卧式容器(JB4731-2005)讲解
JBT4731-2005钢制卧式容器讲稿

JBT 4731-2005 钢制卧式容器讲稿1.适用范围JB/T 4731—2005《钢制卧式容器》相对于原来GB l50—1989第8章作了部分修订,如:取消圈座支承,增加鞍座轴向弯曲强度校核及附录A《有附加载荷作用时卧式容器的强度汁算》等。
JB/T 4731适用于设计压力不大于35MPa,在均布载荷作用下,由两个对称的鞍式支座支承的常压及受压卧式容器,它不适用于:——直接火焰加热及受核辐射作用的卧式容器;——经常搬运的卧式容器;——带夹套的卧式容器;一一作疲劳分析的卧式容器:卧式容器设计是先根据操作压力(内压、外压)确定壁厚,再依据自重、风、地震及其他附加载荷来校核轴向、剪切、周向应力及稳定性,卧式容器设计还包括支座位置的确定及支座本身的设计。
2.术语和定义.操作压力.设计压力.计算压力.试验压力设计温度工作温度试验温度计算厚度设计厚度名义厚度有效厚度3设计的一般规定3.1 设计压力的确定:(a)设计压力值应不低于操作压力;(b)装有超压泄放装置时,设计压力按GB150附录B确定设计压力;(c)液化气体,液化石油气的卧式容器,按《容规》规定确定设计压力;(d)真空容器的设计压力按承受外压考虑,当装用安全控制装置时,设计压力取 1.25倍的最大内外压差或0.1Mpa两者的较低值;当无安全控制装置时,设计压力取0.1Mpa。
3.2设计温度的确定:(a)设计温度不低于元件金属在工作时可能达到的最高温度。
对于0度以下的金属温度,设计温度不应高于元件金属在工作时可能达到的最低温度。
铭牌上应标志设计温度。
(b)低温卧式容器的设计温度按GB150附录C规定确定。
3.3元件金属温度确定(a)传热计算;(b)在已使用的同类容器上测定;(C)在使用过程中,金属温度接近介质温度时按内部介质温度确定。
3.4 对于有不同工况的卧式容器,应按最苛刻的工况设计,并在图样或技术文件中注明各工况的操作压力和操作温度。
3.5设计载荷(a).长期载荷设计压力——内压、外压;液体静压力;容器质量载荷——自身质量,容器所容纳的物料质量,保温层、梯子平台、接管等附件质量载荷。
卧式容器(JB4731-2005)教材

《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
σ7 ,σ8 有加强圈时,承受F/4,Mφ是由加强圈,故第一项分母为A0 (加强圈组合截面面积)。第二项分母为I0 (加强圈组合截面惯性)。
σ7 是当有外加强圈时筒体内表面处的应力, 当有内加强圈时筒体外表面处的应力。
2013年陕西省压力容器设计人员培训班
《钢制卧式容器》
----JB/T 4731-2005
淡 勇
(教授)
西北大学化工学院 College of Chemical Engineering Northwest University
一. 前言
《钢制卧式容器》 ----JB/T 4731-2005
JB/T4731是1993年开始编写。1998年完成2000年版。后因
《钢制卧式容器》JB/T 47312005
2)地震及地震影响系数 考虑地震主要是为校核鞍座的强度。(请参见JB/T4731 P44 2节)
1)σ9 增加垫板起加强作用,此时由垫板承受部分Fs力(使鞍座腹板分开的), 即分母改为 Hsbo+brδre
这里有几点说明:
-地震力不考虑垂直地震力,取水平地震力; -地震力对鞍座的作用,其作用力取筒体轴线方向,因鞍座该方向抗弯性差; -卧式容器按放位置一般不高,风载相对地震较小,计算中没考虑,但对于按放
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
7.3.4 圆筒周向应力
它是由切向剪应力使筒体产生周向弯矩(切向剪力的水平、垂直分量对筒体取 矩)。其弯矩图如JB/T4731图7—5或下面图22.4.5-1。无加强圈或加强圈位于鞍 座平面内时,最大弯矩发生在鞍座边角处;加强圈靠近鞍座平面内时最大弯矩发
卧式容器

JB/T4731-2005 <<钢制卧式容器>>1.适用范围JB/T 4731—2005《钢制卧式容器》相对于原来GB l50—1989第8章作了部分修订,如:取消圈座支承,增加鞍座轴向弯曲强度校核及附录A《有附加载荷作用时卧式容器的强度汁算》等。
JB/T 4731适用于设计压力不大于35MPa,在均布载荷作用下,由两个对称的鞍式支座支承的常压及受压卧式容器,它不适用于:——直接火焰加热及受核辐射作用的卧式容器;——经常搬运的卧式容器;——带夹套的卧式容器;一一作疲劳分析的卧式容器:卧式容器设计是先根据操作压力(内压、外压)确定壁厚,再依据自重、风、地震及其他附加载荷来校核轴向、剪切、周向应力及稳定性,卧式容器设计还包括支座位置的确定及支座本身的设计。
2.术语和定义.操作压力.设计压力.计算压力.试验压力设计温度工作温度试验温度计算厚度设计厚度名义厚度有效厚度3设计的一般规定3.1 设计压力的确定:(a)设计压力值应不低于操作压力;(b)装有超压泄放装置时,设计压力按GB150附录B确定设计压力;(c)液化气体,液化石油气的卧式容器,按《容规》规定确定设计压力;(d)真空容器的设计压力按承受外压考虑,当装用安全控制装置时,设计压力取1.25倍的最大内外压差或0.1Mpa两者的较低值;当无安全控制装置时,设计压力取0.1Mpa。
3.2设计温度的确定:(a)设计温度不低于元件金属在工作时可能达到的最高温度。
对于0度以下的金属温度,设计温度不应高于元件金属在工作时可能达到的最低温度。
铭牌上应标志设计温度。
(b)低温卧式容器的设计温度按GB150附录C规定确定。
3.3元件金属温度确定(a)传热计算;(b)在已使用的同类容器上测定;(C)在使用过程中,金属温度接近介质温度时按内部介质温度确定。
3.4 对于有不同工况的卧式容器,应按最苛刻的工况设计,并在图样或技术文件中注明各工况的操作压力和操作温度。
JB-T 4730-2005 标准释义--前言

JB-T 4730-2005 标准释义--前言目次前言..................................................................................................................218 引言..................................................................................................................222 第1章 JB/T4730.1通用要求..............................................................................225 第2章 JB/T4730.2射线检测..............................................................................231 第3章 JB/T4730.3超声检测..............................................................................247 第4章 JB/T4730.4磁粉检测..............................................................................271 第5章 JB/T4730.5渗透检测..............................................................................282 第6章 JB/T4730.6涡流检测..............................................................................290 第7章参考文献................................................................................................293 第8章使用实例 (295)217前言JB 4730—1994《压力容器无损检测》标准是《压力容器安全技术监察规程》(以下简称《容规》)及有关的产品标准等的配套标准,由全国压力容器标准化技术委员会(以下简称“容标委”)提出,全国压力容器标准化技术委员会制造分会归口,原机械部、化工部、劳动部和中国石油化工总公司联合发布的强制性行业标准。
(19)JB4731-2005钢制卧式容器(英)

JB/T 4731-2005ContentsForeword (2)1. Scope (3)2. Normative references (3)3. Terms and definitions (3)4. General rules (4)5. Material (12)6. Structure (13)7. Strength calculation (14)8. Manufacturing, inspection and acceptance (46)Appendix A (Informative Exhibit) Calibration and Calculation of Strength and Stability of Horizontal Vessels under Additional Load (49)Interpretations to JB/T 4731-200 (62)JB/T 4731-2005ForewordThis standard is stipulated based on Chapter 8: “Horizontal Vessels”of GB 150-1989---Steel Pressure Vessels through incorporation and revision of some contents in design calculation and supplement of requirements for manufacturing, inspection and acceptance of horizontal vessels. Such contents as horizontal vessels of normal pressure, manufacturing conditions as well as calculation of load as incurred by centralized mass and strength verification are supplemented simultaneously with the stipulation of this standard.This standard is compiled in reference to PD 5500-2003 Pressure Vessels of Indirect Fired Process and JIS B 8278-1993 Saddle supported horizontal pressure vessels based on practice in design, manufacturing and inspection of horizontal vessels in China in recent years.Appendix A to this standard belongs to normative exhibit.This standard will substitute JB/T 4731-2000 from the date of implementation. JB/T 4731-2000 has not been published due to references. The standard as substantially substituted is Chapter 8 of GB 150-1989---Steel Pressure Vessels.This standard is proposed by China Standardization Committee on Boilers and Pressure Vessels (SAC/TC 262)This standard is under the jurisdiction of China Standardization Committee on Boilers and Pressure Vessels (SAC/TC 262).This standard is drafted by Hualu Engineering & Technology Co., LtdMajor drafters of this standard: Pei Deyu, Liu Shaojuan and Wang XinjingPersonnel participating in compilation of this standard:Economics & Development Research Institute, SINOPEC: Shou Binan, Gu Zhenming, Li Jianguo, Wang Weiguo and Chen Chaohui.Hualu Engineering & Technology Co., Ltd: Li Zhaoliu Yang YongchengSinopec Engineering Incorporation: Li Shiyu and Yu CunyiNational Technology Center of Process Equipment: Huang Zhenglin and Qin ShujingLanzhou Petroleum Machinery Research Institute: Song BingtangSteel Horizontal Vessels1. ScopeThis standard specifies requirements for design, manufacturing, inspection and acceptance of steel horizontal vessels (hereinafter referred to as horizontal vessels).This standard is applicable to horizontal vessels with design pressure no more than 35MPa as supported by two symmetrical saddle supports under the uniformly distributed load.This standard is not applicable to the following horizontal vessels:a)Vessels subjecting to fired process and nuclear radiation;b)Horizontal vessels frequently transported;c)Vessels requiring fatigue analysis;d)Vessels with sleeves2. Normative referencesThe following standards contain provisions which, through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to applicanes based on this standard encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. GB 150: Steel Pressure VesselsGB/T 700-1988: Carbon Structural SteelsGB/T 1804-2000: General Tolerances---Tolerances for Linear Dimensions without Individual Tolerance IndicationsGB/T 1591-1994: Low-alloy High-Strength Structural SteelsGB 50017-2003: Code for Design of Steel StructuresJB/T4712: Saddle SupportsJB 4733-1996: Explosive Stainless Clad Steel Plate for Pressure VesselsJB/T 4735-1997: Steel welded atmospheric pressure vesselsTechnologic Supervision Regulations On Safety Of Pressure Vessels (issued by formal State Administration of Quality and Technological Supervision in 1999)3. Terms and DefinitionsThe following terms and definitions are applicable to this standard.3.1 PressurePressure indicates gage pressure, if not specified.3.2 Working pressureWorking pressure is defined as the maximum pressure that may occur at the top of the vessel under normal operating conditions.3.3 Design pressureDesign pressure is defined as the maximum set pressure at the top of the vessel and shall be applied as the conditions of design load with the coincident design temperature. The design pressure shall be not less than the working pressure.3.4 Calculating pressureCalculating pressure is defined as the pressure used to determine the thickness of the vessel parts with the coincident design temperature.3.5 Test pressureTest pressure is defined as the pressure on the top of the vessel during pressure test for horizontal vessel.3.6 Design temperatureDesign temperature is defined as the set metal temperature of element under normal operating conditions of the vessel (the mean metal temperature through the cross section of the element). The design temperature shall be applied as the conditions of design load with the coincident design pressure.3.7 Test temperatureTest temperature is defined as the metal temperature of the shell during test.3.8 Thickness3.9 Calculated thicknessCalculated thickness refers to the thickness as obtained by using formula in GB 150 or JB/T 4735 and this standard. If necessary, thickness as required by other load shall be incorporated.3.10 Design thicknessDesign thickness refers to the sum of calculated thickness and corrosion allowance.3.11 Nominal thicknessNominal thickness is defined as the sum of the design thickness and the minus deviation of steel material thickness, then rounded off to the nearest greater thickness specified.3.12 Effective thicknessEffective thickness is defined as the nominal thickness minus the sum of the corrosion allowance and the minus deviation of steel material thickness.4. General rules4.1 The design, fabrication, testing and inspection, and acceptance of horizontal vessels must fully comply with all the applicable requirements of this standard, and be necessary to meet the requirements of appropriate laws, decrees and regulations issued by the Government.4.2 Scope of vessels4.2.1 Horizontal vessels connected with external pipelinesa) The first ring as connected through welding should be oriented towards the bevel end;b) The first threaded joint should be oriented towards the joint end;c) The first flanged sealing face;d) The first sealing face as connected with special connectors or pipe fittings.4.2.2 Bearing end seal and flat cap on connecting tube of horizontal vessel and fasteners.4.2.3 Welded joint between non-load bearing element and horizontal vessel.Elements other than joints, such as saddle support and saddle stiffener should also in compliance with provisions as stipulated in this standard or relevant standards.4.2.4 Overpressure discharging devices as directly connected with horizontal vessel should be in compliance with relevant provisions as stipulated in GB 150. Accessories, such as instruments connected to the horizontal vessel, should be selected as per relevant standards.4.3 Qualifications and responsibilities4.3.1 Qualifications4.3.1.1 The designer and the manufacturer of horizontal vessels shall maintain a sound quality control system.4.3.1.2 The designer must hold an appropriate designer certificate of horizontal vessels. The manufacturer must hold a fabrication license of horizontal vessels.4.3.1.3 Qualifications of manufacturer and inspector of horizontal vessels should be in compliance with relevant provisions as stipulated in JB/T 4735.4.3.2 Responsibilities4.3.2.1 Responsibilities of designera) The designer shall be responsible for the correctness and completeness of all design documents.b)The design documents of horizontal vessels shall at least consists of design calculation sheets and engineering drawings.c) Design drawings of horizontal vessels should be provided with seal of design certificate for pressure vessels.4.3.2.2 Responsibilities of manufacturer4.3.2.2.1 The manufacturer shall ensure the constructed horizontal vessels in conformity with the requirements as prescribed on the design drawings.4.3.2.2.2 The Inspection Department of the manufacturer shall make all of the inspections and tests in details as specified by the provisions of this standard and in accordance with the requirements as prescribed on drawings during the whole course of manufacturing process as well as after completion of construction. After that, the Inspection Department shall provide inspection report, and be responsible for their correctness and completeness.4.3.2.2.3 For each horizontal vessel, the manufacturer shall at least provide the following technical documents for review, which shall be well retained for a period of seven years at least:a) Fabricating procedure drawings or fabricating process cards;b) Material certificates and bills;c) Data sheets of welding procedures and heat treatment process cards;d) Records of those items at the manufacturer’s option permitted by applicable Standards;e) Testing and inspection records during the course of fabricating process and after completion;f) As-built drawings.4.3.2.2.4 The manufacturer shall fill a product certificate and submit it to the user after the safety authority has verified that the vessel was constructed in accordance with the requirements of this standard and the corresponding drawings.4.4 General design requirements4.4.1 Definition of design pressure4.4.1.1 Design pressure shall not be lower than the working pressure.4.4.1.2 For horizontal vessel provided with pressure relief device, the design pressure shall be determined in accordance with Appendix B to GB 150.4.4.1.3 For horizontal vessel filling with liquefied gases and liquefied petroleum gas, design pressure should be in compliance with relevant provisions as stipulated in Technologic Supervision Regulations On Safety Of Pressure Vessels.4.4.1.4 For horizontal vessels under vacuum conditions, the design pressure shall be considered as external pressure. When the vessel is provided with the safety device like vacuum relief valve, the design pressure may be taken as 1.25 times the maximum difference in pressure between inside and outside of a vessel, or the value of 0.1MPa, whichever is lesser. When there is no safety device, the design pressure shall be defined as 0.1MPa.4.4.2 Determination of design temperature4.4.2.1 Design temperature shall not be less than the probable maximum metal temperature of element under operating conditions. For metal temperature below 0℃, the design temperatureshall be equal to or less than the probable minimum metal temperature of the vessel. Design temperature should be indicated on the nameplate.4.4.2.2 For different metal temperatures for elements of horizontal vessels at working status, it is applicable to set design temperature for each element.4.4.2.3 Design temperature of low-temperature horizontal vessel is to be determined as per Appendix C to GB 150.4.4.2.4 The metal temperature of element may be determined by the calculation of heat transfer, or measured on the similar vessel in-service, or be determined in accordance with the inside medium temperature.4.4.3 For horizontal vessel under different operating conditions, the design of vessel shall conform to the most severe operating condition. The corresponding pressures and temperatures of different operating conditions shall be indicated on the drawings or other technical documents.4.4.4. LoadThe following loads and combined loads should be consider for design:a) Pressure;b) Static head of liquids;c) Weight of horizontal vessel (including internal parts) and the contents under the normal operating or testing conditions;d) Centralized and uniformly distributed gravity load of attached equipments, platforms, insulations and liningse) Seismic load;f) Acting force from supports;g) Friction to supports and other acting forces as incurred by thermal expansion;The following loads should be considered if necessary:h) Acting force from connected pipelines and other parts;i) Impact load incurred by violent fluctuation of pressure;j) Impact reactions such as those due to fluid shock;k) Impact from changes to pressure and temperature;l) Acting force incurred during lifting and transportation.4.4.5 Additions to the thicknessAdditions to the thickness shall be determined by Formula (4-1):Where C-thickness addition, mm;C1-minus deviation of material thickness, mm;C2-corrosion allowance, mm4.4.5.1 Minus deviation of steel C1The minus deviation of steel plate or pipe thickness shall be in compliance with the requirements as specified in corresponding steel standards. The minus deviation may be neglected, when it is not greater than 0.25mm, and not exceeds 6% of the nominal thickness.4.4.5.2 Corrosion allowance C2The corrosion allowance shall be considered to protect vessel elements subjected to thinning by corrosion, erosion or mechanical abrasion. Specific provisions are stipulated as follows:a) For elements subjected to corrosion or abrasion, the corrosion allowance shall be determined inaccordance with the specified life of the vessel and the corrosive rate of the medium relative to the material.b) It is applicable to select different corrosion allowance in view of varied degree of corrosion to elements in horizontal vessels;c) For horizontal vessels constructed of carbon steels or low-alloy steels, the corrosion allowance shall be provided not less than 1mm.4.4.6 Minimum thickness of shells after forming, exclusive of any corrosion allowance shall be:a) No less than 3mm for horizontal vessels constructed of carbon steels or low-alloy steels;b) No less than 2mm for horizontal vessels constructed of high-alloy steels.4.5 Allowable stress4.5.1 Allowable stress for load-bearing elements and bolts for horizontal pressure vessels under different temperatures should be selected as per GB 150. Basis for determination of allowable stress is stated as follows: Refer to Table 4-1 for steels other than bolts. Refer to Table 4-2 for bolts. Allowable stress for materials of common horizontal pressure vessels should be selected as per JB/T 4735., but not exceedTable 4-2 Basis for Determination of Allowable Stress (2)In the Table 4-1 and 4-2:Lower limit for typical tensile strength of steels, MPa;Yield strength or 0.2% non-proportional extension strength of steel materials under normal temperature, MPa;Yield strength or 0.2% non-proportional extension strength of steel materials under design temperature, MPa;Mean value of creep rupture strength at design temperature for rupture after 10, 000 hours, MPa;Creep limit at design temperature for 1% of the creep rate after 10, 000 hours, MPa.4.5.2 The allowable stress at 20℃shall be applied for those with the design temperature below 20℃.4.5.3 The allowable stress for stainless steel clad plate:When the bond area between the cladding and the base metal are constructed to meet the requirements of Class B2 in JB4733 or even better, and should the strength of cladding be taken into account in design, the allowable stress for the stainless steel clad plate at design temperature may be determined by Formula (4-2):In the formula:Allowable stress for the stainless steel clad plate at design temperature, MPa;Allowable stress for the base metal at design temperature, MPa;Allowable stress for the cladding at design temperature, MPa;Nominal thickness of the base metal, mmNominal thickness of the cladding, exclusive of corrosion allowance, mm.4.5.4 For antiseptic lining not connected with the shell of horizontal vessel to form an integral part, strength of antiseptic lining can be neglected during design calculation.4.5.5 For the combination of seismic or other loads as stipulated in 4.4.4, the wall stress of vessel shall not exceed 1.2 times the allowable stress.4.5.6 Steel materials other than those as stipulated in GB150 as selected for horizontal vessel should be in compliance with relevant provisions as stipulated in Appendix A to GB 150.4.5.7 Allowable axial compressive stressSmaller value of and B for allowable stress of materials under design temperature is to be selected as the allowable axial compressive stress of drum or the tube. Value B is to be calculated according to the following procedures:a) Calculation coefficient A with Formula (4-3):Where:A---Coefficient;Inner radius of drum or tube, mm;Effective thickness of drum or tube, mm.b) Refer to corresponding charts in GB 150 as per specific materials. If value B is on the right side of material line under design temperature, just cross this point to shift upward for intersection with material line under design temperature (use inset method for intermediate temperature). After that, further shift to the right side by crossing this intersection point to obtain value B. If coefficient A is on the left side of material line under design temperature, value B should be calculated with Formula (4-4):Where:Elastic modulus of materials under design temperature, MPa.4.5.8 Allowable stress for non-load bearing elements other than saddle support shall be selected as per Article 5.4. Allowable stress for critical internal parts and supporting ring as welded on the load-bearing shell shall be selected in reference to bearing elements; whereas that for other shall be determined as per provisions as stipulated in GB 50017.4.6 Coefficient of welded joint4.6.1 For horizontal vessels, coefficient of welded joints Φshould be determined as per welding procedures (single-side or double-side welding; with or without gasket) and NDE length for load-bearing elements.a) For double-welded butt joints or other butt joints of full penetration equivalent to a double welded joint:100% NDE: ;Spot NDE:b) For single-welded butt joints with backing strip fitted on the base metal along the whole length of weld root:100% NDE:Spot NDE:4.6.2 For common horizontal pressure vessels, coefficient of welded joint Φshould be determined as per relevant provisions in JB/T 4735.4.7 Pressure testHorizontal pressure vessels as fabricated should subject to pressure test Types, requirements and testing pressure for pressure test should be indicated on the drawings.4.7.1 Pressure test for horizontal pressure vesselsNormally, pressure test for horizontal pressure vessels is represented by hydraulic test. Testing liquids should be in compliance with provisions as stipulated in GB 150. It is applicable to proceed with air pressure test for horizontal vessels unavailable for hydraulic test. Horizontal pressure vessels should satisfy relevant requirements as stipulated in GB 150 during air pressure test.Horizontal vacuum vessels should subject to pressure test under internal pressure.4.7.1.1 Testing pressureMinimum value of testing pressure for horizontal pressure vessels should be in compliance with the following requirements. Upper limit of testing pressure should satisfy limitations on calibrated stress in Article 4.7.1.2.4.7.1.1.1 Internal horizontal pressure vesselsHydraulic test pressure should be determined as per Formula (4-5):Air pressure test pressure should be determined as per Formula (4-6):Where:Test pressure, MPa;Design pressure, MPa;Allowable stress of vessel part material at test temperature, MPA;Allowable stress of vessel part material at design temperature, MPa;Note:1. When the maximum allowable working pressure is specified on the vessel nameplate, the design pressure p in the formula above shall be replaced by the maximum allowable working pressure.2. When the materials of pressure vessel parts are different, the minimum value of willbe selected.4.7.1.1.2 Horizontal vacuum vesselsTest pressure shall be determined with Formula (4-7):Where:Test pressure, MPa;Design pressure, MPa4.7.1.2 Stress verification before pressure testCalculate stress of drum with Formula (4-8) before pressure test:Where:Stress of drum under testing pressure, MPa;Inner diameter of drum, mm;Test pressure, MPa.Effective thickness of drum, mm;should be verified as per Formula (4-9) and (4-10):For hydraulic test:For air pressure test:Where:Yield strength or 0.2% non-proportional extension strength of drum material at testing temperature, MPa;Coefficient of welded joint for drum.4.7.2 Pressure test for horizontal atmospheric pressure vesselsHorizontal atmospheric pressure vessels as fabricated should subject to hydraulic test. For specific testing requirements, please refer to relevant provisions as stipulated in JB/T 4735.4.7.2.1 Test pressureHydraulic test pressure should be determined with Formula (4-11):select the bigger value of the twoWhere:Test pressure, MPa;Design pressure, MPa;Allowable stress of vessel part material at normal temperature, MPa;Allowable stress of vessel part material at design temperature, MPa;4.7.2.2 Stress verification before pressure testCalculate stress of drum with Formula (4-12) before pressure test:Where:Stress of drum under testing pressure, MPa;Inner diameter of drum, mm;Test pressure, MPa.Effective thickness of drum, mm;should be verified as per Formula (4-13):Where:Yield strength or 0.2% non-proportional extension strength of drum material at testing temperature, MPa;Coefficient of welded joint for drum.4.7.3 For horizontal pressure vessels unavailable for pressure test as per provisions in Article 4.7.1, designer shall submit measures for safe operation of vessels to the technical official for approval and indications on drawings.4.8 Leak testIf vessels contain extremely toxic or highly toxic substances, a leak test shall be conducted on those vessels after pressure test.4.8.1 Airtight testAirtight test should be carried out as per relevant provisions in Technologic Supervision Regulations On Safety Of Pressure Vessels.4.8.2 Other leak testExcept for airtight test, other leak tests can be carried out by using such mediums as ammonia, halogen and helium. Testing methods and items should be indicated on drawings.Note: Grading of toxicity of medium should be in compliance with relevant provisions in Technologic Supervision Regulations On Safety Of Pressure Vessels.5. Material5.1 Steel material for pressure elements of horizontal pressure vessel, steel grade, heat treatment status and allowable stress should be in compliance with provisions as stipulated in GB 150.5.2 Steel material for pressure elements of horizontal atmospheric pressure vessel, steel grade, heat treatment status and allowable stress should be in compliance with provisions as stipulated inJB/T 4735.5.3 Steels for non-load bearing elements should be those as incorporated into the material standards. Steel materials for welded pieces should have perfect welding performance. Steels for critical internal parts and stiffening rings as welded on the pressure shell should be in compliance with provisions in Article 5.1.5.4 Selected saddle materials are listed in Table 5-1.5.5 Base plate for connection of saddle with drum should be of the same material as the drum.5.6 Select Q235 anchor bolts as stipulated in GB/T 700 or Q345 anchor bolts as stipulated inGB/T 159. Allowable stress for Q235 and Q345 anchor bolts should be up to 147 andrespectively. For other carbon steels, ; for other low-alloy steels,.6. Structure6.1 SupportsSelect saddle support for horizontal vessels (See Figure 7-1). When supports are welded to the vessel, one of support should be slide one or in rolling structure.6.1.1 Arrangement of supportsMake sure that distance A between support center and end seal tangent line is below or equal to 0.5Ra. If it is impossible, value A should be over 0.2L.6.1.2 Saddle supportIf saddle support for horizontal vessel is selected as per JB/T 4712, verification of strength of saddle support can be omitted if conditions as stipulated in JB/T 4712 can be satisfied. Otherwise, it is necessary to proceed with strength verification as per Article 7.4.6.2 Perforation and connecting tubeHorizontal vessel should be provided with manhole, manual hole or access hole in addition to technical connecting tubes as required. Outlet should be arranged at the lowest point at vessel bottom. If it is impossible to arrange outlet at drum bottom, it is applicable to arrange bottom insert tube as shown in Figure 6-1. The minimum liquid discharge clearance B1 on the bottom insert tube end should be able to ensure adequate discharge space.All holes and stiffeners on the horizontal vessel should be in compliance with relevant provisions in GB 150.All holes and stiffeners on the horizontal atmospheric pressure vessel should be in compliance with relevant provisions in JB/T 4735.6.3 Arrangement of stiffening ringFigure 6-1: Structure of Outlet on Horizontal Vessel6.3 Arrangement of stiffening ringStiffening ring should be complete or nearly complete. Connection structure between stiffening ring and shell should be in compliance with relevant provisions in GB 150.6.3.1 In view of the fact that horizontal vessel is under local stress, it is applicable to set internal and external stiffening rings on the saddle plane (See Figure 7-8) or at the periphery of saddle plane (See Figure 7-9).6.3.2 In view of instability of horizontal vessel under external force, setting and calculation of stiffening ring should be in compliance with provisions as stipulated in GB 150.7. Strength calculation7.1 Calculate the strength of pressure elements of horizontal vessel as per relevant provisions in GB 150 or JB/T 4735 before checking calculation of strength and stability as per Article 7.3 and 7.4.In view of centralized load as incurred by accessory equipments (4.4.4d), it is applicable to proceed with checking calculation of strength and stability as per Appendix A (Informative Exhibit).7.2 Symbol descriptionDistance between center line of saddle base plate and end seal tangent line (See Figure 7-1), mm;切线Tangent line鞍式支座边角处Saddle support cornerThe sum of combined cross sectional area of all stiffening rings and effective stiffening sections of drum on one saddle, mm2Value as determined in reference to design external pressure as stipulated in GB 15 at design temperature, MPa;Value as determined with external pressure design methods as stipulated in GB 150 atnormal temperature, MPa;Inner diameter of drum, mm;Outer diameter of drum, mm;Counterforce of each support, N;The sum of inertia moment combined cross sectional area of all stiffening rings andeffective stiffening sections of drum on one saddle to sectional spindle X-X (See Figure 7-8, 7-9), mm4Load combination coefficient,Coefficient, refer to Table 7-1 and Table 7-9;Distance of end seal tangent line (See Figure 7-1), mm;Axial bending moment at the drum center, N-mm;Axial bending moment of drum at the saddle, N-mm;Average radius of drum, , mm;Inner radius of spherical part of disk end seal, mm;Inner radius of drum, mm;Axial width of drum, mmWidth of stiffening ring (See Figure 7-8 and 709), mmEffective width of drum, , mm;Effective width of drum when calculating combined cross sectional area of drumandstiffening rings, , mm;Width of saddle base plate (See Figure 7-6), mm;Gravitational acceleration, ;Depth of end seal camber, mm;Coefficient, when the vessel is not welded to the saddle; when the vessel is welded to the saddle;Mass of vessel (including mass of vessel itself, mass of water and medium filled as well as accessories and heat-insulation layer), kg;Design pressure, MPaCalculated pressure, MPa;。
JBT4731-2005钢制卧式容器讲稿

(c)鞍座垫板材料应与壳体材料相同;
(d)地脚螺栓宜选用符合 GB/T700 规定的 Q235 或符合 GB/T1591 规定的 Q345。
如采用其他碳素钢,则 ns=1,6; 如采用其他低合金钢,则 ns≥2.0。
3.14 鞍式支座
卧式容器支座采用 JB/T4712 标准鞍座时,在满足 JB/T4712 所规定的条件时,可免去对 鞍座的强度校核;否则应按 JB/T4731-7.4 进行强度校核。
a)对有腐蚀或磨损的元件, 应根据预期的设计寿命和介质对金属材料的腐蚀速 率确定腐蚀裕量;
b)卧式容器各元件受到的腐蚀程度不同时,可采用不同的腐蚀裕 量;c)碳素钢或低合金钢卧式容器,腐蚀裕量不小于 1mm。 3.7 卧式容器筒体加工成形后不包括腐蚀裕量的最小厚度按下列规定: a)对碳素钢或低合金钢制卧式容器,不小于 3 mm; b)对高合金钢制卧式容器,不小于 2 mm。 3.8 不锈钢复合钢板的许用应力:
3.13 材料
(a) 卧式压力容器材料应 GB150 规定;卧式常压容器材料应 JB/T4735 规定
(b) 鞍座,焊在受压壳体上的重要内件,加强圈等非受压元件用钢应符合下列表中规 定:
使用温度℃
选用材料
许用应力 [σ]sa Mpa
0~250
Q235-B
147
-20~250
Q345
170
≤-20
16MnR
3.6 厚度附加量 C C=C1+C2 C1----钢材厚度负偏差, mm; C2----腐蚀裕量, mm.
钢板或钢管的厚度负偏差按相应钢材标准的规定。当钢材的厚度负偏差不大于 0.25mm,且不超过名义厚度的 0.6%时,在计算中负偏差可忽略不计。 3.6.1 腐蚀裕量 C2
卧式容器(JB4731-2005)

设计温度(环境温度加上+20℃)
>0~250℃(相当环境温度-20℃~250℃) 0~-20℃(相当环境温度-20℃~-40℃) 20R
鞍座材料
Q235-A 16MnR,
对受介质温度影响的按介质温度另行选取。对 表5-1鞍座材料的选取将在 JB/T4712鞍座标准确定后作适当修改及通知。
《钢制卧式容器》JB/T 47312005
有些引用的标准更改而使.2000版没发行。本标准的出版,从编制初 稿、征求意见稿到报批稿,在全国容标委的领导下经过多位专家、人 士的审查、修改后方定稿了2005年版。这是多个单位、专家共同努力
下完成的,应当向这些人表示感谢。一个新标准从编写、出版到应用,
难免会出现不当或错误的地方,希望各单位及各位专家提出指正或发 表文章,以使标准更完善、先进。JB/T4731-2005主要增加内容:卧
3.3.3条 …对焊接结构尚应具有碳含量的合格保证。
《钢制卧式容器》JB/T 47312005
根据此条Q235-A不能应用。因为BG700在1992年第1号修改单中说明“Q235-A中的
碳含量不作为交货条件” ,即在法律上碳含量是不能保证。因此JB/T4731中考虑
的是Q235-B。对于使用温度<-20℃的用16MnR主要是该材料在容器制造中用的较多。 最近网上有人认为按表5-1选材要求太严,而且在计算实例中用的是Q235-A,前后 不一致,故昨早秘书长同有关编审人员协商处理意见如下:
《钢制卧式容器》JB/T 47312005
JB/T4731-2000版
为Q235-A、Q235-AF、16Mn、16MnR。
JB/T4731-2005版选用是这样: GB50017-2003〈钢结构设计规范〉中 3.3.2条 下列情况下的承重结构和构件不应采用Q235沸腾钢:
JB4730.1-2005通用要求介绍

承压设备法规标准体系
4、技术法规(第四层次) 安全监察规程类:《蒸汽锅炉安全技术监察规 程》、《热水锅炉安全技术监察规程》、《压力容 器安全技术监察规程》、《超高压容器安全监察规 程》、《气瓶安全监察规程》、《液化气体汽车罐 车安全监察规程》、《压力管道安全管理与监察规 定 》、《医用氧舱安全管理规定 》、《有机热载 体炉安全技术监察规程》等.
该标准94年1月29日正式发布,94年 5月1日实施。1995年2月原劳动部下达 1995年第65号文“关于贯彻执行JB473094《压力容器无损检测》标准的通知”, 要求压力容器行业的设计、选材、制造、 安装、使用、检验和修理等一律执行 JB4730-94标准。
JB4730-94标准贯彻执行近10年来,对规 范压力容器的管理,保障压力容器产品质量, 提高压力容器行业设计、选材、制造、使用、 检验水平,减少爆炸事故等方面起到了积极的 作用。但是在贯彻执行中也发现了不少问题, 如:有些《容规》中包括的有色金属材料制压 力容器的检测方法在标准中尚没有反映;压力 管道的检测内容缺口比较大;与锅炉行业的关 系不够明确;射线检测部分尚有一些条款不尽 完善,此外在用锅炉、压力容器及压力管道的 无损检测内容尚无标准规范可循等等。
承压设备法规标准体系
1、法律:《特种设备安全监察法》(第一层次) 2、法规:《特种设备安全监察条例》 (第二层次) 3、规章(管理规定、办法):《特种设备事故处理 规定》、《进出口特种设备监督管理办法》、《特 种设备质量监督与安全监察规定》、《特种设备检 验检测机构管理规定 》、《特种设备行政许可实施 办法》、《特种设备注册登记与使用管理规则 》等。 (第三层次)
承压设备标准体系(锅炉)
一、锅炉产品标准:JB/T10094-99《工业锅炉 通用技术条件》、JB/T6696-93《电站锅炉技 术条件》、JB/T7985-95《常压热水锅炉通用 技术条件》、JB/T6503-92《烟道式余热锅炉 通用技术条件》、GB/T1921-98《热水锅炉参 数系列》、GB/T3166-88《工业蒸气锅炉参数 系列》、 JB/T7090-93《余热锅炉参数系列 氧气转炉余热锅炉》JB/T6508-92氧气转炉余 热锅炉技术条件》等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
τh≤1.25[σ]t-σh
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 4731-
7.3.4 圆筒周向应力
2005
它是由切向剪应力使筒体产生周向弯矩(切向剪力的水平、垂直分量对筒体取 矩)。其弯矩图如JB/T4731图7—5或下面图22.4.5-1。无加强圈或加强圈位于鞍 座平面内时,最大弯矩发生在鞍座边角处;加强圈靠近鞍座平面内时最大弯矩发 生在筒体水平中心线靠下一点处。
内压容器 外压容器
正常操作 σ2,σ3 σ1,σ4,
水压试验 σT2,σT3 σT2,σT3
冲水不加压 σT1,σT4, σT1,σT4,
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 4731-
7.3 切向剪应力
2005
它是由支座反力在支座处筒体上引起的切向剪应力。
1)当鞍座平面处有加强圈时最大剪应力发生在筒体水平中心线处(见下a) 。 2)当鞍座平面处无加强圈时最大剪应力发生在筒体水平中心线下鞍座边角处(见
最近网上有人认为按表5-1选材要求太严,而且在计算实例中用的是Q235-A,前后 不一致,故昨早秘书长同有关编审人员协商处理意见如下:
设计温度(环境温度加上+20℃)
鞍座材料
>0~250℃(相当环境温度-20℃~250℃)
Q235-A
0~-20℃(相当环境温度-20℃~-40℃)
16MnR,
20R
对受介质温度影响的按介质温度另行选取。对 表5-1鞍座材料的选取将在 JB/T4712鞍座标准确定后作适当修改及通知。
2005
4.3 由于卧式常压容器与卧式压力容器分别属于不同规范,它们在设计、制造、检验等方面的资 格与职则有差别,故对不同容器的要求将分别与GB150、JB4735中的条款相对应。
4.4.1.3 指〈容规〉的第34—36条。
4.5到4.8 基本与GB150、JB4735一致。
5 材料
5.4 鞍座材料的选用
JB/T4731-2000版 为Q235-A、Q235-AF、16Mn、16MnR。
JB/T4731-2005版选用是这样:
GB50017-2003〈钢结构设计规范〉中
3.3.2条 下列情况下的承重结构和构件不应采用Q235沸腾钢:
焊接结构 定了。
2)…..承受静力荷载的受弯及受拉的重要承重结构。此条把Q235-AF的应用否
《钢制卧式容器》JB/T 47312005
加强时,它位于筒体的顶部;不被加强时位于靠近水平中心线处。(主要
因为支座处顶部筒体发生瘪塌,见图22.4.2) 7.3.2.3 圆筒轴向应力校核 本节列出校核σ1,σ2,σ3,σ4的取值,这在计算机上计算是简单没问 题的,而手工计算时可以简化取其可能产生的较大值,见JB/T4731编制 说明第3条 表2 列出了可能出现的最大值(46页)
浅蝶封头
r=0.10Di hi=0.388Ri
7.3.2.2 筒体轴向应力 σ1,σ2,σ3,σ4,
如把筒体视为D0厚的梁, 这4个应力即是发生在梁最外层的拉及压应力 ,可视为 一次膜应力。σ1,,σ2 分别发生在两支座中间段筒体的顶、底部。σ4发生在支座 处筒体的底部。而σ3,当筒体被封头或有加强圈
二 内容说明(下面按标准中章节顺序号)
1。范围
本标准适用于设计压力不大于35MPa 是指
---。-------------------------。-------------------------。--------------------------。--------------------
- 0.1
-0.02
0.1
35MPa
卧式真空容器
卧式常压容器
卧式压力容器
GB150
JB4735
GB150
d) 体的受力情况、抗
弯断面系数等与假设不符。
2--4.4节 与GB150基本一致,作为一个独立标准,从完整性上是必须的。
《钢制卧式容器》JB/T 4731-
《钢制卧式容器》JB/T 4731-
2005
7 强度计算
简单介绍σ1,,σ2,σ3,σ4,σ5,σ6 ,σ‘6 ,σ7 ,σ8,σ9,及τ,τh 各应力的 性质及位置。
7.3.2.1 注意, 公式(7-2)(7-3)中的hi 对不同的封头,其应取不同值代入
标准椭圆封头
hi=0.5Ri
标准蝶型封头 r=0.15Di hi=0.45Ri
下b) 。
3)当筒体被封头加强时,最大剪应力发生在筒体鞍座边角处。 根据ZICK假设,封头对筒体相当一个支撑,而支撑点在封头的切线处,如图8-7
左下所示在封头上部产生向下的剪力,而支座处为向上的剪力。这两个剪力的水
平分量使封头产生水平拉力QX 该拉力使封头产生剪应力τh (公式见P15)
强度校核 τ≤0.8[σ]t
难免会出现不当或错误的地方,希望各单位及各位专家提出指正或发 表文章,以使标准更完善、先进。JB/T4731-2005主要增加内容:卧 式常压容器;强度计算中增加周向应力考虑鞍座垫板增强作用;鞍座 设计考虑地震载荷;制造技术条件;附录A有集中载荷时强度计算。
《钢制卧式容器》JB/T 47312005
3.3.3条 …对焊接结构尚应具有碳含量的合格保证。
《钢制卧式容器》JB/T 4731-
2005
根据此条Q235-A不能应用。因为BG700在1992年第1号修改单中说明“Q235-A中的 碳含量不作为交货条件” ,即在法律上碳含量是不能保证。因此JB/T4731中考虑 的是Q235-B。对于使用温度<-20℃的用16MnR主要是该材料在容器制造中用的较多。
2013年陕西省压力容器设计人员培训班
《钢制卧式容器》
----JB/T 4731-2005 淡 勇 (教授)
西北大学化工学院 College of Chemical Engineering Northwest University
《钢制卧式容器》
一. 前言
----JB/T 4731-2005
JB/T4731是1993年开始编写。1998年完成2000年版。后因 有些引用的标准更改而使.2000版没发行。本标准的出版,从编制初 稿、征求意见稿到报批稿,在全国容标委的领导下经过多位专家、人 士的审查、修改后方定稿了2005年版。这是多个单位、专家共同努力 下完成的,应当向这些人表示感谢。一个新标准从编写、出版到应用,