Ф9.52铜管表冷器计算书

合集下载

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4。

667kg/s空气体积流量 q vg=14000/3600≈3。

889m3/s②空气进、出口温度:干球:35/17℃湿球:30。

9/16。

5℃③空气进、出口焓值:105.26/46。

52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1—(t g2—t s2)/(t g1-t s1)=1—(17—16。

5)/(35—30。

9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2。

3~2。

5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高.在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= q mg×(h1—h2)4。

667×(105。

26-46.52)≈274。

14Kw(235760Kcal/h) ⊙由六排管的水阻△Pw=64。

68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量 q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。

我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

冷凝器设计计算

冷凝器设计计算

冷凝器换热计算第一部分:设计计算一、 设计计算流程图二、 设计计算(以HLR45S 为例)1、已知参数换热参数:冷凝负荷:Q k =61000W 冷凝温度:t k =50℃ 环境风温度:t a1=35℃ 冷凝器结构参数:铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管铜管水平间距:S 1=25.4mm 铜管竖直方向间距:S 2=22mm 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0.35mm 翅片厚度:δf =0.115mm 翅片间距:S f =1.8mm 冷凝器尺寸参数排数:N C =3排 每排管数:N B =52排2、计算过程1)冷凝器的几何参数计算翅片管外径:f b d d δ20+== 9.75 mm 铜管内径:t i d d δ-=0=8.82 mm当量直径:)()(2))((4411f f b f f b eq S d S S d S U Ad δδ-+---===3.04 mm 单位长度翅片面积:322110/)4(2-⨯-=f b f S d S S f π=0.537 m 2/m单位长度翅片间管外表面积:310/)(-⨯-=f f f b b s S d f δπ=0.0286 m 2/m 单位长度翅片管总面积:b f t f f f +==0.56666 m 2/m 翅片管肋化系数:it i t d ff f πβ===20.46 2)空气侧换热系数迎面风速假定:f w =2.6 m/s最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=4.5 m/s 冷凝器空气入口温度为:t a1=35℃ 取出冷凝器时的温度为:t a2=43℃确定空气物性的温度为:2/)(21a a m t t t +==39℃ 在tm =39℃下,空气热物性:v f =17.5×10-6m 2/s ,λf =0.0264W/mK ,ρf =1.0955kg/m 3,C Pa =1.103kJ/(kg*℃) 空气侧的雷诺数:f eq f v d w /Re max = =783.7由《制冷原理与设备》中公式(7-36),空气侧换热系数meq eq nf f O d d C ⎪⎪⎭⎫ ⎝⎛=γλαRe '=50.3 W/m 2K 其中:362)(103)(000425.0)(02315.0518.0eqeqeqd d d A γγγ-⨯-+-==0.1852⎥⎦⎤⎢⎣⎡⨯-=1000Re 24.036.1f A C =0.217 eqd n γ0066.045.0+==0.59311000Re 08.028.0f m +-==-0.217铜管差排的修正系数为1.1,开窗片的修正系数为1.2,则空气侧换热系数为:(开窗片、波纹片的修正系数有待实验验证)'o o αα=×1.1×1.2=66.41 W/m 2K对于叉排翅片管簇:fd s 1=ρ=25.4/9.75=2.6051 3.027.121'-=l l ρρ=2.7681 式中:21,l l 为正六边形对比距离,21l l =翅片当量高度:)'ln 35.01)(1'(5.0'ρρ+-=f d h =0.01169 mδλαa om 2==75.4 m -1翅片效率:')'(mh mh tgh f =η =0.802 表面效率:)1(1f tf s f f ηη--==0.8123) 冷媒侧换热系数冷媒在水平光管内冷凝换热系数公式为: 对R22在管内冷凝C=0.683,25.0s m r B ,如下表:取管内壁温度为:t w =46.5℃, 冷凝温度:t k =50℃冷媒定性温度:2/)(k w m t t t +=t m =48.25℃ 插值得:25.0s r =19.877,m B =67.68 因而:4/125.0)(1⎥⎦⎤⎢⎣⎡-=w k i m s i t t d B Cr α=2998×(t k -t w ) -0.25如忽略铜管壁热阻和接触热阻,由管内外热平衡关系:2998×(50-t w ) -0.25×3.14d i (50-t w )=0.812×66.4×0.56666×(t w -35) 解方程可得:t w =46.3℃,与假设的46.5℃接近,可不必重算。

中央空调表冷器设计计算书

中央空调表冷器设计计算书

℃ ℃ m3/h m/s m/s
根据给定的设计参数、室外参数和进风温度,可以计算表冷器进出风状态点的参数如下: 大气压力 进风干球温度t1 进风湿球温度ts1 进风焓 i1 出风干球温度t2 出风湿球温度ts2 出风相对湿度rh% 出风焓 i2 机器露点 t3 101325 27 19 46.32 14 12 90% 34.08 27.36 85.55 kJ/kg ℃ kJ/kg Pa ℃ ℃ kJ/kg ℃ ℃
33 34 35 36 37 38 39 40 41 4 52 53 54 55 56 57 58 59 60 61 62 63
进水温度tw1 出水温度tw2 水量 换热管内水流速ω 集水管内水流速ω ' Kvs=Gv/[(ΔP)^0.5]
7 12 1.719690456 0.295545731 0.834315627 2.719069493
投标单位: 投标项目:
Ф 9.52表冷器设计计算书(完整版)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 设计风量 设计冷量 本机采用铜管套铝片表冷器,其结构参数如下: 翅片形状 每排管管数N= 管排数P= 分路数n= 每路水程数m= 盘管组合数Z= 每组盘管集水管规格S= 每组盘管集水管内径Di= 翅片密度FPI= 片间距e= 管间距s1= 排间距s2= 叠片长度L= 铜管内径di= 铜管外径do= 翅片厚度δ = 则: 每米肋管长的肋片表面积Af=(s1*s2-π *do2/4)*2/e 每米肋管长的肋片间基管外表面积Ap=π *do*(e-δ )/e 每米换热管外表面的换热面积为A=Af+Ap 每米换热管内表面的换热面积为Ai=π *di 肋化系数τ =A/Ai 肋通系数(每米肋管外表面积与迎风面之比)a=A/s1 净面比(最窄流通断面积与迎风面之比) ε =(s1-do)(e-δ )/s1/e 总的换热面积 F=A*总换热管长 迎风面积 Fy=N*s1*L*Z 迎面风速 Vy=Qf/Fy/3600 最小流动截面的风速v=Vy/ε 空气流通段面的当量直径 de=2*(s1-di)*(e-δ )/((s1-di)+(e-δ )) 0.454381651 0.029664154 0.484045805 0.029091147 16.63893819 19.05692145 0.576283713 27.88103836 0.73152 2.468224458 4.283002286 0.003569537 m2 m2 m/s m/s m m2 m2 m2 m2 波纹 24 2 24 2 1 DN25 0.027 12 0.002116667 0.0254 0.022 1.2 0.00926 0.00996 0.00011 根 排 路 程 个 m m 片/英寸 m m m m m m m 6500 10 m3/h kW

9.52表冷器性能计算

9.52表冷器性能计算

m/s =
-1
1.373 56.97 (W/m2℃)
空气的定压比热 = 水量(kg/s)×水的比热
热交换效率系数ε 1' 需要的热交换效率系数ε 1 热平衡
= = = =
1-e-β (1-γ ) 1-γ e-β (1-γ ) t1-t2 t1-tw1 ε 1'-ε 1
=
水流量W
=
=
=
5.4
L/S
水流量m3/s = 0.81 水通断面积m2 全热冷量(KW) 111.87 析湿系数ξ = = 81.45 显热冷量(KW) + 1/(303.134ω 0.8)] 传热系数K = [1/(37.947 Vy0.464ξ 0.673) 表冷器能达到的热交换效率系数 传热系数(W/m2℃×散热面积(m2) 10044.55 = 传热单元数β = 析湿系数×风量(kg/s)×空气的定压比热 9248.21 水流速ω = 水当热比γ
(Pa) (KPa)
表冷器计算
序号: 已知参数: 1. 风量G— 20000 m3/h 2.全热冷量Q—111.87 kW 3.进口水温tw1— 7 ℃ 4.出口水温tw2—12 ℃ 计算: 空气出口参数 干球温度t2— 14.93 ℃ 湿球温度ts2— 14.04 ℃ 焓i2— 39.105 KJ/KG 型 号: 1520 5.空气进口参数 干球温度t1— 27.00 ℃ 湿球温度ts1— 19.50 ℃ 焓i1— 55.886 KJ/KG
表冷器参数 翅片型式— φ 9.52—波纹压花片 mm 片距— 1.95 4 排数— 50 面管数— 单排表冷器传热面积 : 44.1 m2 表面风速Vy = 风量(m3/s) 迎风面积(m2) 全热冷量KW 进出水温升℃ =

表冷器计算书

表冷器计算书

表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4。

667kg/s空气体积流量 q vg=14000/3600≈3。

889m3/s②空气进、出口温度:干球:35/17℃湿球:30。

9/16。

5℃③空气进、出口焓值:105。

26/46。

52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1—(t g2—t s2)/(t g1—t s1)=1-(17-16。

5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0。

887~0。

875从这我们可以看出:六排管即可满足要求。

(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大.我近30遍的手工计算也证明了这一点。

提高水流速和降低水温对提高换热总量有更为积极的贡献。

通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。

于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。

这样就出现了大流量小温差的情况,水流速ω可以提高。

在冷冻水里添加乙二醇,使冷冻水的冰点下降。

很容易我们发现对数平均温差提高了很多。

从而达到了提高换热总量的目的。

)③选型分析:⊙冷负荷 Q= q mg×(h1—h2)4。

667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64。

68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。

推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。

表冷器换热面积计算

表冷器换热面积计算

表冷器换热面积计算
表冷器换热面积的计算方法有多种,其中最常用的是经验公式法。

这种方法基于实验研究或理论分析,得出表冷器换热面积和制冷系统需要的其他参数之间的关系。

常用的经验公式有Gnielinski公式、Kays和London公式等。

此外,还可以通过换热面积简易计算公式进行计算,即F=Q/kKx△tm,其中F是换热器的有效换热面积,Q是总的换热量,k是污垢系数一般取0.8-0.9,K是传热系数,△tm是对数平均温差。

另外,也可以根据总通水面积计算公式进行计算,即f=1.767×10-4·n(m2),其中n为通风机的通风量。

以上信息仅供参考,具体可查阅有关表冷器换热面积计算的专业书籍或咨询专业人士。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.809111321
m/s
0.592364095
m/s
根据给定的设计参数、室外参数和进风温度,可以计算表冷器进出风状态点的参数如下:
大气压力 进风干球温度t1 进风湿球温度ts1 进风焓 i1 出风干球温度t2 出风湿球温度ts2 出风焓 i2 机器露点 t3 机器露点温度对应的焓i3 则: 达到空气处理过程所需要的冷却效率η=(i1-i2)/(i1-i3) 达到空气处理过程所需要的制冷量 Q0=G*ρ*(i1-i3) 空气处理过程中的析湿系数ξ=(i1-i2)/(t1-t2)/cp 2排传热系数K=1/(1/(45.895Vy0.444ξ0.463)+1/(359.734ω0.8)) 对数传热温差ΔT=((t1-tw2)-(t2-tw1))/ln((t1-tw2)/(t2-tw1)) 传热量Q=K*F*ΔT 2排接触系数η'=0.985502-0.012435Vy
kW
W/m2℃ ℃ kW
下面对计算结果进行校核验证:
第49项与第55项的偏差:|η'-η| / η *100% 第50项与第54项的偏差:|Q-Q0| / Q0 *100% 设计校核偏差大于5%,请重新设计和校核!
2排干工况空气阻力Hg=12.515Vy1.696 2排湿工况空气阻力Hs=17.058Vy1.544ξ0.125 水阻力Hw=1.061mLω2+0.489(m-1)πs1ω2+10.945ω2+0.05ω'2
51.78732823
%
1.042046237
%
31.0500707
Pa
37.87205668
Pa
77.24760355
kPa
101325 25
25.7 79.1
15 13.5 71.21111111 10.39 75.15555556
Pa ℃ ℃ kJ/kg ℃ ℃ kJ/kg ℃ kJ/kg
2 7.1 0.788888889 47.84864712 10.29849538 7.026014717 0.964253435
m2
0.41256452
14.72235074
16.24269776
0.599352099
14.25822991
m2
0.438912
m2
1.708770779
m/s
2.851029941
m/s
0.004243066
m
7

12

1.220980224
m3/h
换热管内水流速ω 集水管内水流速ω'
设计风量 设计冷量 本机采用铜管套铝片表冷器,其结构参数如下: 翅片形状 每排管管数N= 管排数P= 分路数n= 每路水程管数m= 盘管组合数Z= 每组盘管集水管规格S= 每组盘管集水管内径Di= 翅片密度FPI= 片间距e= 管间距s1= 排间距s2= 叠片长度L= 铜管内径di= 铜管外径do= 翅片厚度δ= 则: 每米肋管长的肋片表面积Af=(s1*s2-π*do2/4)*2/e 每米肋管长的肋片间基管外表面积Ap=π*do*(e-δ)/e 每米换热管外表面的换热面积为A=Af+Ap 每米换热管内表面的换热面积为Ai=π*di 肋化系数τ=A/Ai 肋通系数(每米肋管外表面积与迎风面之比)a=A/s1 净面比(最窄流通断面积与迎风面之比) ε=(s1-do)(e-δ)/s1/e 总的换热面积 F=A*总换热管长 迎风面积 Fy=N*s1*L 迎面风速 Vy=Qf/Fy/3600 最小流动截面的风速v=Vy/ε 空气流通段面的当量直径de=2*(s1-di)*(e-δ)/((s1-di)+(e-δ)) 进水温度tw1 出水温度tw2 水量
2700
m3/h
7.1
kW
波纹 18 2 3 12 1
DN25 0.027
10 0.00254 0.0254 0.021997045
0.96 0.00892 0.00952 0.000105
根 排 路 程 个 m m 片/英寸 m m m m m m m
0.383892914
m2
0.028671609
相关文档
最新文档