0,t),直线AC的解析式为y=kx+b,把A(−2,0)、C(2,2)代入得:-2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =12x +1, ∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1, ∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.23.(1)详见解析;(2)①103°;②32°【分析】(1)过E 作EF ∥AB ,根据平行线的性质可求∠B=∠BEF ,∠C+∠CEF=180°,进而可证明结论;(2)①易求∠ABE=52°,根据(1)的结论可求解∠DCE=154°,根据角平分线的定义可得∠DCG=77°,过点F 作FN ∥AB ,结合平行线的性质利用∠BFC=∠BFN+∠NFC 可求解; ②根据平行线的性质即角平分线的定义可求解∠BFC=∠FCE=180°-∠ECG=180°-(90°12-∠BEC )=90°+12∠BEC ,结合已知条件∠BFC-∠BEC=74°可求解∠BEC 的度数. 【详解】 (1)证明:如图1,过E 作EF ∥AB ,∵AB ∥CD ,∴DC ∥EF ,∴∠B=∠BEF ,∠C+∠CEF=180°,∴∠C+∠B-∠BEC=180°,即:∠ABE+∠DCE-∠BEC=180°;(2)解:①∵FB ∥CE ,∴∠FBE=∠BEC=26°,∵BF平分∠ABE,∴∠ABE=2∠FBE=52°,由(1)得:∠DCE=180°-∠ABE+∠BEC=180°-52°+26°=154°,∵CG平分∠ECD,∴∠DCG=77°,过点F作FN∥AB,如图2,∵AB∥CD,∴FN∥CD,∴∠BFN=∠ABF=26°,∠NFC=∠DCG=77°,∴∠BFC=∠BFN+∠NFC=103°;②∵BF∥CE,∴∠BFC=∠ECF,∠FBE=∠BEC,∵BF平分∠ABE,∴∠ABE=2∠FBE=2∠BEC,由(1)知:∠ABE+∠DCE-∠BEC=180°,∴2∠BEC+∠DCE-∠BEC=180°,∴∠DCE=180°-∠BEC,∵CG平分∠DCE,∴∠ECG=12∠DCE=12(180°-∠BEC)=90°-12∠BEC,∴∠BFC=∠FCE=180°-∠ECG=180°-(90°-12∠BEC)=90°+12∠BEC,∵∠BFC-∠BEC=74°,∴∠BFC=74°+∠BEC,即74°+∠BEC=90°+12∠BEC,解得∠BEC=32°.故答案为:32°.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.24.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ =∠NAP ,∠BPQ =∠HBP ,∵∠APB =∠APQ +∠BPQ ,∴∠APB =∠NAP +∠HBP ,故答案为:∠APB =∠NAP+∠HBP ;(2)如图②,过P 点作PQ ∥GH ,∵MN ∥GH ,∴MN ∥PQ ∥GH ,∴∠APQ +∠NAP =180°,∠BPQ +∠HBP =180°,∵∠APB =∠APQ +∠BPQ ,∴∠APB =(180°﹣∠NAP )+(180°﹣∠HBP )=360°﹣(∠NAP +∠HBP ); (3)如备用图,∵MN ∥GH ,∴∠PEN =∠HBP ,∵∠PEN =∠NAP +∠APB ,∴∠HBP =∠NAP +∠APB.故答案为:∠HBP =∠NAP +∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.25.(1)详见解析;(2)HPQ ∠的大小不发生变化,一直是45︒.【分析】(1)利用平行线的性质推知180BEF EFD ∠+∠=︒;然后根据角平分线的性质、三角形内角和定理证得90EPF ∠=︒,即EG PF ⊥,故结合已知条件GH EG ⊥,易证//PF GH ;(2)利用三角形外角定理、三角形内角和定理求得49039022∠=︒-∠=︒-∠;然后由邻补角的定义、角平分线的定义推知14522QPK EPK ∠=∠=︒+∠;最后根据图形中的角与角间的和差关系求得HPQ ∠的大小不变,是定值45︒.解:(1)证明:如图1,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P , 1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥.GH EG ⊥,//PF GH ∴;(2)HPQ ∠的大小不发生变化,理由如下:如图2,12∠=∠, 322∠=∠∴. 又GH EG ⊥,49039022∠=︒-∠=︒-∠∴.18049022EPK ∠=︒-∠=︒+∠∴.PQ ∵平分EPK ∠,14522QPK EPK ∴∠=∠=︒+∠. ∴245HPQ QPK ∠=∠-∠=︒,∴HPQ ∠的大小不发生变化,一直是45︒.本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.26.(1)见解析;(2)∠EPF +2∠EQF =360°;(3)∠P +3∠Q =360°.【分析】(1)首先过点P 作PG ∥AB ,然后根据AB ∥CD ,PG ∥CD ,可得∠AEP =∠1,∠CFP =∠2,据此判断出∠AEP +∠CFP =∠EPF 即可.(2)首先由(1),可得∠EPF =∠AEP +CFP ,∠EQF =∠BEQ +∠DFQ ;然后根据∠BEP 的平分线与∠DFP 的平分线相交于点Q ,推得∠EQF =1(360)2EPF ⨯︒-∠,即可判断出∠EPF +2∠EQF =360°.(3)首先由(1),可得∠P =∠AEP +CFP ,∠Q =∠BEQ +∠DFQ ;然后根据∠BEQ =13∠BEP ,∠DFQ =13∠DFP ,推得∠Q =13×(360°﹣∠P ),即可判断出∠P +3∠Q =360°.【详解】(1)证明:如图1,过点P 作PG ∥AB ,∵AB ∥CD ,∴PG ∥CD ,∴∠AEP =∠1,∠CFP =∠2,又∵∠1+∠2=∠EPF ,∴∠AEP +∠CFP =∠EPF .(2)如图2,,由(1),可得∠EPF =∠AEP +CFP ,∠EQF =∠BEQ +∠DFQ ,∵∠BEP 的平分线与∠DFP 的平分线相交于点Q ,∴∠EQF =∠BEQ +∠DFQ=12(∠BEP+∠DFP)=1[360()] 2AEP CFP︒-∠+∠=1(360)2EPF⨯︒-∠,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=13∠BEP,∠DFQ=13∠DFP,∴∠Q=∠BEQ+∠DFQ=13(∠BEP+∠DFP)=13[360°﹣(∠AEP+∠CFP)]=13×(360°﹣∠P),∴∠P+3∠Q=360°.【点睛】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.27.(1)∠A+∠C+∠APC=360°,证明详见解析;(2)∠APC=∠A−∠C,证明详见解析;(3)55°.【分析】(1)首先过点P作PQ∥AB,结合题意得出AB∥PQ∥CD,然后由“两直线平行,同旁内角互补”进一步分析即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,结合题意得出AB∥PQ∥CD,根据“两直线平行,内错角相等”进一步分析即可证得∠APC=∠A−∠C;(3)由(2)知,∠APC=∠PAB−∠PCD,先利用平行线性质得出∠BEF=∠PQB=110°,然后进一步得出∠PEG=12∠FEG,∠GEH=12∠BEG,最后根据∠PEH=∠PEG−∠GEH即可得出答案.【详解】(1)∠A+∠C+∠APC=360°,证明如下:如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,又∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A−∠C,证明如下:如图2所示,过点P作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ−∠CPQ,∴∠APC=∠A−∠C;(3)由(2)知,∠APC=∠PAB−∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥PC,∴∠BEF =∠PQB =110°,∵∠PEG =∠PEF ,∴∠PEG =12∠FEG , ∵EH 平分∠BEG , ∴∠GEH =12∠BEG , ∴∠PEH =∠PEG −∠GEH=12∠FEG −12∠BEG =12∠BEF =55°.【点睛】本题主要考查了利用平行线性质与角平分线性质求角度的综合运用,熟练掌握相关概念是解题关键.28.(1)证明见解析;(2)证明见解析;(3)∠A=72°.【分析】(1)根据题意过点A 作平行线AD//MN ,证出三条直线互相平行并由平行得出与ACM ∠和ABP ∠相等的角即可得出结论;(2)由题意利用垂直线定义以及三角形内角和为180°进行分析即可证得A ECN ∠=∠; (3)根据题意设MCA ACE ECD x ∠=∠=∠=,由(1)列出关系式2702CFB x ∠=︒-和11352CGB x ∠=︒-,解出方程进而得出结论. 【详解】证明:(1)过点A 作平行线AD//MN ,∵AD//MN ,//MN PQ ,∴AD//MN//PQ,∴,MCA DAC PBA DAB ∠=∠∠=∠,∴A DAC DAB MCA PBA ∠=∠+∠=∠+∠.(2)∵//CD AB∴180A ACD ∠+∠=︒∵180ECM ECN ∠+∠=︒又ECM ACD ∠=∠∴A ECN ∠=∠(3)证得MCA ACE ECD ∠=∠=∠ ABP NCD ∠=∠设MCA ACE ECD x ∠=∠=∠=由(1)可知CFB FCN FBQ ∠=∠+∠列出关系式2702CFB x ∠=︒-由(1)可知CGB MCG GBP ∠=∠+∠ 列出关系式11352CGB x ∠=︒- 312702(135)22x x -=︒- 解得:54x =︒结论:72A ∠=︒【点睛】本题考查平行线的性质与判定,结合平行线的性质与判定运用数形结合思维分析是解题的关键.。

第5章 相交线与平行线 人教版七年级数学下册过关测试培优卷(含答案)

第5章 相交线与平行线 人教版七年级数学下册过关测试培优卷(含答案)

第五章 相交线与平行线(培优卷)考试时间:120分钟 满分:120分一、单选题(每小题3分,共18分)1.已知三角形ABC ,过AC 的中点D 作AB 的平行线,根据语句作图正确的是( )A .B .C .D .【答案】B 【分析】根据中点的定义,平行线的定义判断即可.【详解】解:过AC 的中点D 作AB 的平行线,正确的图形是选项B ,故选:B .【点睛】本题考查作图——复杂作图,平行线的定义,中点的定义等知识,解题关键是理解题意,灵活运用所学知识解决问题.2.如图,直线,被所截得的同旁内角为,,要使,只要使( )A .B .C .D .,【答案】C 【分析】由同旁内角互补两直线平行即可判定出,变形后即可得到正确的选项.【详解】解:当,即时,,故C 正确.故选:C .【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.3.在同一平面内,两条直线的位置关系可能是( )A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【答案】C【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.4.(2021·安徽·统考中考真题)设a,b,c为互不相等的实数,且,则下列结论正确的是()A.B.C.D.【答案】D【分析】举反例可判断A和B,将式子整理可判断C和D.【详解】解:A.当,,时,,故A错误;B.当,,时,,故B错误;C.整理可得,故C错误;D.整理可得,故D正确;故选:D.【点睛】本题考查等式的性质,掌握等式的性质是解题的关键.5.已知直线a、b、c在同一平面内,则下列说法错误的是( )A.如果a∥b,b∥c,那么a∥cB.a⊥b,c⊥b,那么a∥cC.如果a与b相交,b与c相交,那么a与c一定相交D.如果a与b相交,b与c不相交,那么a与c一定相交【答案】C【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行,同一平面内,垂直于同一条直线的两直线平行进行分析即可.【详解】A.如果a∥b,b∥c,那么a∥c,说法正确;B.a⊥b,c⊥b,那么a∥c,说法正确;C.如果a与b相交,b与c相交,那么a与c一定相交,说法错误;D.如果a与b相交,b与c不相交,那么a与c一定相交,说法正确.故选C.【点睛】此题主要考查了平行公理及推论,关键是熟练掌握所学定理.6.一副直角三角尺叠放如图所示,现将30°的三角尺固定不动,将45°的三角尺绕顶点B逆时针转动,点E始终在直线的上方,当两块三角尺至少有一组边互相平行时,则所有符合条件的度数为()A.45°,75°,120°,165°B.45°,60°,105°,135°C.15°,60°,105°,135°D.30°,60°,90°,120°【答案】A【分析】分DE∥AB,DE∥AC,BE∥AC,AC∥BD,分别画出图形,根据平行线的性质和三角板的特点求解.【详解】解:如图,①DE∥AB,∴∠D+∠ABD=180°∴∠ABD=90°∴∠ABE=45°;②DE∥AC,∵∠D=∠C=90°,∴B,C,D共线,∴∠ABE=∠CBE+∠ABC=180°-45°+30°=165°;③BE∥AC,∴∠C=∠CBE=90°,∴∠ABE=∠ABC+∠CBE=120°;④AC∥BD,∴∠ABD=180°-∠A=120°,∴∠ABE=∠ABD-∠DBE=75°,综上:∠ABE的度数为:45°或75°或120°或165°.【点睛】本题考查了三角板中的角度计算,平行线的性质,解题的关键是注意分类讨论,做到不重不漏.二、填空题(每小题3分,共18分)7.“若,则,”_____命题(选填“是”或“不是”).【答案】是【分析】根据命题的定义判断即可.【详解】若,则,是一个命题.故答案为:是.【点睛】本题主要考查了命题的判断,掌握定义是解题的关键.即是表示判断一件事情的句子是命题. 8.有一个密码箱,密码由三个数字组成,甲、乙、丙三个人都开过,但都记不清了.甲记得:这三个数字分别是7,2,1,但第一个数字不是7;乙记得:1和2的位置相邻;丙记得:中间的数字不是1.根据以上信息,可以确定密码是__.【答案】127【分析】先根据第一个数字不是7,得出第一个数字是1或2,再根据1和2相邻,进而得出第三个是7,即可得出结论.【详解】解:∵三个数字分别是7,2,1,但第一个数字不是7,∴第一个数为1或2,∵1和2的位置相邻,∴前两个数字是1,2或2,1,第三位是数字7,∵中间的数字不是1,∴第一个数字只能是1,第二个数字为2,即密码为127,故答案为:127【点睛】此题主要考查了推理与论证,判断出第三个数是7是解本题的关键.9.(2022秋·黑龙江佳木斯·七年级校考期中)将直角梯形平移得梯形,若,则图中阴影部分的面积为_________平方单位.【答案】36【分析】根据图形可知图中阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,恰好等于梯形EFGH的面积减去梯形EFMD的面积.【详解】根据平移的性质得S梯形ABCD =S梯形EFGH,DC = HG = 10,MC= 2,MG = 4,DM = DC - MC = 10 - 2 = 8,S阴影= S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD=S梯形HGMD==×(8+10)×4= 36.故答案为:36.【点睛】主要考查了梯形的性质和平移的性质,要注意平移前后图形的形状和大小不变,本题的关键是能得到:图中阴影部分的面积等于梯形ABCD的面积减去梯形EFMD的面积,恰好等于梯形EFGH的面积减去梯形EFMD的面积.10.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)【答案】如果两个角是两个相等角的余角,那么这两个角相等. 真【分析】根据命题由题设和结论组成,把条件“两个角是同角的余角”写在如果的后面,把结论“这两个角相等"写在那么的后面即可【详解】命题“同角的余角相等”改写成“如果..,那么."的形式是“如果两个角是同角的余角,那么这两个角相等”如果两个角是同角的余角,那么这两个角相等是真命题【点睛】此题考查命题与定理,掌握三角形的性质是解题关键11.如图所示,在△ABC中,∠C=90°,AC=BC=5,现将△ABC沿着CB的方向平移到△A′B′C′的位置.若平移的距离为2,则图中阴影部分的面积为________.【答案】8【分析】图中阴影部分的面积等于大三角形的面积减小三角形的面积,根据面积公式计算即可.【详解】解:∵∠C=90°,AC=BC=5,平移的距离为2,∴BC′=DC′=3∴阴影面积=5×5÷2-3×3÷2=8.故答案为8.【点睛】本题考查平移的性质,比较简单,解答此题的关键是利用平移的性质得出小三角形的底和高.12.(2022秋·重庆·七年级重庆市綦江中学校考阶段练习)如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连接AB.∠ABM的平分线BC交PQ于点C,连接AC,过点A作AD⊥PQ交PQ 于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB=∠DAE,则∠ACD的度数是_____.【答案】##27度【分析】延长FA与直线MN交于点K,通过角度的不断转换解得∠BCA=45°,然后结合图形,利用各角之间的关系求解即可.【详解】解:延长FA与直线MN交于点K,由图可知∠ACD=90°-∠CAD=90°-(45°+∠EAD)=45°-∠FAD=45°-(90°-∠AFD)=∠AFD,∵MN∥PQ,∴∠AFD=∠BKA=90°-∠KBA=90°-(180°-∠ABM)=∠ABM-90°,∴∠ACD=∠AFD=(∠ABM-90°)=∠BCD-45°,即∠BCD-∠ACD=∠BCA=45°,∴∠ACD=90°-(45°+∠EAD)=45°-∠EAD=45°-∠BCA=45°-18°=27°,故∠ACD的度数是27°,故答案为:27°.【点睛】本题利用平行线、垂直、角平分线综合考查角度的计算,理解题意,综合运用这些知识点是解题关键.三、解答题(每小题6分,共30分)13.(2022秋·福建福州·七年级统考期末)如图,已知,.(1)试判断BF与DE的位置关系,并说明理由;(2)若,,求的度数.【答案】(1),理由见解析;(2)【分析】(1)根据已知条件,先证明FG//BC ,继而得∠1=∠3 ,根据∠1+∠2=180° 等量代换得∠3+∠2=180° ,从而得证;(2)由(1)的结论,求得∠1 ,再根据BF⊥AC ,求得∠1 的余角即可.【详解】解:,理由如下:,,,,,;,,,,,,.【点睛】本题考查了平行线的性质与判定,求一个角的余角,熟练平行线的性质与判定是解题的关键.14.学习了两条直线平行的判定方法1后,谢老师接着问:“由同位角相等,可以判断两条直线平行,那么能否利用内错角相等来判定两条直线平行呢?”如图,直线AB和CD被直线EF所截,∠2=∠3,AB CD 吗?说明理由.现请你补充完下面的说理过程:答:AB CD理由如下:∵∠2=∠3(已知)且()∴∠1=∠2∴AB CD()【答案】∠1=∠3;对顶角相等;同位角相等,两直线平行【分析】根据已知条件及对顶角相等得出∠1=∠2,由同位角相等,两直线平行即可证明.【详解】解:AB CD理由如下:∵∠2=∠3(已知)且∠1=∠3(对顶角相等)∴∠1=∠2∴AB CD(同位角相等,两直线平行),故答案为:∠1=∠3;对顶角相等;同位角相等,两直线平行.【点睛】题目主要考查对顶角相等及平行线的判定,理解题意,熟练掌握平行线的判定是解题关键.15.如图,己知点P、Q分别在的边上,按下列要求画图:(1)画射线;(2)过点P画垂直于射线的线段,垂足为点C;(3)过点Q画直线平行于射线.【答案】(1)见解析(2)见解析(3)见解析【分析】根据题意过用直尺作图,分别P画垂直于射线OB的射线PC,垂足为点C;过点Q画直线平行于射线.【详解】(1)如图,射线PQ为所求;(2)如图,线段PC为所求;(3)如图,直线QM为所求【点睛】此题主要考查了基本作图,正确把握相关定义是解题关键.16.指出下列命题的题设和结论,并判断它们是真命题还是假命题,如果是假命题,举出一个反例.(1)两个角的和等于平角时,这两个角互为补角;(2)内错角相等;(3)两条平行线被第三条直线所截,内错角相等.【答案】(1)题设:如果两个角的和等于平角时,结论:那么这两个角互为补角;是真命题;(2)题设:如果两个角是内错角,那么这两个角相等;是假命题,反例见解析;(3)题设:如果两条平行线被第三条直线所截,结论:那么内错角相等.是真命题.【分析】(1)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平角的定义可得该命题是真命题;(2)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平行线的性质可得该命题是假命题;利用相交直线被第三条直线所截,内错角不相等可举反例;(3)根据将命题写成“如果…,那么…”的形式,“如果”后面写题设,“那么”后面写结论可得题设和结论,根据平行线的性质可得该命题是真命题;.【详解】(1)题设:如果两个角的和等于平角,结论:那么这两个角互为补角;是真命题;(2)题设:如果两个角是内错角,那么这两个角相等;是假命题,如图∠1与∠2是内错角,∠2>∠1;(3)题设:如果两条平行线被第三条直线所截,结论:那么内错角相等.是真命题.【点睛】本题考查了命题与定理的相关知识.将命题写成“如果…,那么…”的形式,就是要明确命题的题设和结论,“如果”后面写题设,“那么”后面写结论.关键是明确命题与定理的组成部分,会判断命题的题设与结论.17.如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.【答案】见解析【分析】首先由AE⊥BC,FG⊥BC可得AE∥FG,根据两直线平行,同位角相等及等量代换可推出∠A=∠2,利用内错角相等,两直线平行可得AB∥CD.【详解】证明:如图,设BC与AE、GF分别交于点M、N.∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNB=90°,∴AE∥FG,∴∠A=∠1;又∵∠2=∠1,∴∠A=∠2,∴AB∥CD.【点睛】本题考查了平行线的性质及判定,熟记定理是正确解题的关键.四、解答题(每小题8分,共24分)18.如图,点是直线AB上一点,OD平分∠AOC,∠BOE=3∠COE,∠DOE=81°,求∠BOE,∠AOD的度数.【答案】∠BOE=27°,∠AOD=72°.【分析】设∠COE=x,则∠AOD=81°-x,则∠BOE=3x,∠AOC=2 ∠AOD,由∠AOC+∠BOC=180° ,列方程2+4x=180°,解方程求解即可.【详解】解:设∠COE=x,∵∠BOE=3∠COE,OD平分∠AOC,∠DOE∠BOE=3∠COE,则∠BOE=3x,∠AOC=2,∵O是直线AB上一点,∴∠AOC+∠BOC=180° ,∴2+4x=180°,解得∠AOD=81°-∴∠BOE=27°,∠AOD= 72°.【点睛】本题考查的是角平分线的定义,角的和差运算,邻补角的含义,解本题的关键是运用方程的思想解决几何问题.19.如图,直线AB,CD相交于点O,OB平分∠EOD.(1)若∠BOE:∠EOC=1:4,求∠AOC的度数;(2)在(1)的条件下,画OF⊥CD,请直接写出∠EOF的度数.【答案】(1)(2)或【分析】(1)设,则,先根据角平分线的定义可得,,再根据邻补角的定义求出的值,从而可得的度数,然后根据对顶角相等即可得;(2)先求出,再分①点在的上方和②点在的下方两种情况,根据角的和差即可得.【详解】(1)解:由题意,设,则,平分,,,,,解得,,由对顶角相等得:.(2)解:由(1)可知,,,,由题意,分以下两种情况:①如图,当点在的上方时,则;②如图,当点在的下方时,则;综上,的度数为或.【点睛】本题考查了与角平分线有关的计算、对顶角相等、一元一次方程的应用,较难的是题(2),正确分两种情况讨论是解题关键.20.如图,已知直线上的点M,N,E满足,的平分线交于G,作射线.(1)直线与平行吗?为什么?(2)若,求的度数.【答案】(1)平行,理由见解析(2)【分析】(1)利用已知条件和三角形内角和定理,通过等量代换可得,由同旁内角互补,两直线平行,可得;(2)利用,求出,再利用角平分线的定义求出,再证,利用两直线平行,同旁内角互补,即可求出.(1)解:.理由如下:∵,∴,∴,∵,,∴,∵,,∴,∴;(2)解:∵,∴,∵平分,∴,∵,∴.∴,∴.【点睛】本题考查平行线的判定与性质,角平分线的定义,三角形内角和定理,垂直的定义等,熟练掌握平行线的判定定理和性质定理是解题的关键.五、解答题(每小题9分,共18分)21.如图,,平分,设为,点E是射线上的一个动点.(1)若时,且,求的度数;(2)若点E运动到上方,且满足,,求的值;(3)若,求的度数(用含n和的代数式表示).【答案】(1)60°;(2)50°;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论.【详解】解:(1),,,平分,,,又,;(2)根据题意画图,如图1所示,,,,,,,又平分,,;(3)①如图2所示,,,平分,,,又,,,解得;②如图3所示,,,平分,,,又,,,解得.综上的度数为或.【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补.两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.22.如图,,在的右侧,平分,平分,所在直线交于点,.(1)若,求的度数;(2)将线段沿方向平移,使得点在点的右侧,其他条件不变,若,求的度数.【答案】(1)65°;(2)20°或160°【分析】1)作,如图1,利用角平分线的定义得到,,利用平行线的性质得到,,从而得到的度数;(2)作,如图2,利用角平分线的定义得到,,利用平行线的性质得到,,从而得到的度数;如图3,利用得到,然后根据三角形外角性质可计算出.【详解】解:(1)作,如图1,平分,平分,,,,,,,;(2)作,如图2,平分,平分,,,,,,,.如图3,平分,平分,,,,,,.如图4,平分,平分,,,,,,而,.综上所述,的度数为或.【点睛】本题考查了平移的性质:解题的关键是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.也考查了平行线的性质.六、解答题(本大题共12分)23.(2022秋·贵州黔西·七年级校考阶段练习)已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.【答案】(1)见解析;(2)见解析;(3)60°【分析】(1)根据已知条件和对顶角相等即可证明;(2)如图2,过点M作MR∥AB,可得AB∥CD∥MR.进而可以证明;(3)如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,过点H作HT∥GN,可得∠MHT=∠N=2α,∠GHT=∠FGN=2β,进而可得结论.【详解】(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GH是∠BGM的平分线,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,过点H作HT∥GN,则∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.【点睛】本题考查了平行线的判定与性质,对顶角的性质,角平分线的性质,解决本题的关键是掌握平行线的判定与性质.。

初中数学数学第五章 相交线与平行线的专项培优练习题(含答案

初中数学数学第五章 相交线与平行线的专项培优练习题(含答案

初中数学数学第五章相交线与平行线的专项培优练习题(含答案一、选择题1.把一张有一组对边平行的纸条,按如图所示的方式析叠,若∠EFB=35°,则下列结论错误的是()A.∠C'EF=35°B.∠AEC=120°C.∠BGE=70°D.∠BFD=110°2.在下列命题中,为真命题的是()A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相垂直3.(2017•十堰)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=()A.40°B.50°C.60°D.70°4.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°5.如图,AB∥CD,∠1=120°,则∠2=()A .50°B .70°C .120°D .130°6.下列图形中,1∠与2∠是同位角的是( )A .B .C .D .7.如图,ABC 的角平分线CD 、BE 相交于F ,90A ∠=︒,//EG BC ,且CG EG ⊥于G ,下列结论:①2CEG DCB ∠=∠;②CA 平分BCG ∠;③ADC GCD ∠=∠;④12DFB CGE ∠=∠.其中正确的结论是( )A .①③④B .①②③C .②④D .①③8.下列命题:①同位角相等;②过一点有且只有一条直线与已知直线平行; ③过一点有且只有一条直线与已知直线垂直; ④如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行.其中假命题的个数是( )A .1个B .2个C .3个D .4个9.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④10.已知:如图AB//EF ,BC CD ⊥,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠∠∠=+B .αβγ180∠∠∠++=C .αβγ90∠∠∠+-=D .βγα90∠∠∠+-=二、填空题11.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).12.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.13.如图, 已知//AB CF ,//CF DE , 90BCD ∠=︒,则D B ∠-∠=_________14.如图,Rt △AOB 和Rt △COD 中,∠AOB =∠COD =90°,∠B =40°,∠C =60°,点D 在边OA 上,将图中的△COD 绕点O 按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD 恰好与边AB 平行.15.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n 次移动n 格.则不停留棋子的格子的编号有_____.16.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.17.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.18.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.19.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.20.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.三、解答题21.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.22.如图1,AB CD ∥ ,130PAB ∠=︒ ,120PCD ∠=︒ ,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;(问题迁移)(2)如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P在B、D两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;(问题应用):(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.23.已知:直线//AB CD,点E,F分别在直线AB,CD上,点M为两平行线内部一点.(1)如图1,∠AEM,∠M,∠CFM的数量关系为________;(直接写出答案)(2)如图2,∠MEB和∠MFD的角平分线交于点N,若∠EMF等于130°,求∠ENF的度数;(3)如图3,点G为直线CD上一点,延长GM交直线AB于点Q,点P为MG上一点,射线PF、EH相交于点H,满足13PFG MFG∠=∠,13BEH BEM∠=∠,设∠EMF=α,求∠H的度数(用含α的代数式表示).24.如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.(1)求证:∠ABE+∠C﹣∠E=180°.(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.25. [问题解决]:如图1,已知AB∥CD,E是直线AB,CD内部一点,连接BE,DE,若∠ABE=40°,∠CDE=60°,求∠BED的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程:解:过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB ∥CD ,射线OM 与直线AB ,CD 分别交于点A ,C ,射线ON 与直线AB ,CD 分别交于点B ,D ,点P 在射线ON 上运动,设∠BAP=α,∠DCP=β.(1)当点P 在B ,D 两点之间运动时(P 不与B ,D 重合),求α,β和∠APC 之间满足的数量关系.(2)当点P 在B ,D 两点外侧运动时(P 不与点O 重合),直接写出α,β和∠APC 之间满足的数量关系.26.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的性质即可求解.【详解】A .∵AE ∥BF ,∴∠C 'EF =∠EFB =35°(两直线平行,内错角相等),故A选项不符合题意;B.∵纸条按如图所示的方式析叠,∴∠FEG=∠C'EF=35°,∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°,故B选项符合题意;C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°,故C选项不符合题意;D.∵AE∥BF,∴∠EGF=∠AEC=110°(两直线平行,内错角相等),∵EC∥FD,∴∠BFD=∠EGF=110°(两直线平行,内错角相等),故D选项不符合题意;故选:B.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.2.B解析:B【分析】分别利用对顶角的性质以及平行线的性质和推论进而判断得出即可.【详解】解:A、相等的角不一定是对顶角,故此选项错误;B、平行于同一条直线的两条直线互相平行,正确;C、两直线平行,同旁内角互补,故此选项错误;D、垂直于同一条直线的两条直线互相平行,故此选项错误.故选B.【点睛】此题主要考查了命题与定理,熟练掌握平行线的性质与判定是解题关键.3.B解析:B【解析】试题分析:由AB∥DE,∠CDE=40°,∴∠B=∠CDE=40°,又∵FG⊥BC,∴∠FGB=90°﹣∠B=50°,故选B.考点:平行线的性质4.B解析:B【解析】试题分析:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选B.考点:平行线的性质.5.C解析:C【分析】由平行线性质和对顶角相等可以得到解答.【详解】解:如图,由对顶角相等可以得到∠3=∠1=120°又AB∥CD,∴∠2=∠3=120°.故选C.【点睛】本题考查平行线和对顶角的综合应用,由题意发现角的相等关系是解题关键.6.C解析:C【分析】根据同位角的定义可以判断对错.【详解】解:两条直线a、b被第三条直线c所截,在截线c的同旁,且在被截直线a、b同一侧的角称为同位角,根据这个定义,A选项的两角不在被截线的同侧,错误;B选项的两角不是两条直线被第三条直线所截形成的角,错误;C选项的角符合同位角的定义,正确;D 选项的两角不是两条直线被第三条直线所截形成的角,错误.故选C.【点睛】本题考查同位角的意义,通过同位角的意义进行灵活判断是解题关键.7.A解析:A【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故本选项正确;②无法证明CA平分∠BCG,故本选项错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故本选项正确;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=12∠CGE,故本选项正确.故选:A.【点睛】本题考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.8.A解析:A【分析】根据平行线的性质、八个基本事实、平行线的判定等知识分别判断即可.【详解】解:同位角不一定相等,①是假命题;过直线外一点有且只有一条直线与已知直线平行,②是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,③是假命题;如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行,④是真命题,故选:A .【点睛】本题考查了命题与定理、平行线的判定与性质、八个基本事实,熟记八个基本事实,会判断命题的真假是解答的关键.9.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB ∥CD ,不符合题意;②∵∠3=∠4,∴BC ∥AD ,符合题意;③∵AB ∥CD ,∴∠B+∠BCD =180°,∵∠ADC =∠B ,∴∠ADC+∠BCD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; ④∵AB ∥CE ,∴∠B+∠BCD =180°,∵∠BCD =∠BAD ,∴∠B+∠BAD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; 故能推出BC ∥AD 的条件为②③④.故选:D .【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】解:如图,分别过C 、D 作AB 的平行线CM 和DN ,AB//EF ,AB//CM //DN //EF ∴,αBCM ∠∠∴=,MCD NDC ∠∠=,NDE γ∠∠=,αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠∴+=++=++,又BC CD ⊥,BCD 90∠∴=,αβ90γ∠∠∠∴+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .二、填空题11.75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m ∥n ,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.12.65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE.【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒ 故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.13.90°【分析】根据AB∥CF,可得出∠B 和∠BCF 的关系,根据CF∥DE,可得出∠FED 和∠D 的关系,合并即可得出∠D―∠B 的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠解析:90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠FCD+∠D=180°∴∠FCD+∠D-∠B=180°-∠BCF,化简得:∠D-∠B=180°-(∠BCF+∠FCD)∵∠BCD=90°,∴∠BCF+∠FCD=90°∴∠D―∠B=90°故答案为:90°【点睛】本题考查平行线的性质,解题关键是将∠BCD分为∠BCF和∠FCD,然后利用平行线的性质进行角度转换.14.10或28【解析】【分析】作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠解析:10或28【解析】【分析】作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角∠AOD,再根据每秒旋转10°列式计算即可得解;②两三角形在点O的异侧时,延长BO与CD相交于点E,根据两直线平行,内错角相等可得∠CEO=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角度数,再根据每秒旋转10°列式计算即可得解.【详解】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°,∵每秒旋转10°,∴时间为100°÷10°=10秒;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角为270°+10°=280°,∵每秒旋转10°,∴时间为280°÷10°=28秒;综上所述,在第10或28秒时,边CD恰好与边AB平行.故答案为10或28.【点睛】本题考查了平行线的判定,平行线的性质,旋转变换的性质,难点在于分情况讨论,作出图形更形象直观.15.2,4,5【解析】【分析】因棋子移动了n次后走过的总格数是1+2+3+…+n=12n(n+1),然后再根据题目中所给的第n次依次移动n个顶点的规则,可得到不等式最后求得解.【详解】解:因棋解析:2,4,5【解析】【分析】因棋子移动了n 次后走过的总格数是1+2+3+…+n =n (n +1),然后再根据题目中所给的第n 次依次移动n 个顶点的规则,可得到不等式最后求得解.【详解】解:因棋子移动了n 次后走过的总格数是1+2+3+…+n =n (n +1),应停在第n (n +1)﹣7p 格,这时p 是整数,且使0≤n (n +1)﹣7p ≤6,分别取n =1,2,3,4,5,6,7时, n (n +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n ≤10,设n =7+t (t =1,2,3)代入可得, n (n +1)﹣7p =7m +12t (t +1), 由此可知,停棋的情形与n =t 时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.【点睛】此题主要考查推理与论证,解题的关键是根据题意分析运动规则,再列出式子来解答. 16.互相垂直.【解析】【分析】依据,,,,,可得,即可得到与的位置关系是互相垂直.【详解】解:,,,,按此规律,,又,,,以此类推,,,故答案为:互相垂直.【点睛】本题主要解析:互相垂直.【解析】【分析】依据12a //a ,23a a ⊥,34a //a ,45a a ⊥,⋯,可得14n a a ⊥,即可得到1a 与100a 的位置关系是互相垂直.【详解】解:12a //a ,23a a ⊥,34a //a ,14a a ∴⊥,按此规律,58a a ⊥,又45a a ⊥,⋯,18a a ∴⊥,以此类推,14n a a ⊥100425=⨯,1100a a ∴⊥,故答案为:互相垂直.【点睛】本题主要考查了平行线的性质,解决问题的关键是根据已知条件得出规律:14n a a ⊥. 17.40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,,∠2=50°,∴∠1=∠2,∵,∠2=50°,∴α+10°=50°,∴α=4解析:40°【分析】先根据对顶角相等的性质得出∠1=∠2,即可求出α的度数.【详解】解:∵∠1与∠2是对顶角,110α∠=+︒,∠2=50°,∴∠1=∠2,∵110α∠=+︒,∠2=50°,∴α+10°=50°,∴α=40°.故答案为:40°.【点睛】本题考查了对顶角相等的性质以及角度的计算.18.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵b∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.19.65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.20.【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2解析:55【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵//a b ,135∠=︒,∴335∠=︒,∴∠4=90°−∠3=55°,∵////a b c ,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.三、解答题21.(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1(2)理由如下:如图2. 过点B 作//BD a ,图22180ABD ∴∠+∠=︒,//a b ,//b BD ∴,1∴∠=∠DBC ,601ABD ABC DBC ∴∠=∠-∠=︒-∠,2601180∴∠+︒-∠=︒,21120∴∠-∠=︒;(3)12∠=∠,图3理由如下:如图3,过点C 作//CP a , AC 平分BAM ∠,30CAM BAC ∴∠=∠=︒,260BAM BAC ∠=∠=︒,又//a b ,//CP b ∴,160BAM ∠=∠=︒,30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.22.(1)110°;(2)∠APC=∠α+∠β,理由见解析;(3)∠CPA=∠α-∠β或∠CPA=∠β-∠α【分析】(1)过P作PE∥AB,通过平行线性质可得∠A+∠APE=180°,∠C+∠CPE=180°再代入∠PAB=130°,∠PCD=120°可求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=∠α+∠β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图所示,当P在BD延长线上时,∠CPA=∠α-∠β;如图所示,当P在DB延长线上时,∠CPA=∠β-∠α.【点睛】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.23.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠,EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.24.(1)见解析;(2)2∠FBH +∠C =180°;(3)80°【分析】(1)过点E 作//EK AB ,由平行线的性质得出,180ABE BEK CEK C ∠=∠∠+∠=︒,进而得出答案;(2)设,ABF EBF BEG CEG αβ∠=∠=∠=∠=,由平行线的性质得出,HBE BEG FBH FBE HBE βαβ∠=∠=∠=∠-∠=-,由(1)知180ABE C BEC ∠+∠-∠=︒,即可得出答案;(3)设,ABF EBF x ECN DCN y ∠=∠=∠=∠=,由(1)知2()180E x y ∠=+-︒,过M 作////PQ AB CD ,由平行线的性质得出,PMF ABF x QMN DCN y ∠=∠=∠=∠=,求出130E FMN x y ∠+∠=+=︒,即可得出答案.【详解】(1)如图1,过点E 作//EK AB∴ABE BEK ∠=∠∵//AB CD∴//EK CD∴180CEK C ∠+∠=︒∴180ABE C E BEC CEK C BEC CEK C ∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; (2)∵BF 、EG 分别平分ABE ∠、BEC ∠∴,ABF EBF BEG CEG ∠=∠∠=∠设,ABF EBF BEG CEG αβ∠=∠=∠=∠=∵//BH EG∴HBE BEG β∠=∠=∴FBH FBE HBE αβ∠=∠-∠=-由(1)知,180ABE C BEC ∠+∠-∠=︒即222()180C C αβαβ+∠-=-+∠=︒∴2180FBH C ∠+∠=︒;(3)∵CN 、BF 分别平分ECD ∠、ABE ∠∴,ABF EBF ECN DCN ∠=∠∠=∠设,ABF EBF x ECN DCN y ∠=∠=∠=∠=由(1)知:180ABE C E ∠+∠-∠=︒即2()180E x y ∠=+-︒如图3,过M 作////PQ AB CD则,PMF ABF x QMN DCN y ∠=∠=∠=∠=∴180180()FMN PMF QMN x y ∠=︒-∠-∠=︒-+130E FMN ∠+∠=︒∴2()180180()130x y x y +-︒+︒-+=︒130x y ∴+=︒∴2()180213018080E x y ∠=+-︒=⨯︒-︒=︒.【点睛】本题考查了角平分线的定义、平行线的性质、角的和差等知识点,较难的是题(3),通过作辅助线,构造平行线是解题关键.25.[问题解决]见解析;[问题迁移](1)∠APC=α+β;(2)当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【分析】问题解决:过点E作EF∥AB,依据平行线的性质,即可得到∠BED的度数;问题迁移:(1)过P作PQ∥AB,依据平行线的性质,即可得出α,β和∠APC之间满足的数量关系.(2)分两种情况讨论:过P作PQ∥AB,易得当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【详解】问题解决:如图2,过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠B+∠D=40°+60°=100°;问题迁移:(1)如图3,过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠BAP=∠APQ,∠DCP=∠CPQ,∴∠APC=∠BAP+∠DCP,即∠APC=α+β;(2)如图4,当点P在BN上时,∠APC=β-α;如图5,当点P在OD上时,∠APC=α-β.【点睛】本题主要考查了平行线的性质与判定的运用,解决问题的关键是掌握:两直线平行,内错角相等,并利用角的和差关系进行推算.26.(1)证明见解析;(2)证明见解析;(3)∠A=72°.【分析】(1)根据题意过点A作平行线AD//MN,证出三条直线互相平行并由平行得出与ACM∠和ABP∠相等的角即可得出结论;(2)由题意利用垂直线定义以及三角形内角和为180°进行分析即可证得A ECN∠=∠;(3)根据题意设MCA ACE ECD x∠=∠=∠=,由(1)列出关系式2702 CFB x ∠=︒-和11352CGB x∠=︒-,解出方程进而得出结论.【详解】证明:(1)过点A作平行线AD//MN,∵AD//MN ,//MN PQ ,∴AD//MN//PQ,∴,MCA DAC PBA DAB ∠=∠∠=∠,∴A DAC DAB MCA PBA ∠=∠+∠=∠+∠.(2)∵//CD AB∴180A ACD ∠+∠=︒∵180ECM ECN ∠+∠=︒又ECM ACD ∠=∠∴A ECN ∠=∠(3)证得MCA ACE ECD ∠=∠=∠ ABP NCD ∠=∠设MCA ACE ECD x ∠=∠=∠=由(1)可知CFB FCN FBQ ∠=∠+∠列出关系式2702CFB x ∠=︒-由(1)可知CGB MCG GBP ∠=∠+∠ 列出关系式11352CGB x ∠=︒- 312702(135)22x x -=︒- 解得:54x =︒结论:72A ∠=︒【点睛】本题考查平行线的性质与判定,结合平行线的性质与判定运用数形结合思维分析是解题的关键.。

数学数学第五章 相交线与平行线的专项培优练习题(含答案

数学数学第五章 相交线与平行线的专项培优练习题(含答案

数学数学第五章 相交线与平行线的专项培优练习题(含答案一、选择题1.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个 2.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠ D .12180B ∠+∠+∠=︒3.如图,∠1的同位角是( )A .∠2B .∠3C .∠4D .∠54.如图,要得到AB ∥CD ,只需要添加一个条件,这个条件不可以...是( )A .∠1=∠3B .∠B +∠BCD =180°C .∠2=∠4D .∠D +∠BAD =180° 5.如图,AB ∥CD ,BF ,DF 分别平分∠ABE 和∠CDE ,BF ∥DE ,∠F 与∠ABE 互补,则∠F 的度数为A .30°B .35°C .36°D .45°6.如图所示,直线c 截直线a ,b ,给出下列以下条件:①48∠=∠;②17∠=∠;③26∠=∠;④47180∠+∠=︒.其中能够说明a ∥b 的条件有A .1个B .2个C .3个D .4个7.已知∠A 的两边与∠B 的两边互相平行,且∠A=20°,则∠B 的度数为( ). A .20° B .80° C .160° D .20°或160°8.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠=9.下列图中的“笑脸”,由如图平移得到的是( )A .B .C .D .10.如图,若∠1=70°,∠2=110°,∠3=70°,则有( ).A .a ∥bB .c ∥dC .a ⊥dD .任两条都无法判定是否平行 二、填空题11.平面内不过同一点的n 条直线两两相交,它们交点个数记作n a ,并且规定10a =,则2a =__________,1n n a a --=____________.12.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.13.已知∠ABC=70︒,点D 为BC 边上一点,过点D 作DP//AB ,若∠PBD=12∠ABC ,则∠DPB=_____︒.14.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.15.如图①:MA 1∥NA 2,图②:MA11NA 3,图③:MA 1∥NA 4,图④:MA 1∥NA 5,……,则第n 个图中的∠A 1+∠A 2+∠A 3+…+∠A n+1______.(用含n 的代数式表示)16.已知M 、N 是线段AB 的三等分点,C 是BN 的中点,CM =6 cm ,则AB =_________ cm .17.如图,请你添加一个条件....使得AD ∥BC ,所添的条件是__________.18.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___19.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度.20.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E,若∠1=62°,则∠2=______.三、解答题21.如图1,AB CD ∥ ,130PAB ∠=︒ ,120PCD ∠=︒ ,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;(问题迁移)(2)如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由; (问题应用):(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.22.感知与填空:如图①,直线//AB CD ,求证:B D BED ∠+∠=∠.阅读下面的解答过程,并填上适当的理由,解:过点E 作直线//EF CD ,2D ∴∠=∠( )//AB CD (已知),//EF CD ,//AB EF ∴( )1B ∴∠=∠( )12BED ∠+∠=∠,B D BED ∴∠+∠=∠( )应用与拓展:如图②,直线//AB CD ,若22,35,25B G D ∠=︒∠=∠=︒.则E F ∠+∠= 度方法与实践:如图③,直线//AB CD ,若60,80E B F ∠=∠=︒∠=︒,则D ∠= 度.23.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB ∥CD ∥EF ,那么∠BAC+∠ACE+∠CEF =( )A .180°B .270°C .360°D .540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB ∥EF ,请直接写出∠BAD ,∠ADE ,∠DEF 之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD ,ED 分别平分∠BAC ,∠CEF 时,∠ACE 与∠ADE 之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB ∥EF ,当∠ACD=90°时,∠BAC 、∠CDE 和∠DEF 之间又有怎样的数量关系?请你直接写出结果,不需要证明.24.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.25.(问题提出)(1)如图①,已知 AB ∥CD,求证:∠1+∠MEN+∠2=360°(推广应用)(2)如图②,已知 AB∥ CD,求∠1+∠2+∠3+∠4+∠5 +∠6的度数为___________.如图③,已知 AB∥CD ,求∠1+∠2+∠3+∠4+∠5 +∠6+…+∠n的度数为_________.26.已知:∠1=∠2,EG 平分∠AEC.(1)如图1,∠MAE=50°,∠FEG=15°,∠NCE=80°.试判断EF 与CD 的位置关系,并说明理由.(2)如图2,∠MAE=135°,∠FEG=30°,当AB∥CD 时,求∠NCE 的度数;(3)如图2,试写出∠MAE、∠FEG、∠NCE 之间满足什么关系时,AB∥CD.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由平行线的性质,可知与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD.【详解】∵AB∥CD,∴∠A=∠ADC;∵AB∥EF,∴∠A=∠AFE;∵AF∥CG,∴∠EGC=∠AFE=∠A;∵CD∥EF,∴∠EGC=∠DCG=∠A;所以与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD四个,故选B.2.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行);∴B可以;C、D不可以;∵∠B=∠D,不能得出AB∥CD;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.3.D解析:D【分析】根据同位角定义可得答案.【详解】解:解:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角,根据定义,结合图形,∠1的同位角是∠5.故选:D.【点睛】本题考查同位角的定义,解题关键是熟练理解同位角的定义,本题属于基础题型.4.A解析:A【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【详解】解:A.∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行);B.∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行);C.∠2=∠4,∴AB∥CD(内错角相等,两直线平行);D.∠D+∠BAD=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.5.C解析:C【解析】【分析】延长BG交CD于G,然后运用平行的性质和角平分线的定义,进行解答即可.【详解】解:如图延长BG交CD于G∵BF∥ED∴∠F=∠EDF又∵DF 平分∠CDE,∴∠CDE=2∠F,∵BF∥ED∴∠CGF=∠EDF=2∠F,∵AB∥CD∴∠ABF=∠CGF=2∠F ,∵BF 平分∠ABE∴∠ABE =2∠ABF=4∠F ,又∵∠F 与∠ABE 互补∴∠F +∠ABE =180°即5∠F=180°,解得∠F=36°故答案选C.【点睛】本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键.6.D解析:D【解析】根据平行线的判定,由题意知:①∵68∠=∠,48∠=∠,∴46∠=∠,∴a b ∥,故①对.②∵13∠=∠,17∠=∠,∴37∠=∠,∴a b ∥,故②对.③∵26∠=∠,∴a b ∥,故③对.④∵47180∠+∠=︒,34180∠+∠=︒,∴37∠=∠,∴a b ∥,故④对.故选D.点睛:此题主要考查了平行线的判定,关键是利用图形中的条件和已知的条件,构造两直线平行的条件.平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A 的两边分别和∠B 的两边平行,∴∠B 和∠A 可能相等也可能互补,即∠B 的度数是20°或160°,故选:D.8.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.9.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都是由旋转得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.A解析:A【详解】解:∵∠4=∠1=70°,∠2=110°,∴∠4+∠2=180°;∴a ∥b .∵∠2≠∠3,∴c 与d 不平行.故选A .二、填空题11.【分析】条直线相交只有一个交点,条直线相交,交点数是,条直线相交,交点数是,即,可写出, 的解.【详解】解:求平面内不过同一点的条直线两两相交的交点个数,可由简入繁, 当2条直线相交时,交点解析:1n -【分析】2条直线相交只有一个交点,3条直线相交,交点数是12+,n 条直线相交,交点数是123(1)n ++++-,即1123(1)(1)2n a n n n =++++-=-,可写出2a , 1n n a a --的解.【详解】解:求平面内不过同一点的n 条直线两两相交的交点个数,可由简入繁,当2条直线相交时,交点数只有一个;当3条直线相交时,交点数为两条时的数量+第3条直线与前两条的交点2个,即交点数是12+;同理,可以推导当n 条直线相交时,交点数是123(1)n ++++-,即1123(1)(1)2n a n n n =++++-=-, 212(21)12a ∴=⨯⨯-=, 111(1)(1)(2)122n n a a n n n n n -∴-=----=-, 本题的答案为:1,1n -.【点睛】本题考查了平面内直线两两相交交点数的计算,涉及到一种很重要的数学方法数学归纳法的初步应用接触,此方法在推导证明中比较常用.12.互相垂直.【解析】【分析】依据,,,,,可得,即可得到与的位置关系是互相垂直.【详解】解:,,,,按此规律,,又,,,以此类推,,,故答案为:互相垂直.【点睛】本题主要解析:互相垂直.【解析】【分析】依据12a //a ,23a a ⊥,34a //a ,45a a ⊥,⋯,可得14n a a ⊥,即可得到1a 与100a 的位置关系是互相垂直.【详解】解:12a //a ,23a a ⊥,34a //a ,14a a ∴⊥,按此规律,58a a ⊥,又45a a ⊥,⋯,18a a ∴⊥,以此类推,14n a a ⊥100425=⨯,1100a a ∴⊥,故答案为:互相垂直.【点睛】本题主要考查了平行线的性质,解决问题的关键是根据已知条件得出规律:14n a a ⊥. 13.35或75【解析】分析:根据题意,分为点P 在∠ABC 的内部和外部两种情况,由平行线的性质求解.详解:如图,当P 点在∠ABC 的内部时,∵PD∥AB∴∠P=∠ABP∵∠PBD=∠ABC,∠A解析:35或75【解析】分析:根据题意,分为点P 在∠ABC 的内部和外部两种情况,由平行线的性质求解.详解:如图,当P点在∠ABC的内部时,∵PD∥AB∴∠P=∠ABP∵∠PBD=12∠ABC,∠ABC=70︒∴∠PBD=35°∴∠ABP=∠ABC-∠PBD=35°.当点P在∠ABC的外部时,∵∠PBD=12∠ABC,∠ABC=70︒∴∠PBD=35°∴∠ABP=∠ABC+∠DPB=105°∵PD∥AB∴∠DPB+∠ABP=180°∴∠DPB=75°.故答案为:35或75.点睛:此题主要考查了平行线的性质,关键是明确P点的位置,分两种情况进行求解. 14.130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情解析:130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;综上可知:∠β=50°或130°,故正确答案为:【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.15.【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2解析:n180︒【解析】分析:分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.详解:如图①中,∠A1+∠A2=180∘=1×180∘,如图②中,∠A1+∠A2+∠A3=360∘=2×180∘,如图③中,∠A1+∠A2+∠A3+∠A4=540∘=3×180∘,…,第n个图,∠A1+∠A2+∠A3+…+∠A n+1学会从=n180︒,故答案为180n︒.点睛:平行线的性质.16.12【解析】如图,∵M、N是线段AB的三等分点,C是BN的中点,∴AM=MN,CN=CB,∴AM+CB=MN+CN=MC=6,∴AB=AM+MN+CN+CB=(AM+CB)+(MN+CN)解析:12【解析】如图,∵M、N是线段AB的三等分点,C是BN的中点,∴AM=MN,CN=CB,∴AM+CB=MN+CN=MC=6,∴AB=AM+MN+CN+CB=(AM+CB)+(MN+CN)=6+6=12(cm).17.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B解析:∠EAD=∠B或∠DAC=∠C【解析】当∠EAD=∠B时,根据“同位角相等,两直线平行”可得AD//BC;当∠DAC=∠C时,根据“内错角相等,两直线平行”可得AD//BC;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC,故答案是:∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(答案不唯一).18.130cm2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,观察可知梯形EFMD是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD,再根据梯形的面积计解析:130cm2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH是由直角梯形ABCD平移得到的,∴梯形EFGH≌梯形ABCD,∴GH=CD,BC=FG,∵梯形EFMD是两个梯形的公共部分,∴S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD,∴S阴影=S梯形MGHD=12(DM+GH)•GM=12(28-4+28)×5=130(cm2).故答案是130cm2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.19.70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当解析:70或30.【分析】分∠A=∠B与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B,可得:x=210﹣2x,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.【点睛】本题考查的是平行线的性质,在解答此题时要注意分类讨论.20.121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即解析:121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B的度数;由邻补角的定义,求得∠BAC的度数;又由AE平分∠BAC交BD于点E,即可求得∠BAE的度数,根据三角形外角的性质即可求得∠2的度数.【详解】∵AC∥BD,∴∠B=∠1=64°,∴∠BAC=180°-∠1=180°-62°=118°,∵AE平分∠BAC交BD于点E,∴∠BAE=12∠BAC=59°,∴∠2=∠BAE+∠B=62°+59°=121°.故答案为121°.【点睛】此题考查了平行线的性质,角平分线的定义,邻补角的定义以及三角形外角的性质.题目难度不大,注意数形结合思想的应用.三、解答题21.(1)110°;(2)∠APC=∠α+∠β,理由见解析;(3)∠CPA=∠α-∠β或∠CPA=∠β-∠α【分析】(1)过P作PE∥AB,通过平行线性质可得∠A+∠APE=180°,∠C+∠CPE=180°再代入∠PAB=130°,∠PCD=120°可求∠APC即可;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.(2)∠APC=∠α+∠β,理由:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)如图所示,当P在BD延长线上时,∠CPA=∠α-∠β;如图所示,当P在DB延长线上时,∠CPA=∠β-∠α.【点睛】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.22.两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;82;20【分析】感知与填空:根据平行公理及平行线的性质即可填写;应用与拓展:根据感知与填空的方法添加辅助线即可得到∠E+∠F=∠B+∠G+∠D,即可得到答案;方法与实践:过点F作平行线,用同样的思路证明即可得到∠D的度数.【详解】感知与填空:两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换,应用与拓展:如图,作GM∥AB,由感知得:∠E=∠B+∠EGM,∵AB∥CD,GM∥AB,∴GM∥CD,∴∠F=∠D+∠FGM,∴∠E+∠F=∠B+∠D+∠EGF,∵22,35,25B EGF D ∠=︒∠=∠=︒,∴∠E+∠F=82︒,故答案为:82.方法与实践:如图:作FM ∥AB ,∴∠MFB+∠B=180︒,∵60B ∠=︒,∴∠MFB=180︒-∠B=120︒,∵80F ∠=︒,∴∠MFE=40︒,∵∠E=∠MFE+∠D, 60E ∠=︒,∴∠D=20︒,故答案为:20.【点睛】此题考查平行公理的运用及平行线的性质定理,解此题的关键是理解感知部分的作线方法,得到的方法的总结,由此才能正确解答后面的问题.23.(1)C ;(2)BAD DEF ADE ∠+∠=∠;(3)2360C ADE ∠+∠∠=︒;(4)90BAC DEF CDE【分析】(1)利用平行线的性质,即可得到180A ACD ∠+∠=︒,180E ECD ∠+∠=︒,进而得出360BACACE CEF ; (2)过D 作//DG AB ,利用平行线的性质,即可得到A ADG ,E EDG ,进而得出A E ADG EDG ADE ;(3)利用(1)可得360BAC C CEF ,利用(2)可得DBAD DEF ,根据AD ,ED 分别平分BAC ∠,CEF ∠,即可得到22360BAD C DEF,化简即可得到ACE ∠与ADE ∠之间的数量关系;(4)过C 作//CG AB ,过D 作//DH AB ,则有//////CG AB EF DH ,可得1180BAC, 23∠∠=,4DEF ,34CDE ,则有1180BAC ,可求出390BAC ,利用34CDE ,4DEF ,得到90BAC DEF CDE . 【详解】解:(1)////AB CD EF ,180A ACD ,180E ECD ∠+∠=︒, 360A ACD E ECD ,即360BAC ACE CEF ,故选:C .(2)BAD DEF ADE ∠+∠=∠,如图,过D 作//DG AB ,//AB EF ,////DG AB EF ∴,A ADG ,E EDG , A E ADG EDG ADE ;(3)2360C ADE ∠+∠∠=︒, 理由:由(1)可得,360BACC CEF , 由(2)可得,DBAD DEF , 又AD ,ED 分别平分BAC ∠,CEF ∠,2BAC AD B ,2CEF DEF ,22360BAD C DEF ,即2()360BAD DEF C ,2360ACE ADE .(4)90BAC DEF CDE ,理由:如图,过C 作//CG AB ,过D 作//DH AB ,//AB EF ,//////CG AB EF DH ,∴1180BAC , 23∠∠=,4DEF,34CDE ∴1180BAC ∵1290∠+∠=,∴329019018090BAC BAC , ∴3490BAC DEF CDE , 即有:90BACDEF CDE . 【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.24.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.25.(1)见解析,(2)900,180(1).n ︒︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的判定得出EF ∥AB ,根据平行线的性质得出即可;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,根据平行线的判定得出EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,根据平行线的性质得出即可;如图③,利用(1)(2)②发现规律,直接得到答案.【详解】证明:(1)证明:过点E 作EF ∥CD ,∵AB ∥CD , ∴EF ∥AB ,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN =360°;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,∵CD ∥AB , ∴EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,如图③,由∠1+∠2+∠MEN 3601802=︒=︒⨯,∠1+∠2+∠3+∠4+∠5+∠69001805=︒=︒⨯,可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n 180(1)n =︒-,故答案为:900°,180(1)n ︒-;【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的性质进行推理是解此题的关键.26.(1)//EF CD ,证明见解析 (2)75° (3)2FEG NCE MAE +=∠∠∠,证明见解析【分析】(1)根据12∠=∠可得//MB EF ,根据角的和差关系和角平分线的性质可得80CEF NCE ==︒∠∠,从而得证//EF CD ;(2)根据12∠=∠可得//MB EF ,根据平行线的性质以及角平分线的性质可得18075NCE GEC FEG =︒--=︒∠∠∠;(3)根据12∠=∠可得//MB EF ,根据平行线的性质可得180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠,再根据角平分线的性质可得1802FEC MAE FEG =︒-+∠∠∠,再根据平行线的性质即可得2FEG NCE MAE +=∠∠∠.【详解】(1)//EF CD∵12∠=∠∴//MB EF∴50AEF MAE ==︒∠∠∴501565AEG AEF FEG =+=︒+︒=︒∠∠∠∵EG 平分∠AEC∴65CEG AEG ==︒∠∠∴651580CEF CEG FEG =+=︒+︒=︒∠∠∠∴80CEF NCE ==︒∠∠∴//EF CD ;(2)∵12∠=∠∴//MB EF∵∠MAE =135°∴18045AEF MAE =︒-=︒∠∠∵∠FEG =30°∴75AEG AEF FEG =+=︒∠∠∠∵EG 平分∠AEC∴75GEC =︒∠∵//AB CD∴18075NCE GEC FEG =︒--=︒∠∠∠;(3)2FEG NCE MAE +=∠∠∠∵12∠=∠∴//MB EF∴180MAE FEA +=︒∠∠∴180FEA MAE =︒-∠∠∴180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠∵EG 平分∠AEC∴GEC AEG =∠∠∴FEC GEC FEG =+∠∠∠∴180FEC MAE FEG FEG =︒-++∠∠∠∠∴1802FEC MAE FEG =︒-+∠∠∠∵//,//AB CD AB EF∴//EF CD∴180FEC NCE +=︒∠∠∴1802180MAE FEG NCE ︒-++=︒∠∠∠∴2FEG NCE MAE +=∠∠∠.【点睛】本题考查了平行线的综合问题,掌握平行线的性质以及判定定理、角平分线的性质、角的和差关系是解题的关键.。

初中数学数学第五章 相交线与平行线的专项培优练习题(附解析

初中数学数学第五章 相交线与平行线的专项培优练习题(附解析

初中数学数学第五章 相交线与平行线的专项培优练习题(附解析一、选择题1.如图,直线AC 和直线BD 相交于点O ,OE 平分∠BOC .若∠1+∠2=80°,则∠3的度数为( )A .40°B .50°C .60°D .70°2.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个3.如图,五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为( )A .180°B .270°C .360°D .450°4.如图,AB ∥CD ,∠B =20°,∠D =40°,则∠BED 为( )A .20°B .30°C .60°D .40°5.如图,OC 是∠AOB 的平分线,直线l ∥OB .若∠1=50°,则∠2的大小为()A .50°B .60°C .65°D .80°6.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒7.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°8.如图,已知AB ∥CD, EF ∥CD ,则下列结论中一定正确的是( )A .∠BCD= ∠DCE;B .∠ABC+∠BCE+∠CEF=360︒;C .∠BCE+∠DCE=∠ABC+∠BCD;D .∠ABC+∠BCE -∠CEF=180︒.9.下列命题:①同位角相等;②过一点有且只有一条直线与已知直线平行; ③过一点有且只有一条直线与已知直线垂直; ④如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行.其中假命题的个数是( )A .1个B .2个C .3个D .4个10.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒二、填空题11.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;12.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.13.已知直线AB ∥CD ,点P 、Q 分别在AB 、CD 上,如图所示,射线PB 按顺时针方向以每秒4°的速度旋转至PA 便立即回转,并不断往返旋转;射线QC 按顺时针方向每秒1°旋转至QD 停止,此时射线PB 也停止旋转.(1)若射线PB 、QC 同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____; (2)若射线QC 先转45秒,射线PB 才开始转动,当射线PB 旋转的时间为_____秒时,PB′∥QC′.14.如图,已知AB ∥CD ,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作∠ABE 和∠DCE 的平分线,交点为E 1,第二次操作,分别作∠ABE 1和∠DCE 1的平分线,交点为E 2,第三次操作,分别作∠ABE 2和∠DCE 2的平分线,交点为E 3,…,第n 次操作,分别作∠ABE n ﹣1和∠DCE n ﹣1的平分线,交点为E n .若∠E n =1度,那∠BEC 等于________度15.设a 、b 、c 为平面上三条不同直线,(1)若//,//a b b c ,则a 与c 的位置关系是_________;(2)若,a b b c ⊥⊥,则a 与c 的位置关系是_________;a b,bc ,则a与c的位置关系是________.(3)若//16.如图,请你添加一个条件....使得AD∥BC,所添的条件是__________.17.如图,AC⊥AB,AC⊥CD,垂足分别是点A、C,如果∠CDB=130°,那么直线AB与BD 的夹角是________度.18.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOD=120°,则∠BOD=__________°.19.如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=62°,则∠2=______.20.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题21.如图1,D是△ABC延长线上的一点,CE//AB.(1)求证:∠ACD=∠A+∠B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数.(3)如图3,AH//BD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN 平分∠AQG交AH于N,QM//GR,猜想∠MQN与∠ACB的关系,说明理由.22.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.23.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.24.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明;(2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数. 25.问题情境(1)如图①,已知360B E D ∠+∠+∠=︒,试探究直线AB 与CD 有怎样的位置关系?并说明理由.小明给出下面正确的解法:直线AB 与CD 的位置关系是//AB CD .理由如下:过点E 作//EF AB (如图②所示)所以180B BEF ∠+∠=︒(依据1)因为360B BED D ∠+∠+∠=︒(已知)所以360B BEF FED D ∠+∠+∠+∠=︒所以180FED D ∠+∠=︒所以//EF CD (依据2)因为//EF AB所以//AB CD (依据3)交流反思上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?“依据1”:________________________________;“依据2”:________________________________;“依据3”:________________________________.类比探究(2)如图,当B 、E ∠、F ∠、D ∠满足条件________时,有//AB CD .拓展延伸(3)如图,当B 、E ∠、F ∠、D ∠满足条件_________时,有//AB CD .26.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限. (1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示);(2)连接BD 、BC ,若三角形BCD 的面积为5,求k 的值;(3)如图2,分别作∠ABC 和∠ADC 的平分线,它们交于点P ,请写出∠A 、和∠P 和∠BCD 之间的一个等量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据对顶角和邻补角的定义即可得到∠BOC的度数,再根据角平分线即可得出∠3的度数.【详解】解:∵∠1=∠2,∠1+∠2=80°,∴∠1=∠2=40°,∴∠BOC=140°,又∵OE平分∠BOC,∴∠3=70°.故选:D.【点睛】本题考查了邻补角、对顶角、角平分线的应用,解题时注意运用:对顶角相等,邻补角互补,即和为180°.2.B解析:B【分析】由平行线的性质,可知与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD.【详解】∵AB∥CD,∴∠A=∠ADC;∵AB∥EF,∴∠A=∠AFE;∵AF∥CG,∴∠EGC=∠AFE=∠A;∵CD∥EF,∴∠EGC=∠DCG=∠A;所以与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD四个,故选B.3.C解析:C【分析】首先过点D作DF∥AE,交AB于点F,由AE∥BC,可证得AE∥DF∥BC,然后由两直线平行,同旁内角互补,证得∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,继而证得结论.【详解】过点D作DF∥AE,交AB于点F,∵AE∥BC,∴AE∥DF∥BC,∴∠A+∠B=180°,∠E+∠EDF=180°,∠CDF+∠C=180°,∴∠C+∠CDE+∠E=360°,故选C.【点睛】本题考查了平行线的性质,解题时掌握辅助线的作法,注意数形结合思想的应用.4.C解析:C【分析】过点E作EF∥AB,得∠B=∠BEF=20°,结合AB∥CD知EF∥CD,据此得∠D=∠DEF=40°,根据∠BED=∠BEF+∠DEF可得答案.【详解】解:如图,过点E作EF∥AB,∴∠B=∠BEF=20°,∵AB∥CD,∴EF∥CD,∴∠D=∠DEF=40°,则∠BED=∠BEF+∠DEF=20°+40°=60°,故答案为:60°.【点睛】本题考查平行线的性质,解题关键是掌握两直线平行内错角相等的性质和平行与平面内同一直线的两直线平行的性质.5.C解析:C【分析】根据平行线的性质可求∠AOB,再根据角平分线的定义求得∠BOC,再根据平行线的性质可求∠2.【详解】∵l∥OB,∴∠AOB+∠1=180°∴∠AOB=180°﹣∠1=130°,∵OC是∠AOB的平分线,∴∠BOC=65°,∴∠2=∠BOC=65°.故选:C.【点睛】考查了角平分线,平行线的性质,关键是熟悉两直线平行,同位角相等;两直线平行,同旁内角互补的知识点.6.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.7.C解析:C【解析】【分析】作AB∥a,先证AB∥a∥b,由平行线性质得∠2=180°-∠1+∠3,变形可得结果.【详解】作AB∥a,由直线a平移后得到直线b,所以,AB∥a∥b所以,∠2=180°-∠1+∠3,所以,∠2-∠3=180°-∠1=180°-70°=110°.故选:C【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质.8.D解析:D【解析】分析:根据平行线的性质,找出图形中的同旁内角、内错角即可判断.详解:延长DC到H∵AB∥CD,EF∥CD∴∠ABC+∠BCH=180°∠ABC=∠BCD∠CE+∠DCE=180°∠ECH=∠FEC∴∠ABC+∠BCE+∠CEF=180°+∠FEC∠ABC+∠BCE -∠CEF=∠ABC+∠BCH+∠ECH-∠CEF=180°.故选D.点睛:此题主要考查了平行线的性质,关键是熟记平行线的性质:两直线平行,内错角相等,同旁内角互补,同位角相等.9.A解析:A【分析】根据平行线的性质、八个基本事实、平行线的判定等知识分别判断即可.【详解】解:同位角不一定相等,①是假命题;过直线外一点有且只有一条直线与已知直线平行,②是假命题;在同一平面内,过一点有且只有一条直线与已知直线垂直,③是假命题;如果同一平面内的三条直线只有两个交点,那么这三条直线中必有两条直线互相平行,④是真命题,故选:A .【点睛】本题考查了命题与定理、平行线的判定与性质、八个基本事实,熟记八个基本事实,会判断命题的真假是解答的关键.10.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,∵AB//EF ,∴AB//CM //DN //EF ,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++,又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .二、填空题11.62【详解】∵,,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.解析:62【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.12.65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒ 故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.13.PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E 作EF∥AB,根据平行线的性质求得∠PEF 和∠QEF 的度数,进而得结论;解析:PB′⊥QC′ 15秒或63秒或135秒.【分析】(1)求出旋转30秒时,∠BPB′和∠CQC′的度数,过E作EF∥AB,根据平行线的性质求得∠PEF和∠QEF的度数,进而得结论;(2)分三种情况:①当0s<t≤45时,②当45s<t≤67.5s时,③当67.5s<t<135s时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】(1)如图1,当旋转时间30秒时,由已知得∠BPB′=4°×30=120°,∠CQC′=30°,过E作EF∥AB,则EF∥CD,∴∠PEF=180°﹣∠BPB′=60°,∠QEF=∠CQC′=30°,∴∠PEQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0s<t≤45时,如图2,则∠BPB′=4t°,∠CQC′=45°+t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t=45+t,解得,t=15(s);②当45s<t≤67.5s时,如图3,则∠APB′=4t﹣180°,∠CQC'=t+45°,∵AB∥CD,PB′∥QC′,∴∠APB′=∠PED=180°﹣∠CQC′,即4t﹣180=180﹣(45+t),解得,t=63(s);③当67.5s<t<135s时,如图4,则∠BPB′=4t﹣360°,∠CQC′=t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即4t﹣360=t+45,解得,t=135(s);综上,当射线PB旋转的时间为15秒或63秒或135秒时,PB′∥QC′.故答案为:15秒或63秒或135秒.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.14.2n .【解析】如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠解析:2n .【解析】如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=12∠ABE+12∠DCE=12∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=12∠ABE1+12∠DCE1=12∠CE1B=14∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=12∠ABE2+12∠DCE2=12∠CE2B=18∠BEC;…以此类推,∠E n=12n∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为2n .点睛:本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.15.平行平行垂直【解析】根据平行公理的推论,可由,得出a∥c;根据垂直的性质以及平行线的判定,可由,得到a∥c;根据,,得到a⊥c.故答案为平行,平行,垂直.点睛:由平解析:平行平行垂直【解析】根据平行公理的推论,可由//,//a b b c ,得出a ∥c ;根据垂直的性质以及平行线的判定,可由,a b b c ⊥⊥,得到a∥c;根据//a b ,b c ⊥,得到a⊥c.故答案为平行,平行,垂直.点睛:由平行于同一条直线的两条直线互相平行,可求解(1),因为在同一平面内,垂直于同一条直线的两条直线互相平行,可求解(2),再根据平行线的性质可求解(3).16.∠EAD=∠B 或∠DAC=∠C【解析】当∠EAD=∠B 时,根据“同位角相等,两直线平行”可得AD//BC ;当∠DAC=∠C 时,根据“内错角相等,两直线平行”可得AD//BC ;当∠DAB+∠B解析:∠EAD =∠B 或∠DAC =∠C【解析】当∠EAD =∠B 时,根据“同位角相等,两直线平行”可得AD//BC ;当∠DAC =∠C 时,根据“内错角相等,两直线平行”可得AD//BC ;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC ,故答案是:∠EAD =∠B 或∠DAC =∠C 或∠DAB+∠B=180°(答案不唯一).17.50【分析】先根据平行线的判定可得,再根据平行线的性质、两直线的夹角的定义即可得.【详解】∵,,∴,∵,∴,∴直线AB 与BD 的夹角是50度,故答案为:50.【点睛】本题考查了平解析:50【分析】先根据平行线的判定可得//AB CD ,再根据平行线的性质、两直线的夹角的定义即可得.【详解】∵AC AB ⊥,AC CD ⊥,∴//AB CD ,∵130CDB ∠=︒,∴18050ABD CDB ∠=︒-∠=︒,∴直线AB 与BD 的夹角是50度,故答案为:50.【点睛】本题考查了平行线的判定与性质、两直线的夹角的定义,熟练掌握平行线的判定与性质是解题关键.18.30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA 平分∠EOC,∴∠AOC=∠EOC=解析:30°【分析】先利用补角的定义求出∠EOC=60°,再根据角平分线的性质计算.【详解】解:∵∠EOD=120°,∴∠EOC=60°(邻补角定义).∵OA 平分∠EOC ,∴∠AOC=12∠EOC=30°(角平分线定义), ∴∠BOD=30°(对顶角相等).故答案为:30.【点睛】本题考查由角平分线的定义,结合补角的性质,易求该角的度数.19.121°【分析】由AC∥BD,根据两直线平行,同位角相等,即可求得∠B 的度数;由邻补角的定义,求得∠BAC 的度数;又由AE 平分∠BAC 交BD 于点E ,即可求得∠BAE 的度数,根据三角形外角的性质即解析:121°【分析】由AC ∥BD ,根据两直线平行,同位角相等,即可求得∠B 的度数;由邻补角的定义,求得∠BAC 的度数;又由AE 平分∠BAC 交BD 于点E ,即可求得∠BAE 的度数,根据三角形外角的性质即可求得∠2的度数.【详解】∵AC ∥BD ,∴∠B=∠1=64°,∴∠BAC=180°-∠1=180°-62°=118°,∵AE 平分∠BAC 交BD 于点E ,∴∠BAE=12∠BAC=59°, ∴∠2=∠BAE+∠B=62°+59°=121°.故答案为121°.【点睛】此题考查了平行线的性质,角平分线的定义,邻补角的定义以及三角形外角的性质.题目难度不大,注意数形结合思想的应用.20.12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的 解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的, 故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.(1)证明见解析;(2)∠F=55°;(3)∠MQN =12∠ACB ;理由见解析. 【分析】(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12∠HAD ,进而得出∠F =12(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD ∠=∠,12NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12∠ACB . 【详解】解:(1)∵CE //AB ,∴∠ACE =∠A ,∠ECD =∠B ,∵∠ACD =∠ACE+∠ECD ,∴∠ACD =∠A+∠B ;(2)∵CF 平分∠ECD ,FA 平分∠HAD ,∴∠FCD =12∠ECD ,∠HAF =12∠HAD , ∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB ,∴∠ECD =∠B ,∵AH //BC ,∴∠B+∠HAB =180°,∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下: GR 平分QGD ∠,12QGR QGD ∴∠=∠. GN 平分AQG ∠,12NQG AQG ∴∠=∠. //QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD ) =180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB .【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.22.(1)详见解析;(2)HPQ ∠的大小不发生变化,一直是45︒.【分析】(1)利用平行线的性质推知180BEF EFD ∠+∠=︒;然后根据角平分线的性质、三角形内角和定理证得90EPF ∠=︒,即EG PF ⊥,故结合已知条件GH EG ⊥,易证//PF GH ;(2)利用三角形外角定理、三角形内角和定理求得49039022∠=︒-∠=︒-∠;然后由邻补角的定义、角平分线的定义推知14522QPK EPK ∠=∠=︒+∠;最后根据图形中的角与角间的和差关系求得HPQ ∠的大小不变,是定值45︒.【详解】解:(1)证明:如图1,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P ,1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥.GH EG ⊥,//PF GH ∴;(2)HPQ ∠的大小不发生变化,理由如下:如图2,12∠=∠, 322∠=∠∴. 又GH EG ⊥,49039022∠=︒-∠=︒-∠∴.18049022EPK ∠=︒-∠=︒+∠∴.PQ ∵平分EPK ∠,14522QPK EPK ∴∠=∠=︒+∠. ∴245HPQ QPK ∠=∠-∠=︒,∴HPQ ∠的大小不发生变化,一直是45︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.23.(1)证明见解析;(2)∠BCD =108°;(3)70°【分析】(1)根据两直线平行,内错角相等得出∠EDF =∠DAB ,由角平线的定义得出∠EDF =∠FDC ,最后根据同旁内角互补,两直线平行进行求证;(2)设∠DCF =x ,则∠CFB =1.5x ,由两直线平行,内错角相等得出∠ABF =1.5x ,由角平分线的定义得出∠ABC =3x ,最后利用两直线平行,同旁内角互补得出关于x 的方程,求解即可;(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF =∠CBF ,由角平分线的定义与已知条件可求出∠ABC 与∠FDC ,由平移的性质与平行公理的推论得出AD ∥PQ ,最后根据两直线平行,同旁内角互补列式求解.【详解】解:(1)证明:∵AB ∥DE ,∴∠EDF =∠DAB ,∵DF 平分∠EDC ,∴∠EDF =∠FDC ,∴∠FDC =∠DAB ,∵∠FDC+∠ABC=180°,∴∠DAB+∠ABC=180°,∴AD∥BC;(2)∵32CFB DCF∠=∠,设∠DCF=x,则∠CFB=1.5x,∵CF∥AB,∴∠ABF=∠CFB=1.5x,∵BE平分∠ABC,∴∠ABC=2∠ABF=3x,∵AD∥BC,∴∠FDC+∠BCD=180°,∵∠FDC+∠ABC=180°,∴∠BCD=∠ABC=3x,∴∠BCF=2x,∵CF∥AB,∴∠ABC+∠BCF=180°,∴3x+2x=180°,∴x=36°,∴∠BCD=3×36°=108°;(3)如图,∵∠DCF=∠CFB,∴BF∥CD,∴∠CDF +∠BFD=180°,∵AD∥BC,∴∠CBF +∠BFD=180°,∴∠CDF=∠CBF,∵AD,BE分别平分∠ABC,∠CDE,∴∠ABC=2∠CBF,∠CDE=2∠FDC,∴∠ABC=∠CDE=2∠FDC,∵∠FDC+∠ABC=180°,∴∠ABC=120°,∠FDC=60°,∵线段BC沿直线AB方向平移得到线段PQ,∴BC∥PQ,∵AD∥BC,∴AD∥PQ,∵∠PQD﹣∠QDC=20°,∴∠QDC=∠PQD﹣20°,∴∠FDC+∠QDC +∠PQD=60°+∠PQD﹣20°+∠PQD=180°,∴∠PQD=70°,即∠DQP=70°.故答案为:70°.【点睛】本题考查平行线的判定与性质,平行公理的推论,角平分线的定义,平移的性质,熟练运用平行线的判定与性质是解题的关键.24.(1)AD BC ∥,见解析;(2)108°【分析】(1)//AD BC ,根据角平分线的性质可知EDF FDC ∠=∠,又因为//AB ED ,因此EDF DAB ∠=∠,推出FDC DAB ∠=∠,再结合已知条件即可得出结论;(2)设DCF x ,则32CFB x ∠=,根据平行线的的性质有32ABF CFB x ∠=∠=,再根据角平分线性质可得23ABC ABF x ∠=∠=,又因为//AD BC ,推出3BCD ABC x ∠=∠=,2BCF x ∠=,由//CF AB 得180ABC BCF ∠+∠=︒,从而可解得x 的值,即可得出答案.【详解】解:(1)//AD BC .证明如下:∵//AB ED ,∴EDF DAB ∠=∠,∵DF 平分EDC ∠,∴EDF FDC ∠=∠,∴FDC DAB ∠=∠,∵180FDC ABC ∠+∠=︒,∴180DAB ABC ∠+∠=︒,∴//AD BC .(2)∵32CFB DCF ∠=∠, ∴设DCF x ,则32CFB x ∠=, ∵//CF AB , ∴32ABF CFB x ∠=∠=, ∵BE 平分ABC ∠,∴23ABC ABF x ∠=∠=,由(1)得//AD BC ,∴180FDC BCD ∠+∠=︒,∵180FDC ABC ∠+∠=︒,∴3BCD ABC x ∠=∠=,∴2BCF x ∠=,∵//CF AB ,∴180ABC BCF ∠+∠=︒,即32180x x +=︒,解得36x =︒,∴3108BCD x ∠==︒.【点睛】本题考查的主要知识点是平行线的判定及性质以及角平分线的性质,根据图形找准角与角之间的关系 是解此题的关键.25.(1)两直线平行,同旁内角互补;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)∠B +∠E +∠F +∠D =540°;(3)∠B +∠E +∠D -∠F =180°.【分析】(1)根据平行线的性质和判定,平行公理的推论回答即可;(2)过点E 、F 分别作GE ∥HF ∥CD ,根据两直线平行,同旁内角互补及已知条件求得同旁内角∠ABE +∠BEG =180°,得到AB ∥GE ,再根据平行线的传递性来证得AB ∥CD ; (3)过点E 、F 分别作ME ∥FN ∥CD ,根据两直线平行,内错角相等及已知条件求得同旁内角∠B +∠BEM =180°,得到AB ∥ME ,再根据平行线的传递性来证得AB ∥CD .【详解】解:(1)由题意可知:“依据1”:两直线平行,同旁内角互补;“依据2”: 同旁内角互补,两直线平行;“依据3”: 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)当∠B 、∠E 、∠F 、∠D 满足条件∠B +∠E +∠F +∠D =540°时,有AB ∥CD . 理由:如图,过点E 、F 分别作GE ∥HF ∥CD ,则∠GEF +∠EFH =180°,∠HFD +∠CDF =180°,∴∠GEF +∠EFD +∠FDC =360°;又∵∠B +∠BEF +∠EFD +∠D =540°,∴∠ABE +∠BEG =180°,∴AB ∥GE ,∴AB ∥CD ;(3)当∠B、∠E、∠F、∠D满足条件∠B+∠E+∠D-∠F=180°时,有AB∥CD.如图,过点E、F分别作ME∥FN∥CD,则∠MEF=EFN,∠D=∠DFN,∵∠B+∠BEF+∠D-∠EFD=180°,∴∠B+∠BEM+∠MEF+∠D-∠EFN-∠DFN=180°,∴∠B+∠BEM=180°,∴AB∥ME,∴AB∥CD.【点睛】本题考查平行线的判定和性质的综合应用,作出合适的辅助线,灵活运用平行线的性质定理和判定定理是解题的关键.26.(1)D(k+2,2);(2)k=2;(3)∠BPD=12∠BCD+12∠A,理由详见解析【分析】(1)由平移的性质可得出答案;(2)过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,由四边形BEFD的面积可得出答案;(3)过点P作PE∥AB得出∠PBA=∠EPB,由平移的性质得出AB∥CD,由平行线的性质得出PE∥CD,则∠EPD=∠PDC,得出∠BPD=∠PBA+∠PDC,由角平分线的性质得出∠PBA=12∠ABC,∠PDC=12∠ADC,即可得出结论.【详解】解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴1(12)(k4)2⨯+⨯+=111(k2)22522⨯⨯++⨯⨯+,解得:k=2.(3)∠BPD=12∠BCD+12∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=12∠ABC,∠PDC=12∠ADC,∴∠BPD=12∠ABC+12∠ADC=12∠BCD+12∠A.【点睛】本题考查了平移的综合问题,掌握平移的性质、平行线的性质、角平分线的性质是解题的关键.。

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面几种说法中,正确的是A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确【答案】C2.如图所示,若∠1与∠2互补,∠2与∠4互补,则A.l3∥l4B.l2∥l5C.l1∥l5D.l1∥l2【答案】D【解析】因为∠1与∠2互补,∠2与∠4互补,可知∠1+∠2=180°,∠2+∠4=180°,所以∠1=∠4,根据内错角相等,两直线平行可得l1∥l2,故选D.3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向右拐40°,第二次向左拐140°B.第一次向右拐40°,第二次向右拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向左拐40°,第二次向右拐40°【答案】D4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A【解析】三角板的∠CAB,沿着FE进行平移后角的大小没变,而平移前后的两个角是同位角,所以画图原理是“同位角相等,两直线平行”.5.如图,给出下面的推理:①∵∠B=∠BEF,∴AB∥EF;②∵∠B=∠CDE,∴AB∥CD;③∵∠B+∠BEC=180°,∴AB∥EF;④∵AB∥CD,CD∥EF,∴AB∥EF.其中正确的是A.①②③B.①②④C.①③④D.②③④【答案】B二、填空题:请将答案填在题中横线上.6.在同一平面内有四条直线a、b、c、d,已知:a∥d,b∥c,b∥d,则a和c的位置关系是__________.【答案】a∥c【解析】∵a∥d,b∥c,b∥d,∴a∥c.故答案为:a∥c.7.如图,直线a、b被直线c所截,若要a∥b,需增加条件__________(填一个即可).【答案】答案不唯一,如∠1=∠3.【解析】∵∠1=∠3,∴a∥b(同位角相等,两直线平行),故答案为:∠1=∠3.8.如图所示,若∠1=70°,∠2=50°,∠3=60°,则________________∥________________.【答案】DE;AC三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,已知∠1=∠3,AC平分∠DAB,你能推断出哪两条直线平行?请说明理由.【解析】可以推断出DC∥AB,理由如下:∵AC平分∠DAB,∴∠1=∠2(角平分线的定义),又∵∠1=∠3,∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行).10.如图,若∠1与∠B互为补角,∠B=∠E,那么直线AB与直线DE平行吗?直线BC与直线EF平行吗?为什么?【解析】BC∥EF,理由如下:∵∠1+∠B=180°,∴AB∥DE,∵∠1+∠B=180°,∠B=∠E.∴∠1+∠E=180°,又∠1=∠2,∴∠2+∠E=180°,∴BC∥EF.11.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.12.如图,∠1=65°,∠2=65°,∠3=115°.试说明:DE∥BC,DF∥AB.根据图形,完成下面的推理:因为∠1=65°,∠2=65°,所以∠1=∠2.所以__________∥__________.(__________)因为AB与DE相交,所以∠1=∠4(__________),所以∠4=65°.又因为∠3=115°,所以∠3+∠4=180°.所以__________∥__________.(__________)。

七年级初一数学数学第五章 相交线与平行线的专项培优练习题(及答案

七年级初一数学数学第五章 相交线与平行线的专项培优练习题(及答案

七年级初一数学数学第五章相交线与平行线的专项培优练习题(及答案一、选择题1.下列命题是真命题的有()个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A.0 B.1 C.2 D.32.甲,乙两位同学用尺规作“过直线l外一点C作直线l的垂线”时,第一步两位同学都以C为圆心,适当长度为半径画弧,交直线l于D,E两点(如图);第二步甲同学作∠DCE 的平分线所在的直线,乙同学作DE的中垂线.则下列说法正确的是()A.只有甲的画法正确B.只有乙的画法正确C.甲,乙的画法都正确D.甲,乙的画法都不正确3.如图,在△ABC中,点D,E分别为边AB,AC上的点,画射线ED.下列说法错误的是()A.∠B与∠2是同旁内角B.∠A与∠1是同位角C.∠3与∠A是同旁内角D.∠3与∠4是内错角4.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A.B.C.D.5.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A .①②③B .①②④C .①③④D .①②③④6.如图,ABC 的角平分线CD 、BE 相交于F ,90A ∠=︒,//EG BC ,且CG EG ⊥于G ,下列结论:①2CEG DCB ∠=∠;②CA 平分BCG ∠;③ADC GCD ∠=∠;④12DFB CGE ∠=∠.其中正确的结论是( )A .①③④B .①②③C .②④D .①③ 7.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .155 8.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm9.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=( )A .61°B .58°C .48°D .41°10.下面命题中是真命题的有( )①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个二、填空题11.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.12.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF=__________________°.13.如图,//AB CD ,FN AB ⊥,垂足为点O ,EF 与CD 交于点G ,若130∠=︒,则2∠=______.14.如图,△ABC 中,∠C =90︒,AC =5cm ,CB =12cm ,AB =13cm ,将△ABC 沿直线CB 向右平移3cm 得到△DEF ,DF 交AB 于点G ,则点C 到直线DE 的距离为______cm .15.若平面上4条直线两两相交且无三线共点,则共有同旁内角________对.16.如图,两直线AB 、CD 平行,则12345∠+∠+∠+∠+∠=__________.17.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________18.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.19.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.三、解答题21.已知//AB CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,连接EG 、FG .(1)如图,当点G 在AB 、CD 之间时,请直接写出AEG ∠、CFG ∠与G ∠之间的数量关系__________.(2)如图,当点G 在AB 上方时,且90EGF ︒∠=, 求证:90︒∠-∠=BEG DFG ;(3)如图,在(2)的条件下,过点E 作直线HK 交直线CD 于K , FT 平分DFG ∠交HK 于点T ,延长GE 、FT 交于点R ,若ERT TEB ∠=∠,请你判断FR 与HK 的位置关系,并证明. (不可以直接用三角形内角和180°)22.如图①,已知AB ∥CD ,一条直线分别交AB 、CD 于点E 、F ,∠EFB =∠B ,FH ⊥FB ,点Q 在BF 上,连接QH .(1)已知∠EFD =70°,求∠B 的度数;(2)求证: FH 平分∠GFD .(3)在(1)的条件下,若∠FQH =30°,将△FHQ 绕着点F 顺时针旋转,如图②,若当边FH 转至线段EF 上时停止转动,记旋转角为α,请直接写出当α为多少度时,QH 与△EBF 的某一边平行?23.已知AB ∥CD ,点C 在点D 的右侧,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 相交于点E .(1)如图1,当点B 在点A 的左侧时,①若∠ABC =50º,∠ADC =70º,求∠BED 的度数;②请直接写出∠BED 与∠ABC ,∠ADC 的数量关系;(2)如图2,当点B 在点A 的右侧时,试猜想∠BED 与∠ABC ,∠ADC 的数量关系,并说明理由.24.[感知发现]:如图,是一个“猪手”图,AB∥CD,点E在两平行线之间,连接BE,DE ,我们发现:∠E=∠B+∠D证明如下:过E点作EF∥AB.∴∠B=∠1(两直线平行,内错角相等.)又AB∥CD(已知)∴CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.)∴∠2=∠D(两直线平行,内错角相等.)∴∠1+∠2=∠B+∠D(等式的性质1.)即:∠E=∠B+∠D[类比探究]:如图是一个“子弹头”图,AB∥CD,点E在两平行线之间,连接BE,DE.试探究∠E+∠B+∠D=360°.写出证明过程.[创新应用]:(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.(2).如图二,将一个长方形ABCD按如图的虚线剪下,使∠1=120o,∠FEQ=90°.请直接写出∠2的度数.25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.26.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC 的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.【参考答案】***试卷处理标记,请不要删除1.B解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.C解析:C【分析】利用等腰三角形的三线合一可判断甲乙的画法都正确.【详解】∵CD=CE,∴∠DCE的平分线垂直DE,DE的垂直平分线过点C,∴甲,乙的画法都正确.故选C.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.3.B解析:B【分析】根据同位角、内错角以及同旁内角的概念解答即可.【详解】解:A.∠B与∠2是BC、DE被BD所截而成的同旁内角,故本选项正确;B.∠A与∠1不是同位角,故本选项错误;C.∠3与∠A是AE、DE被AD所截而成的同旁内角,故本选项正确;D.∠3与∠4是内错角AD、CE被ED所截而成的内错角,故本选项正确;故选:B.本题主要考查了同位角、内错角以及同旁内角,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.4.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.5.D解析:D【分析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论. 6.A解析:A【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故本选项正确;②无法证明CA平分∠BCG,故本选项错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故本选项正确;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=12∠CGE,故本选项正确.故选:A.【点睛】本题考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.7.C【分析】先求出∠BOC ,再由邻补角关系求出∠COD 的度数.【详解】∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C .【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键.8.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.9.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.10.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.二、填空题11.46【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠AB C=∠BCF,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=76°,由等式性质得到∠解析:46【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠ABC=∠BCF,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=76°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠ABC=∠BCF,∠CDE+∠DCF=180°,∵∠ABC=76°,∠CDE=150°,∴∠BCF=76°,∠DCF=30°,∴∠BCD=46°,故答案为:46.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.12.【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵解析:【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×64°=32°,∵AB∥CD,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.13.120°【分析】过点F作PT//AB,则有PT//CD,根据平行线的性质可得∠GFP=30゜,∠OFP=90゜,从而可求出∠2的度数.【详解】过点F作PT//AB,如图,∴∠OFP=∠N解析:120°【分析】过点F作PT//AB,则有PT//CD,根据平行线的性质可得∠GFP=30゜,∠OFP=90゜,从而可求出∠2的度数.【详解】过点F作PT//AB,如图,∴∠OFP=∠NOA∵FN AB∴∠NOA=90゜∴∠OFP=90゜∵AB//CD∴CD//PT∴∠DGF=∠GFP∵∠DGF=∠1=30゜∴∠GFP=30゜∴∠2=∠OFP+∠GFP=90゜+30゜=120゜故答案为:120゜【点睛】此题主要考查了平行线的判定与性质,关键是掌握两直线平行,内错角相等,同位角相等.14.【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD、CD,作CH⊥DE于H,依题意可得AD=BE=3cm,∵梯形ACED解析:75 13【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案.【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =; 故答案为:7513. 【点睛】 本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.15.24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A 和点B ,同旁内角有2对;A 和C 有2对;A 和D ,没有同旁内角;A 和解析:24【解析】【分析】根据三线八角的特点,对四条直线产生的6个交点,两两一组进行分类求解即可.【详解】解:如图所示观测点A 和点B ,同旁内角有2对;A 和C 有2对;A 和D ,没有同旁内角;A 和E 有2对;A 和F 有2对.B 和C 有2对;B 和D 有2对;B 和E 有2对;B 和F 没有同旁内角.C 和D 有2对,C 和E 没有同旁内角,C 和F 有2对.D 和E 有2对;D 和F 有2对.E 和F 有2对.共有2×12=24对.故答案是:24.【点睛】本题主要考察三线八角中的同旁内角,正确理解同旁内角和准确的分类是解题的关键.16.【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个的角.【详解】分别过F 点,G 点,H 点作,,平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个的角, 解析:720【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个180的角.【详解】分别过F 点,G 点,H 点作2L ,3L ,4L 平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个180的角,1804720∴⨯=.故答案为720.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补,添加辅助线是解题关键. 17.4∠AFC=3∠AEC【解析】【分析】连接AC ,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC,即:4∠AFC=3∠AEC,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.18.78°【解析】解:过点B作BE∥a,∵a∥b,∴a∥b∥BE,∴∠1=∠3=28°,∠2=∠4=50°,∴∠ABC=∠3+∠4=78°.故答案为:78°.点睛:此题考查了平行线的性质:两直线解析:78°【解析】解:过点B作BE∥a,∵a∥b,∴a∥b∥BE,∴∠1=∠3=28°,∠2=∠4=50°,∴∠ABC=∠3+∠4=78°.故答案为:78°.点睛:此题考查了平行线的性质:两直线平行,内错角相等.解此题的关键是辅助线的作法.19.120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,解析:120°.【分析】先根据平行线的性质,得到∠GEC=90°,再根据垂线的定义以及平行线的性质进行计算即可.【详解】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°﹣30°=60°,因为EG∥AB,所以∠ABE=180°﹣60°=120°.故答案为:120°.【点睛】本题主要考查了平行线的性质和垂直的概念等,解题时注意:两直线平行,同旁内角互补.20.(n﹣1)×180【分析】分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=18解析:(n﹣1)×180【分析】分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P 1+∠2=2×180,∠1+∠P 1+∠P 2+∠2=3×180°,∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.(1)∠G=∠AEG+∠CFG ;(2)见解析;(3)FR ⊥HK ,理由见解析【分析】(1)根据平行线的判定和性质即可写出结论;(2)过点G 作//GP AB ,根据平行线的性质得角相等和互补,即可得证;(3)根据平行线的性质得角相等,即可求解.【详解】解:(1)如图:过点G 作//GH AB ,∵//AB CD ,∴//GH CD ,∴AEG EGH ∠=∠,CFG FGH ∠=∠,EGF AEG CFG ∴∠==∠+∠AEG ∴∠、CFG ∠与G ∠之间的数量关系为G AEG CFG ∠=∠+∠.故答案为:G AEG CFG ∠=∠+∠.(2)如图,过点G 作//GP AB ,180BEG EGP ∴∠+∠=︒,180EHG HGP ∠+∠=︒,90180EHG EGP ∴∠+︒+∠=︒,90EHG EGP ∴∠+∠=︒,//AB CD ,DFG EHG ∴∠=∠,180180()1809090BEG DFG EGP EHG EGP EHG ∴∠-∠=︒-∠-∠=︒-∠+∠=︒-︒=︒.(3)FR 与HK 的位置关系为垂直.理由如下: FT 平分DFG ∠交HK 于点T ,GFT KFT ∴∠=∠,90EGF ∴∠=︒,90GFT ERT ∴∠+∠=︒,90KFT ERT ∴∠+∠=︒,ERT TEB ∠=∠,90KFT TEB ∴∠+∠=︒,//AB CD ,FKT TEB ∴∠=∠,90KFT FKT ∴∠+∠=︒,90FTK ∴∠=︒,KT FR ∴⊥,即FR HK ⊥.∴FR 与HK 的位置关系是垂直.【点睛】本题考查了平行线的判定和性质,解决本题的关键是应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.22.(1)35°;(2)见解析;(3)30°或65°或175°或210°【分析】(1)利用AB∥CD,得到∠B=∠BFD,又∠B=∠EFB,由此得到∠EFB=∠BFD=12∠EFD=35°;(2)由(1)知∠EFB=∠BFD,利用FH⊥FB,得到∠BFD+∠DFH=90°,∠EFB+∠GFH=90°,再由等角的余角相等得到∠DFH=∠GFH即可求解;(3)按QH分别与△EBF的三边平行三种情况分类讨论即可.【详解】解:(1)AB∥CD,∴∠B=∠BFD.∵∠EFB=∠B,∴∠EFB=∠BFD=12∠EFD=35°,∴∠B=35°,故答案为:35°;(2)∵FH⊥FB,∴∠BFD+∠DFH=90°,∠EFB+∠GFH=90°∵∠EFB=∠BFD,由等角的余角相等可知,∴∠DFH=∠GFH.∴FH平分∠GFD.(3)分类讨论:情况一:QH与△EFB的边BF平行时,如下图1和图4所示:当为图1时:∵BF与HQ平行,∴∠H+∠BFH=180°,又∠H=60°,∴∠BFH=120°,此时旋转角α=∠BFQ=120°-∠HFQ=120°-90°=30°,当为图4时:此时∠HFB=∠H=60°,旋转角α=∠1+∠2+∠3=360°-(∠HFB+∠HFQ)=360°-(60°+90°)=210°;情况二:QH与△EFB的边BE平行时,如下图2所示:此时∠1=∠3=35°,∠2=∠4=30°,∴旋转角α=∠BFQ=∠1+∠2=35°+30°=65°;情况三:QH与△EFB的边EF平行时,如下图3所示:此时∠3=∠Q=30°,∴旋转角α=∠BFQ=∠1+∠2+∠3=35°+110°+30°=175°,综上所述,旋转角α=30°或65°或175°或210°.故答案为:α=30°或65°或175°或210°.【点睛】本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,周角的定义等,熟练掌握平行线的性质是解决本题的关键.23.(1)①∠BED=60º;②∠BED=12∠ABC+12∠ADC;(2)∠BED=180º-1 2∠ABC+12∠ADC,理由见解析.【分析】(1)①过点E作EF∥AB,然后说明AB∥CD∥EF,再运用平行线的性质、角平分线的性质和角的和差即可解答;②利用平行线的性质和角平分线的性质即可确定它们的关系.(2)过点E作EF∥AB,再运用平行线的性质、角平分线的定义和角的和差即可确定它们的关系.【详解】(1)①如图1,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF,∠EDC=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∴∠ABC=50º,∠ADC=70º∴∠ABE=12∠ABC=150252⨯=°°,∠EDC=12∠ADC=170352⨯︒=︒,∴∠BEF=25º,∠DEF=35º,∴∠BED=∠BEF+∠DEF=25º+35º=60º;②∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF=12∠ABC,∠EDC=∠DEF=12∠ADC;.∴∠BED=∠BEF +∠DEF =12∠ABC+12∠ADC∴∠BED=12∠ABC+12∠ADC(2)如图2,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠EDC=∠DEF,∵∠ABE+∠BEF=180º,∴∠BEF=180º-∠ABE.∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=12∠ABC,∠DEF=12∠ADC,∴∠BED=∠BEF+∠DEF=180º-12∠ABC+12∠ADC.【点睛】本题考查了平行线的判定与性质,添加辅助线构造平行线并灵活利用平行线的性质是解答本题的关键.24.类比探究:见解析;创新应用:(1):1105.∠=︒创新应用:(2):2150.∠=︒【分析】[类比探究]:如图,过E 作//,EF AB 结合已知条件得//,FE CD 利用平行线的性质可得答案,[创新应用]:(1):由题意得://,AB CD 过E 作//,EF AB 得到//,CD EF 利用平行线的性质可得答案,(2):由题意得://,AB CD 过E 作//,EG AB 得到 //,EG CD 利用平行线的性质可得答案.【详解】解:类比探究:如图,过E 作//,EF AB//,AB CD//,FE CD ∴//,EF AB180,B BEF ∴∠+∠=︒//,FE CD180,D DEF ∴∠+∠=︒360,B BEF DEF D ∴∠+∠+∠+∠=︒360.B BED D ∴∠+∠+∠=︒[创新应用]:(1):由题意得://,AB CD 过E 作//,EF AB//,CD EF ∴//,EF AB,B BEF ∴∠=∠//,CD EF,D DEF ∴∠=∠,B D BEF DEF BED ∴∠+∠=∠+∠=∠30,45,B D ∠=︒∠=︒75,BED ∴∠=︒90,AEB DEC ∠=∠=︒1360909075105.∴∠=︒-︒-︒-︒=︒(2):由题意得://,AB CD 过E 作//,EG AB//,EG CD ∴2180,GEQ ∴∠+∠=︒//,EG AB1180,GEF ∴∠+∠=︒1212360GEF GEQ FEQ ∴∠+∠+∠+∠=∠+∠+∠=︒ ,∠1=120o ,∠FEQ=90°,2150.∴∠=︒【点睛】本题考查平行公理及平行线的性质,掌握平行公理及平行线的性质是解题关键.25.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去); 综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.26.(1)∠AEC=130°;(2)∠A1EC=130°;(3)∠A1EC=40°.【解析】【分析】(1)由直线PQ∥MN,∠ADC=∠QAD=30°,可得∠PAD=150°,再求∠PAE=75°,可得∠CAE=25°;由∠PAC=∠ACN,求得∠ECA=25°,故∠AEC=180°﹣25°﹣25°;(2)先求出∠QA1D1=30°,∠PA1D1=150°,再求出∠PA1E=∠EA1D1=75°,再求出∠CAQ=130°,∠ACN=50°,根据平分线定义得∠ACE=25°,再利用四边形内角和性质可求∠CEA1;(3)根据平行线性质和角平分线定义可求得∠QA1E=∠2=15°,∠ACE=∠ECN=∠1=25°,再由∠CEA1=∠1+∠2即可求得答案.【详解】(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.【点睛】本题考查了平行线性质,角平分线定义,熟练运用平行线性质和角平分线定义推出角的度数是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学数学第五章 相交线与平行线的专项培优练习题(及答案一、选择题1.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是( )A .75︒B .120︒C .135︒D .无法确定2.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A .10︒B .15︒C .20︒D .25︒3.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠FBC =∠DABB .∠ADC +∠BCD =180° C .∠BAC =∠ACE D .∠DAC =∠BCA4.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 25.如图,已知AB ∥CD ,AD 平分∠BAE ,∠D =40°,则∠DAE 的度数是( )A .20°B .40°C .60°D .80°6.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒7.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100° 8.一辆汽车在笔直的公路上行驶,两次拐弯后的方向与原来的方向相反,那么两次拐弯的角度可能是是( ) A .第一次右拐60°,第二次左拐120°B .第一次左拐60°,第二次右拐60°C .第一次左拐60°,第二次左拐120°D .第一次右拐60°,第二次右拐60° 9.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .15510.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF 的长度.A .1B .2C .3D .4二、填空题11.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.12.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.13.如图,已知,∠ABG 为锐角,AH ∥BG ,点C 从点B (C 不与B 重合)出发,沿射线BG 的方向移动,CD ∥AB 交直线AH 于点D ,CE ⊥CD 交AB 于点E ,CF ⊥AD ,垂足为F (F 不与A 重合),若∠ECF =n°,则∠BAF 的度数为_____度.(用n 来表示)14.如图,Rt △AOB 和Rt △COD 中,∠AOB =∠COD =90°,∠B =40°,∠C =60°,点D 在边OA 上,将图中的△COD 绕点O 按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD 恰好与边AB 平行.15.如图,两直线AB 、CD 平行,则12345∠+∠+∠+∠+∠=__________.16.如图,已知EF ∥GH ,A 、D 为GH 上的两点,M 、B 为EF 上的两点,延长AM 于点C ,AB 平分∠DAC ,直线DB 平分∠FBC ,若∠ACB=100°,则∠DBA 的度数为________.17.下列说法中正确的有_____________(填序号).①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AC=BC ,则点C 是线段AB 的中点;⑤相等的角是对顶角;⑥180°角是补角;⑦65.5°=65.50′;⑧如果∠1+∠2+∠3=90°,那么∠1、∠2、∠3互为余角.18.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___19.如图,1∠与2∠是对顶角,110α∠=+︒,250∠=︒,则α=______.20.如图,将直角三角形ABC 沿斜边AC 的方向平移到三角形DEF 的位置,DE 交BC 于点G ,BG =4,EF =12,△BEG 的面积为4,下列结论:①DE ⊥BC ;②△ABC 平移的距离是4;③AD =CF ;④四边形GCFE 的面积为20,其中正确的结论有________(只填写序号).三、解答题21.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________.问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.22.已知AB ∥CD(1)如图1,求证:∠ABE +∠DCE -∠BEC =180°(2)如图2,∠DCE 的平分线CG 的反向延长线交∠ABE 的平分线BF 于F①若BF ∥CE ,∠BEC =26°,求∠BFC②若∠BFC -∠BEC =74°,则∠BEC =________°23.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数.小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.24.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间. ①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)25.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”)(2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。

现在准备把两家田地之间的小路改为直路,请你用有关的几何知识,按要求设计出修路方案,并在图中画出相应的图形,说明方案设计理由。

(不计分界小路与直路的占地面积).26.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点.(1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD 的度数,进而得出∠CFD 的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED 交BC 于F .∵DE ∥AB ,∴∠DFB =∠ABF =120°,∴∠CFD =60°.∵∠CDE =∠C +∠CFD ,∴∠C =∠CDE -∠CFD =135°-60°=75°.故选A .点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.2.B解析:B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

相关文档
最新文档