平面向量性质1

合集下载

届数学一轮复习第五章平面向量第1节平面向量的概念及线性运算教学案含解析

届数学一轮复习第五章平面向量第1节平面向量的概念及线性运算教学案含解析

第1节平面向量的概念及线性运算考试要求1。

了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4。

掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义。

知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量。

规定:0与任一向量平行。

(5)相等向量:长度相等且方向相同的向量。

(6)相反向量:长度相等且方向相反的向量。

2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a。

(2)结合律:(a+b)+c=a+(b+c)减法减去一个向量相当于加上这个向量的相反向量a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λaλ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb=03.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa。

[常用结论与微点提醒]1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即错误!+错误!+错误!+…+错误!=错误!,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2。

中点公式的向量形式:若P为线段AB的中点,O为平面内任一点,则错误!=错误!(错误!+错误!).3。

错误!=λ错误!+μ错误!(λ,μ为实数),若点A,B,C共线,则λ+μ=1.4.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是考虑向量的方向;二是要特别注意零向量的特殊性,考虑零向量是否也满足条件.诊断自测1。

教学设计3:6.3.1 平面向量基本定理

教学设计3:6.3.1  平面向量基本定理

6.3.1 平面向量基本定理一、教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x i+y j.于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.二、教学目标1、知识与技能:了解平面向量的基本定理及其意义;理解平面里的任何一个向量都可以用两个不共线的向量来表示,掌握平面向量正交分解及其坐标表示。

2、过程与方法:初步掌握应用向量解决实际问题的重要思想方法;能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达。

3、情感态度与价值观:通过平面向量的正交分解及坐标表示,揭示图形(向量)与代数(坐标)之间的联系。

三、重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的运用.四、教学设想(一)导入新课思路 1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G ,可分解为使物体沿斜面下滑的力F 1和使物体垂直于斜面且压紧斜面的力F 2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v ,可分解为沿水平方向的速度vcosα和沿竖直方向的速度vsinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e 1、e 2是同一平面内的两个不共线的向量,a 是这一平面内的任一向量,那么a 与e 1、e 2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?(二)推进新课、新知探究、提出问题图1①给定平面内任意两个不共线的非零向量e 1、e 2,请你作出向量3e 1+2e 2、e 1-2e 2.平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?②如图1,设e 1、e 2是同一平面内两个不共线的向量,a 是这一平面内的任一向量,我们通过作图研究a 与e 1、e 2之间的关系.活动:如图1,在平面内任取一点O,作=e 1,=e 2,=a .过点C 作平行于直线OB 的直线,与直线OA ;过点C 作平行于直线OA 的直线,与直线OB 交于点N .由向量的OA OB OC线性运算性质可知,存在实数λ1、λ2,使得=λ1e 1,=λ2e2.由于,所以a =λ1e 1+λ2e 2.也就是说,任一向量a 都可以表示成λ1e 1+λ2e 2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e 1、e 2表示出来.当e 1、e 2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.定理说明:(1)我们把不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解;(4)基底给定时,分解形式唯一.讨论结果:①可以.②a =λ1e 1+λ2e 2.提出问题①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? ②对平面中的任意一个向量能否用两个互相垂直的向量来表示?活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:图2已知两个非零向量a 和b (如图2),作=a ,=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.显然,当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.因此,两非零向量的夹角在区间[0°,OM ON ON OM OC +=OA OB180°]内.如果a与b的夹角是90°,我们说a与b垂直,记作a⊥b.由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量λ1a1和λ2a2,使a=λ1a1+λ2a2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.②可以.提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?图3活动:如图3,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x i+y j①这样,平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y)②其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j=(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a与有序实数对(x,y)一一对应.(2)向量a 的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,是表示a 的有向线段,A 1、B 1的坐标分别为(x 1,y 1)、(x 2,y 2),则向量a 的坐标为x =x 2-x 1,y =y 2-y 1,即a 的坐标为(x 2-x 1,y 2-y 1). (3)为简化处理问题的过程,把坐标原点作为表示向量a 的有向线段的起点,这时向量a 的坐标就由表示向量a 的有向线段的终点唯一确定了,即点A 的坐标就是向量a 的坐标,流程表示如下:讨论结果:①平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).②是一一对应的.(三)应用示例 思路1例1 如图4,ABCD ,=a ,=b ,H 、M 是AD 、DC 之中点,F 使BF =BC ,以a ,b 为基底分解向量.图4活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.解:由H 、M 、F 所在位置,有=b +a . =a b . 点评:以a 、b 为基底分解向量与,实为用a 与b 表示向量与.11B A AB AD 31HF AM 和+=+=AD DM AD AM a b AB AD DC 212121+=+=AB 2121AD AD AB AD BC AH BF AB AH AF HF 21312131-+=-+-+=-=61-AM HF AM HF变式训练已知向量e 1、e 2(如图5),求作向量-2.5e 1+3e 2.图5作法:(1)如图,任取一点O,作=- 2.5e 1,=3e 2.(2)作OACB .故OC 就是求作的向量.例2 如图6,分别用基底i 、j 表示向量a 、b 、c 、d ,并求出它们的坐标.图6活动:本例要求用基底i 、j 表示a 、b 、c 、d ,其关键是把a 、b 、c 、d 表示为基底i 、j 的线性组合.一种方法是把a 正交分解,看a 在x 轴、y 轴上的分向量的大小.把向量a 用i 、j 表示出来,进而得到向量a 的坐标.另一种方法是把向量a 移到坐标原点,则向量a 终点的坐标就是向量a 的坐标.同样的方法,可以得到向量b 、c 、d 的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a 与b 关于y 轴对称,a 与c 关于坐标原点中心对称,a 与d 关于x 轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a =+=x i +y j ,∴a =(2,3).同理,b =-2i +3j =(-2,3);c =-2i -3j =(-2,-3);d =2i -3j =(2,-3).点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.变式训练i ,j 是两个不共线的向量,已知=3i +2j ,=i +λj ,=-2i +j ,若A 、B 、D 三点共线,试求实数λ的值.OA OB OC 1AA 2AA AB CB CD解:∵=-=(-2i +j )-(i +λj )=-3i +(1-λ)j ,又∵A 、B 、D 三点共线,∴向量与共线.因此存在实数υ,使得=υ,即3i +2j =υ[-3i+(1-λ)j ]=-3υi +υ(1-λ)j .∵i 与j 是两个不共线的向量,故∴∴当A 、B 、D 三点共线时,λ=3. 例 3 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A.①②B.②③C.①③D.①②③活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解析:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B点评:本题主要考查的是学生对平面向量定理的理解.思路2例1 如图7,M 是△ABC 内一点,且满足条件0,延长CM 交AB 于N ,令=a ,试用a 表示.图7活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.BD CD CB AB BD AB BD ⎩⎨⎧=-=-,2)1(,33λv v ⎩⎨⎧=-=.3,1λv =++CM BM AM 32CM CN由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a =a 1e 1+a 2e 2=b 1e 1+b 2e 2,则 解:∵ ∴由=0,得0. ∴=0. 又∵A 、N 、B 三点共线,C 、M 、N 三点共线, 由平行向量基本定理,设∴0.∴(λ+2)+(3+3μ)=0.由于和不共线,∴∴ ∴∴=2a .点评:这里选取作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形式来解决.变式训练设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ、μ满足λa +μb =5e 1-e 2,求λ、μ的值.解:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb =5e 1-e 2.由平面向量基本定理,知 解之,得λ=1,μ=-1.⎪⎩⎪⎨⎧==.,2211b a b a ,,NM BN BM NM AN AM +=+=CM BM AM 32++=++++CM NM BN NM AN 3)(2)(CM BN NM AN 323+++,,NM CM BN AN μλ===+++NM BN NM BN μλ323BN NM BN NM ⎩⎨⎧=+=+,033,02μλ⎩⎨⎧-=-=12μλ.MN NM CM =-=CM MN CM CN 2=+=NM BN ,⎩⎨⎧-=+=-.154,523λλλλ例2 如图8,△ABC 中,AD 为△ABC 边上的中线且AE =2EC ,求的值.图8活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值. 解:设 ∵=,即-=-, ∴=(+). 又∵=λ=λ(-),∴==+.① 又∵=μ,即-=μ(-), ∴(1+μ)=+μ= 又=,∴=+.② 比较①②,∵、不共线, ∴解之,得∴ 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.变式训练过△OAB 的重心G 的直线与边OA 、OB 分别交于P 、Q ,设=h ,,试GEBG GD AG 及μλ==GEBG GD AG ,BD DC AD AB AC AD AD 21AB AC AG GD AD AG AG λλ+1AD )1(2λλ+AB )1(2λλ+AC BG GE AG AB AE AG AG AB AG AE ,AE AB μμμ+++111AE 32AC AG AB μ+11)1(32μμ+AC AB AC ⎪⎪⎩⎪⎪⎨⎧+=++=+.)1(32)1(2,11)1(2μμλλμλλ⎪⎩⎪⎨⎧==23,4μλ.23,4==GE BG GD AG OP OA OB k OQ =证: 解:设=a ,=b ,OG 交AB 于D ,则=()=(a +b )(图略). ∴==(a +b ),=(a +b )-k b =a +b , =h a -k b . ∵P 、G 、Q 三点共线,∴.∴a +b =λh a -λk b .∴ 两式相除,得, ∴=3. (四)知能训练1.已知G 为△ABC 的重心,设=a ,=b ,试用a 、b 表示向量.2.已知向量a =(x +3,x 2-3x -4)与相等,其中A (1,2),B (3,2),求x . 解答:1.如图9,=,图9 而a +(b -a )=a +b , ∴(a +b )=a +b . 点评:利用向量加法、减法及数乘的几何意义.2.∵A (1,2),B (3,2),∴=(2,0).∵a =,∴(x +3,x 2-3x -4)=(2,0).∴解得∴x =-1.311=+kh OA OB OD 21OB OA +21OG 32OD 31OQ OG QG -=3131331k -OQ OP QP -=QP QG λ=31331k -⎪⎪⎩⎪⎪⎨⎧-=-=.331,31k k h λλ.3311hk h k k h k =+⇒-=-kh 11+AB AC AG AB AG 32AD =+=+=BC AB BD AB AD 212121213232==AD AG 21213131AB AB ⎩⎨⎧=--=+043,232x x x ⎩⎨⎧=-=-=.41,1x x x 或AB点评:先将向量用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决.(五)课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.。

高一数学人教A版必修4课件:2.3.1 平面向量基本定理

高一数学人教A版必修4课件:2.3.1 平面向量基本定理
明目标、知重点
跟踪训练 2 如图,已知△ABC 中,D 为 BC 的 中点,E,F 为 BC 的三等分点,若A→B=a,A→C
=b,用 a、b 表示A→D、A→E、A→F 解 A→D=A→B+B→D=A→B+12B→C =a+12(b-a)=12a+12b; A→E=A→B+B→E=A→B+13B→C
明目标、知重点
2.准确理解平面向量基本定理 (1)平面向量基本定理的实质是向量的分解,即平面内任一向量 都可以沿两个不共线的方向分解成两个向量和的形式,且分解 是唯一的. (2)平面向量基本定理体现了转化与化归的数学思想,用向量解 决几何问题时,我们可以选择适当的基底,将问题中涉及的向 量向基底化归,使问题得以解决.
明目标、知重点
思考 3 如图,△ABC 中,A→C与A→B的夹角与C→A与 A→B的夹角是否相同? 答 不相同,它们互补.A→C与A→B的夹角为∠CAB,而C→A与A→B的夹 角为 π-∠CAB.
明目标、知重点
例1 已知e1,e2是平面内两个不共线的向量,a=3e1-2e2, b=-2e1+e2,c=7e1-4e2,试用向量a和b表示c. 解 ∵a,b不共线,
→→ 以OA,OB为邻边作平行四边形 OACB,则


OC=a+b,BA=a-b.
∵|a|=|b|,∴平行四边形OACB为菱形.
明目标、知重点
∴O→C与O→A的夹角∠AOC=60°, B→A与O→A的夹角即为B→A与B→C的夹角∠ABC=30°. ∴a+b与a的夹角为60°,a-b与a的夹角为30°. 反思与感悟 求两个向量的夹角,关键是利用平移的方法使两个 向量的起点重合,根据向量夹角的概念确定夹角,再依据平面图 形的知识求解向量的夹角.过程简记为“一作二证三算”.

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,

第二章 2.3.1 平面向量基本定理

第二章 2.3.1  平面向量基本定理

§2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一 平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.2.基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 两向量的夹角与垂直1.夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.2.垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b . 思考 如何正确理解两向量夹角概念答案 (1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.1.平面内任意两个向量都可以作为平面内所有向量的一组基底.( × ) 提示 只有不共线的两个向量才可以作为基底. 2.零向量可以作为基向量.( × )提示 由于0和任意向量共线,故不可作为基向量. 3.平面向量基本定理中基底的选取是唯一的.( × )提示 基底的选取不是唯一的,不共线的两个向量都可作为基底.4.若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( √ )题型一 对基底概念的理解例1 设e 1,e 2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ) A .e 1+e 2和e 1-e 2 B .3e 1-4e 2和6e 1-8e 2 C .e 1+2e 2和2e 1+e 2 D .e 1和e 1+e 2考点 平面向量基本定理 题点 基底的判定 答案 B解析 选项B 中,6e 1-8e 2=2(3e 1-4e 2),∴6e 1-8e 2与3e 1-4e 2共线,∴不能作为基底,选项A ,C ,D 中两向量均不共线,可以作为基底.故选B.反思感悟 考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练1 若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )A .e 1-e 2,e 2-e 1B .2e 1-e 2,e 1-12e 2C .2e 2-3e 1,6e 1-4e 2D .e 1+e 2,e 1+3e 2 考点 平面向量基本定理 题点 基底的判定 答案 D解析 选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2⎝⎛⎭⎫e 1-12e 2,也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 题型二 用基底表示向量例2 如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.考点 平面向量基本定理 题点 用基底表示向量解 ∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点, ∴AD →=BC →=2BE →,BA →=CD →=2CF →, ∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE →=-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →. 解 取CF 的中点G ,连接EG .∵E ,G 分别为BC ,CF 的中点, ∴EG →=12BF →=12b ,∴DG →=DE →+EG →=a +12b .又∵DG →=34DC →=34AB →,∴AB →=43DG →=43⎝⎛⎭⎫a +12b =43a +23b .又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →,∴AD →=BC →=b +12⎝⎛⎭⎫43a +23b =23a +43b . 反思感悟 将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练2 如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 43解析 设AB →=a ,AD →=b , 则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.题型三 向量的夹角例3 已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.考点 向量夹角的定义及夹角的范围 题点 求向量的夹角解 如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB ,则OC →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC ,即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.反思感悟 (1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1,λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练3 在△ABC 中,∠C =90°,BC =12AB ,则AB →与BC →的夹角是( )A .30°B .60°C .120°D .150° 考点 向量夹角的定义及夹角的范围 题点 求向量的夹角 答案 C 解析 如图,作向量AD →=BC →,则∠BAD 是AB →与BC →的夹角,在△ABC 中,因为∠C =90°,BC =12AB ,所以∠ABC =60°,所以∠BAD =120°.平面向量基本定理的应用典例 如图,点A ,B ,C 是圆O 上三点,线段OC 与线段AB 交于圆内一点P .若OC →=mOA →+2mOB →,AP →=λAB →,则λ=________.答案 23解析 ∵OP →与OC →共线,∴存在实数μ,使OP →=μOC →=mμOA →+2mμOB →.∵AP →=OP →-OA →,∴AP →=mμOA →+2mμOB →-OA →=(mμ-1)OA →+2mμOB →=λAB →=λ(OB →-OA →)=-λOA →+λOB →. ∵OA →与OB →不共线,∴⎩⎪⎨⎪⎧mμ-1=-λ,2mμ=λ,解得λ=23.[素养评析] 1.利用平面向量基本定理解决问题时,要抓住用基底表示向量时系数λ1,λ2的唯一性.2.本题主要考查利用平面向量基本定理,建立方程运算求出未知向量,体现了数学运算的核心素养.1.给出下列三种说法:①一个平面内只有一组不共线的向量可作为表示该平面内所有向量的基底;②一个平面内有无数组不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量. 其中,说法正确的为( )A .①②B .②③C .①③D .①②③ 考点 平面向量基本定理 题点 基底的含义与性质 答案 B2.如图所示,设O 是平行四边形ABCD 的两条对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →. 其中可作为该平面内所有向量的基底的是( ) A .①② B .①③ C .②④ D .③④ 考点 平面向量基本定理 题点 基底的判定 答案 B解析 ②中DA →与BC →共线,④中OD →与OB →共线,①③中两向量不共线,故选B.3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________.考点 平面向量基本定理的应用题点 利用平面向量基本定理求参数 答案 -15 -12解析 ∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧ 2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.4.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 12解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →) =-16AB →+23AC →,又∵AB →与AC →不共线,∴λ1=-16,λ2=23,λ1+λ2=-16+23=12.5.在△ABC 中,点D ,E ,F 依次是边AB 的四等分点,试以CB →=e 1,CA →=e 2为基底表示CF →.考点 平面向量基本定理 题点 用基底表示向量 解 AB →=CB →-CA →=e 1-e 2,因为D ,E ,F 依次是边AB 的四等分点, 所以AF →=34AB →=34(e 1-e 2),所以CF →=CA →+AF →=e 2+34(e 1-e 2)=34e 1+14e 2.1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量.②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.一、选择题1.如图所示,矩形ABCD 中,BC →=5e 1,DC →=3e 2,则OC →等于( )A.12(5e 1+3e 2) B.12(5e 1-3e 2) C.12(3e 2-5e 1) D.12(5e 2-3e 1) 考点 平面向量基本定理 题点 用基底表示向量 答案 A解析 OC →=12AC →=12(BC →-BA →)=12(BC →+DC →)=12(5e 1+3e 2). 2.如图所示,用向量e 1,e 2表示向量a -b 为( )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2考点 平面向量基本定理 题点 用基底表示向量 答案 C3.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为( ) A .30° B .45° C .60° D .90° 考点 向量夹角的定义及夹角的范围 题点 求向量的夹角 答案 C4.已知A ,B ,D 三点共线,且对任一点C ,有CD →=43CA →+λCB →,则λ等于( )A.23B.13 C .-13 D .-23 答案 C解析 因为A ,B ,D 三点共线,所以存在实数t ,使AD →=tAB →,则CD →-CA →=t (CB →-CA →). 所以CD →=CA →+t (CB →-CA →)=(1-t )CA →+tCB →. 所以⎩⎪⎨⎪⎧1-t =43,t =λ,解得λ=-13.5.设点D 为△ABC 中边BC 上的中点,O 为AD 上靠近点A 的三等分点,则( ) A.BO →=-16AB →+12AC →B.BO →=16AB →-12AC →C.BO →=56AB →-16AC →D.BO →=-56AB →+16AC →考点 平面向量基本定理 题点 用基底表示向量 答案 D解析 依题意,得BO →=AO →-AB →=13AD →-AB →=13×12(AB →+AC →)-AB →=-56AB →+16AC →,故选D. 6.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →等于( )A .a +λbB .λa +(1-λ)bC .λa +bD.11+λa +λ1+λb 考点 平面向量基本定理 题点 用基底表示向量 答案 D解析 ∵P 1P —→=λPP 2—→,∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2, ∴OP →=11+λOP →1+λ1+λOP →2=11+λa +λ1+λb .7.设a ,b 为基底向量,已知向量AB →=a -k b ,CB →=2a +b ,CD →=3a -b ,若A ,B ,D 三点共线,则实数k 的值等于( ) A .2 B .-2 C .10D .-10考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 A解析 AD →=AB →+BC →+CD →=(a -k b )+(-2a -b )+(3a -b )=2a -(k +2)b ,∵A ,B ,D 三点共线,∴AB →=λAD →,即a -k b =λ[2a -(k +2)b ]=2λa -λ(k +2)b ,∵a ,b 为基底向量,∴⎩⎪⎨⎪⎧2λ=1,k =λ(k +2),解得λ=12,k =2.8.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足O P →=13⎝⎛⎭⎫12OA →+12OB →+2OC →,则点P 一定为( )A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .△ABC 的重心D .AB 边的中点 答案 B解析 ∵O 是△ABC 的重心,∴OA →+OB →+OC →=0,∴OP →=13⎝⎛⎭⎫-12OC →+2OC →=12OC →,∴点P 是线段OC 的中点,即AB 边中线的三等分点(非重心).故选B.9.已知a =e 1+e 2,b =2e 1-e 2,c =-2e 1+4e 2(e 1,e 2是同一平面内的两个不共线向量),则c =________.(用a ,b 表示) 考点 平面向量基本定理 题点 用基底表示向量 答案 2a -2b 解析 设c =λa +μb ,则-2e 1+4e 2=λ(e 1+e 2)+μ(2e 1-e 2) =(λ+2μ)e 1+(λ-μ)e 2, 因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧ -2=λ+2μ,4=λ-μ,解得⎩⎪⎨⎪⎧λ=2,μ=-2,故c =2a -2b .10.如图,在△MAB 中,C 是边AB 上的一点,且AC =5CB ,设MA →=a ,MB →=b ,则MC →=________.(用a ,b 表示)考点 平面向量基本定理 题点 用基底表示向量 答案 16a +56b解析 MC →=MA →+AC →=MA →+56AB →=MA →+56(MB →-MA →)=16MA →+56MB →=16a +56b .11.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________. 考点 平面向量基本定理 题点 基底的含义与性质 答案 (-∞,4)∪(4,+∞)解析 若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.12.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.考点 向量夹角的定义及夹角的范围 题点 求向量的夹角解析 由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |, 所以∠ABO =30°,OA ⊥OB , 即向量a 与c 的夹角为90°. 三、解答题13.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB =k .设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →. 考点 平面向量基本定理 题点 用基底表示向量 解 方法一 如图所示,∵AB →=e 2,且DC AB =k ,∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD → =e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0, 且NB →=-12BC →,AM →=12AD →,∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC →=k +12e 2.方法二 如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得DC →=k e 2.则BC →=BE →+EC →=-(AB →-DC →)+AD →=e 1+(k -1)e 2, MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →)=k +12e 2. 方法三 如图所示,连接MB ,MC .同方法一可得DC →=k e 2, BC →=e 1+(k -1)e 2. 由MN →=12(MB →+MC →),得MN →=12(MA →+AB →+MD →+DC →)=12(AB →+DC →)=k +12e 2. 14.如图所示,已知△AOB 中,点C 是以A 为对称中心的点B 的对称点,OD →=2DB →,DC 与OA 交于E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值. 考点 平面向量基本定理 题点 用基底表示向量解 (1)由题意知A 是BC 的中点,且OD →=23OB →=23b .由平行四边形法则知OB →+OC →=2OA →,∴OC →=2OA →-OB →=2a -b ,DC →=OC →-OD →=(2a -b )-23b =2a -53b .(2)EC →∥DC →,又∵EC →=OC →-OE →=(2a -b )-λa =(2-λ)a -b ,DC →=2a -53b ,∴2-λ2=153,∴λ=45.15.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数解 如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt △OCD 中,∵|OC →|=23, ∠COD =30°,∠OCD =90°, ∴|OD →|=4,|CD →|=2, 故OD →=4OA →,OE →=2OB →, 即λ=4,μ=2,∴λ+μ=6.。

2023届高考数学一轮复习讲义:第30讲 平面向量的概念及线性运算

2023届高考数学一轮复习讲义:第30讲 平面向量的概念及线性运算

第30讲 平面向量的概念及线性运算1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,用有向线段表示,此时有向线段的方向就是向量的方向.向量AB →的大小就是向量的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. (4)平行向量(共线向量):方向相同或相反的非零向量.向量a ,b 平行,记作a ∥b .规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量. 2.向量的线性运算 向量运算定 义法则(或几何意义)运算律 加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a +b =b +a . (2)结合律: (a +b )+c =a +(b +c )减法 求两个向量差的运算a -b =a +(-b )数乘规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=λμa ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .➢考点1 平面向量的概念[名师点睛]平行向量有关概念的四个关注点(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的平移混淆.(4)非零向量a与a|a|的关系:a|a|是与a同方向的单位向量.1.(2022·全国·高三专题练习)下列说法正确的是()A.向量//AB CD就是AB所在的直线平行于CD所在的直线B.长度相等的向量叫做相等向量C.若,a b b c==,则a c=D.共线向量是在一条直线上的向量2.(多选)(2022·全国·高三专题练习)下面的命题正确的有()A.方向相反的两个非零向量一定共线B.单位向量都相等C.若a,b满足||||a b>且a与b同向,则a b>D.“若A、B、C、D是不共线的四点,且AB DC=”⇔“四边形ABCD是平行四边形”[举一反三]1.(2022·全国·高三专题练习)下列命题正确的是()A.若a,b都是单位向量,则a b=B.若向量a b∥,b c∥,则a c∥C.与非零向量a共线的单位向量是唯一的D.已知,λμ为非零实数,若a ubλ=,则a与b共线2.(2023·全国·高三专题练习)下列命题正确的是( ) A .向量AB 与BA 是相等向量 B .共线的单位向量是相等向量 C .零向量与任一向量共线 D .两平行向量所在直线平行3.(2023·全国·高三专题练习)设a ,b 都是非零向量,||||a b a b =成立的充分条件是( )A .a b =-B .2a b =C .//a bD .//a b 且||||a b =4.(2023·全国·高三专题练习)有下列命题: ①单位向量一定相等;②起点不同,但方向相同且模相等的几个向量是相等向量; ③相等的非零向量,若起点不同,则终点一定不同; ④方向相反的两个单位向量互为相反向量; ⑤起点相同且模相等的向量的终点的轨迹是圆. 其中正确的命题的个数为______.➢考点2 向量的线性运算[典例]1.(2022·全国·高三专题练习)给出下列命题: ①若,a b 同向,则有b a b a +=+; ②a b +与a b +表示的意义相同; ③若,a b 不共线,则有a b a b +>+; ④a a b <+恒成立;⑤对任意两个向量,a b ,总有a b a b +≤+;⑥若三向量,,a b c 满足0a b c ++=,则此三向量围成一个三角形. 其中正确的命题是__________(填序号)2.(2022·广东·高三开学考试)在平行四边形ABCD 中,点E 、F 分别满足12DE EC =,13BF FD =,若AB a =,AD b =,则EF =( )A .53124a b - B .115124a b - C .133124a b - D .195124a b - 3.如图,在直角梯形ABCD 中,DC →=14AB →,BE →=2EC →,且AE →=rAB →+sAD →,则2r +3s =( )A.1B.2C.3D.4[举一反三]1.(2023·全国·高三专题练习)如图,在ABC 中,D 为BC 的中点,点E 在AD 上,且ED AE 3=,则AE 等于( )A .1122AB AC +B .1328AB AC + C .3388AB AC +D .3182AB AC +2.(2022·全国·高三专题练习)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2EO AE =,则EB ( )A .1566AB AD -B .1566AB AD +C .5166AB AD -D .5166AB AD +3.(2023·全国·高三专题练习)在平行四边形ABCD 中,2233AE AB CF CD ==,,G 为EF 的中点,则DG =( )A .1122AD AB -B .1122AB AD -C .3142AD AB -D .3142AB AD -4.(2022·全国·高三专题练习)如图平面四边形ABCD 中,3,3AD AE BC BF ==,则EF 可表示为( )A .1133AB DC +B .2233AB DC + C .1233AB DC +D .2133AB DC +➢考点3 共线向量定理的应用1.(2021·北京通州·一模)设向量12,e e 是两个不共线的向量,已知122AB e e =-,123AC e e =+,122BD e ke =-,且B ,C ,D 三点共线,则BC =______(用12,e e 表示);实数k =______.2.(2022·全国·高三专题练习)设两个非零向量a 与b 不共线,(1)若AB a b =+,28BC a b =+,()3CD a b =-,求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka b +和k +a b 共线.[举一反三]1.(2023·全国·高三专题练习)已知5AB a b =+,36BC a b =-+,4CD a b =-,则( ) A .A ,B ,D 三点共线 B .A ,B ,C 三点共线 C .B ,C ,D 三点共线D .A ,C ,D 三点共线2.(2023·全国·高三专题练习)设1e ,2e 是平面内两个不共线的向量,()121AB a e e =-+,122AC be e =-0a >,0b >,若A ,B ,C 三点共线,则21a b+的最小值是( )A .8B .6C .4D .23.(2022·全国·高三专题练习)已知向量m ,n 不共线,向量53OA m n =-,OB xm n =+,若O ,A ,B 三点共线,则x =( ) A .53-B .53C .35 D .354.(2023·全国·高三专题练习)已知不共线向量,a b ,()R AB ta b t =-∈,23AC a b =+,若A ,B ,C 三点共线,则实数t = __________.5.(2022·浙江·高三专题练习)在平行四边形ABCD 中,E ,F ,G 分别为边BC ,CD ,DA 的中点,B ,M ,G 三点共线.若(62)AM a AE a AF =+-,则实数a 的值为______. 6.(2022·全国·高三专题练习)已知O ,A ,B 是不共线的三点,且(,)OP mOA nOB m n R =+∈ (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1第30讲 平面向量的概念及线性运算1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,用有向线段表示,此时有向线段的方向就是向量的方向.向量AB →的大小就是向量的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量. (4)平行向量(共线向量):方向相同或相反的非零向量.向量a ,b 平行,记作a ∥b .规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量. 2.向量的线性运算 向量运算定 义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律: a +b =b +a . (2)结合律:(a +b )+c =a +(b +c )减法 求两个向量差的运算a -b =a +(-b )数乘规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=λμa ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .➢考点1 平面向量的概念[名师点睛]平行向量有关概念的四个关注点(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量,解题时,不要把它与函数图象的平移混淆.(4)非零向量a与a|a|的关系:a|a|是与a同方向的单位向量.1.(2022·全国·高三专题练习)下列说法正确的是()A.向量//AB CD就是AB所在的直线平行于CD所在的直线B.长度相等的向量叫做相等向量C.若,a b b c==,则a c=D.共线向量是在一条直线上的向量【答案】C【分析】根据共线向量的定义可判断A,D;由相等向量的定义可判断B,C;进而可得正确选项.【详解】对于A:根据共线向量的定义可知向量//AB CD就是AB所在的直线与CD所在的直线平行或重合,故选项A不正确;对于B:长度相等且方向相同的向量叫做相等向量,故选项B不正确;对于C:若,a b b c==,则a c=,故选项C正确;对于D:方向相同或相反的非零向量叫平行向量,也叫共线向量,零向量与任意向量共线,故选项D不正确;故选:C.2.(多选)(2022·全国·高三专题练习)下面的命题正确的有()A.方向相反的两个非零向量一定共线B.单位向量都相等C.若a,b满足||||a b>且a与b同向,则a b>D .“若A 、B 、C 、D 是不共线的四点,且AB DC =”⇔“四边形ABCD 是平行四边形” 【答案】AD 【分析】根据向量的定义和性质,逐项判断正误即可. 【详解】对于A ,由相反向量的概念可知A 正确;对于B ,任意两个单位向量的模相等,其方向未必相同,故B 错误; 对于C ,向量之间不能比较大小,只能比较向量的模,故C 错误; 对于D ,若A 、B 、C 、D 是不共线的四点,且AB DC =, 可得//AB DC ,且AB DC =,故四边形ABCD 是平行四边形; 若四边形ABCD 是平行四边形,可知//AB DC ,且AB DC =, 此时A 、B 、C 、D 是不共线的四点,且AB DC =,故D 正确.故选:AD. [举一反三]1.(2022·全国·高三专题练习)下列命题正确的是( )A .若a ,b 都是单位向量,则a b =B .若向量a b ∥,b c ∥,则a c ∥C .与非零向量a 共线的单位向量是唯一的D .已知,λμ为非零实数,若a ub λ=,则a 与b 共线【答案】D 【分析】根据向量的基本概念和共线定理,逐项判断,即可得到结果. 【详解】单位向量的方向不一定相同,故A 错误; 当0b =时,显然a 与c 不一定平行,故B 错误; 非零向量a 共线的单位向量有a a±,故C 错误;由共线定理可知,若存在非零实数,λμ,使得a ub λ=,则a 与b 共线,故D 正确.故选:D. 2.(2023·全国·高三专题练习)下列命题正确的是( ) A .向量AB 与BA 是相等向量 B .共线的单位向量是相等向量 C .零向量与任一向量共线 D .两平行向量所在直线平行 【答案】C 【分析】根据向量相等和 平行的定义逐项分析可以求解. 【详解】对于A ,AB BA =- ,故A 错误;对于B ,两个单位向量虽然共线,但方向可能相反,故B 错误; 对于C ,因为零向量没有方向,所以与任何向量都是共线的,故C 正确; 对于D ,两个平行向量所在的直线可能重合,故D 错误;故选:C.3.(2023·全国·高三专题练习)设a ,b 都是非零向量,||||a ba b =成立的充分条件是( )A .a b =-B .2a b =C .//a bD .//a b 且||||a b =【答案】B 【分析】由题意,利用a 、b 上的单位向量相等的条件,得出结论. 【详解】解:因为||a a 表示与a 同向的单位向量,||bb 表示与b 同向的单位向量,所以要使||||a b a b =成立,即a 、b 方向上的单位向量相等,则必需保证a 、b 的方向相同, 故||||a b a b =成立的充分条件可以是2a b =;故选:B . 4.(2023·全国·高三专题练习)有下列命题: ①单位向量一定相等;②起点不同,但方向相同且模相等的几个向量是相等向量; ③相等的非零向量,若起点不同,则终点一定不同; ④方向相反的两个单位向量互为相反向量; ⑤起点相同且模相等的向量的终点的轨迹是圆. 其中正确的命题的个数为______. 【答案】3【分析】由相等向量、相反向量的知识依次判断各个选项即可得到结果. 【详解】对于①,两个单位向量方向不同时不相等,①错误;对于②,方向相同且模长相等的向量为相等向量,与起点无关,②正确;对于③,相等的非零向量方向相同且模长相等,若起点不同,则终点不同,③正确; 对于④,单位向量模长相等,又方向相反,则这两个向量为相反向量,④正确; 对于⑤,若两个向量起点相同,且模长相等且不为零,则终点的轨迹为球面,⑤错误; 则正确的命题个数为3个. 故答案为:3.➢考点2 向量的线性运算1.(2022·全国·高三专题练习)给出下列命题:+=+;①若,a b同向,则有b a b a+表示的意义相同;②a b+与a b+>+;③若,a b不共线,则有a b a b<+恒成立;④a a b+≤+;⑤对任意两个向量,a b,总有a b a b⑥若三向量,,a b c满足0++=,则此三向量围成一个三角形.a b c其中正确的命题是__________(填序号)【答案】①⑤+=+,故①正确;【详解】对于①,若,a b同向,则+b a与,a b同向,所以b a b a+前者表示向量,后者表示向量模的和,表示的意义不相同,故②不对于②,a b+与a b正确;+<+,故③不正确;对于③,若,a b不共线,则有a b a b=+,故④不正确;对于④,若0b=,则a a b+≤+,故⑤正确;对于⑤,对任意两个向量,a b,总有a b a b对于⑥,若三向量,,a b c 满足0a b c ++=,若,,a b c 中有零向量,则此三向量不能围成一个三角形,故⑥不正确.故答案为:①⑤.2.(2022·广东·高三开学考试)在平行四边形ABCD 中,点E 、F 分别满足12DE EC =,13BF FD =,若AB a =,AD b =,则EF =( )A .53124a b - B .115124a b - C .133124a b - D .195124a b - 【答案】A 【分析】结合向量加法法则与减法法则运算求解即可. 【详解】解:因为在平行四边形ABCD 中,点E 、F 分别满足12DE EC =,13BF FD =,所以()()EF AF AE AB BF AD DE =-=+-+,()()111444BF BD AD AB b a ==-=-,所以()115343124a b a b EF a a b ⎡⎤⎛⎫=+--+=- ⎪⎢⎥⎣⎦⎝⎭.故选:A3.如图,在直角梯形ABCD 中,DC →=14AB →,BE →=2EC →,且AE →=rAB →+sAD →,则2r +3s =( )A.1B.2C.3D.4答案 C解析 法一 由题图可得AE →=AB →+BE →=AB →+23BC →=AB →+23(BA →+AD →+DC →)=13AB →+23(AD →+DC →)=13AB →+23⎝⎛⎭⎫AD →+14AB →=12AB →+23AD →. 因为AE →=rAB →+sAD →,所以r =12,s =23,则2r +3s =1+2=3.法二 因为BE →=2EC →, 所以AE →-AB →=2(AC →-AE →),整理,得AE →=13AB →+23AC →=13AB →+23(AD →+DC →)=12AB →+23AD →,以下同法一.法三 如图,建立平面直角坐标系xAy ,依题意可设点B (4m ,0),D (3m ,3h ),E (4m ,2h ),其中m >0,h >0. 由AE →=rAB →+sAD →,得(4m ,2h )=r (4m ,0)+s (3m ,3h ),所以⎩⎪⎨⎪⎧4m =4mr +3ms ,2h =3hs ,解得⎩⎨⎧r =12,s =23,所以2r +3s =1+2=3.[举一反三]1.(2023·全国·高三专题练习)如图,在ABC 中,D 为BC 的中点,点E 在AD 上,且ED AE 3=,则AE 等于( ) A .1122AB AC +B .1328AB AC + C .3388AB AC +D .3182AB AC +【答案】C 【分析】根据平面向量线性运算法则计算可得; 【详解】解:在ABC 中,D 为BC 的中点,所以()12AD AB AC =+, 又ED AE 3=,所以34AE AD =, 所以()3313344288AE AD AB AC AB AC ==⨯+=+;故选:C 2.(2022·全国·高三专题练习)如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2EO AE =,则EB ( )A .1566AB AD -B .1566AB AD +C .5166AB AD -D .5166AB AD +【答案】C 【分析】根据平面向量线性运算法则计算可得; 【详解】解:因为2EO AE =,所以()111366AE AO AC AB AD ===+, 所以()151666EB AB AE AB AB AD AB AD =-=-+=-.故选:C. 3.(2023·全国·高三专题练习)在平行四边形ABCD 中,2233AE AB CF CD ==,,G 为EF 的中点,则DG =( )A .1122AD AB -B .1122AB AD -C .3142AD AB -D .3142AB AD -【答案】B 【分析】根据题意和平面向量的线性运算即可得出结果. 【详解】()1111112111·2222323622DG DE DF DA AE DC AD AB AB AB AD ⎛⎫=+=++=-++=- ⎪⎝⎭. 4.(2022·全国·高三专题练习)如图平面四边形ABCD 中,3,3AD AE BC BF ==,则EF 可表示为( )A .1133AB DC +B .2233AB DC + C .1233AB DC +D .2133AB DC +【答案】D 【分析】利用向量的线性运算的几何表示即得.【详解】∵3,3AD AE BC BF ==,∴20,20EA ED BF CF +=+=, ∵,2222EF EA AB BF EF EA AB BF =++=++, 又EF ED DC CF =++,∴32222EF EA AB BF ED DC CF AB DC =+++++=+,即2133EF AB DC =+.故选:D.➢考点3 共线向量定理的应用1.(2021·北京通州·一模)设向量12,e e 是两个不共线的向量,已知122AB e e =-,123AC e e =+,122BD e ke =-,且B ,C ,D 三点共线,则BC =______(用12,e e 表示);实数k =______.【答案】 124e e -+ 8【分析】由向量减法法则得BC AC AB =-即可得答案,再根据B ,C ,D 三点共线,得BD BC λ=即可得答案.【详解】由向量减法法则得:124BC AC AB e e =-=-+, 由于B ,C ,D 三点共线,所以BD BC λ=,即:()121224e ke e e λ-=-+,所以24k λλ-=⎧⎨-=⎩,解得:28k λ=-⎧⎨=⎩.故答案为:124e e -+;82.(2022·全国·高三专题练习)设两个非零向量a 与b 不共线,(1)若AB a b =+,28BC a b =+,()3CD a b =-,求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka b +和k +a b 共线. 【解】(1)证明:AB a b =+,28BC a b =+,()3CD a b =-,()283BD BC CD a b a b ∴=+=++- ()283355a b a b a b AB =++-=+= AB ∴,BD 共线,又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)ka b +和k +a b 共线,∴存在实数λ,使()ka b a kb λ+=+, 即ka b a kb λλ+=+,()()1k a k b λλ∴-=-.a ,b 是两个不共线的非零向量,10k k λλ∴-=-= 210k ∴-=,1k ∴=±.[举一反三]1.(2023·全国·高三专题练习)已知5AB a b =+,36BC a b =-+,4CD a b =-,则( ) A .A ,B ,D 三点共线 B .A ,B ,C 三点共线 C .B ,C ,D 三点共线D .A ,C ,D 三点共线【答案】A 【详解】由题意得5BD BC CD a b AB =+=+=,又,BD AB 有公共点B ,所以A ,B ,D 三点共线.故选:A2.(2023·全国·高三专题练习)设1e ,2e 是平面内两个不共线的向量,()121AB a e e =-+,122AC be e =-0a >,0b >,若A ,B ,C 三点共线,则21a b+的最小值是( )A .8B .6C .4D .2【答案】A 【分析】根据向量共线定理得到21a b +=,再根据基本不等式可求出结果. 【详解】因为A ,B ,C 三点共线,所以向量AB 、AC 共线, 所以存在R λ∈,使得AB AC λ=,即()121a e e -+()122be e λ=-,即()121a e e -+122be e λλ=-,因为1e 、2e 不共线,所以121a b λλ-=⎧⎨=-⎩,消去λ,得21a b +=,因为0a >,0b >,所以21a b +=()212a b a b ⎛⎫++ ⎪⎝⎭44a b b a =++44228≥+=+⨯=,当且仅当12a =,14b =时,等号成立.故选:A3.(2022·全国·高三专题练习)已知向量m ,n 不共线,向量53OA m n =-,OB xm n =+,若O ,A ,B 三点共线,则x =( ) A .53-B .53C .35 D .35【答案】A【分析】根据O ,A ,B 三点共线,则OA OB ∥,R λ∃∈,OB OA λ=,代入整理. 【详解】因为O ,A ,B 三点共线,则OA OB ∥所以R λ∃∈,OB OA λ=,即()53xm n m n λ+=-整理得:()()531x m n λλ-=+ 又∵向量m ,n 不共线,则5310x λλ-=+=,则53x =-故选:A .4.(2023·全国·高三专题练习)已知不共线向量,a b ,()R AB ta b t =-∈,23AC a b =+,若A ,B ,C 三点共线,则实数t = __________.【答案】23-【分析】根据三点共线的向量表达可得AB k AC =,再根据平面向量的线性运算与基本定理求解即可【详解】因为A ,B ,C 三点共线,所以存在实数k ,使得AB k AC =, 所以()2323ta b k a b ka kb -=+=+,即()()231t k a k b -=+,因为,a b 不共线,所以20,310t k k -=+=,解得12,33k t =-=-故答案为:23-5.(2022·浙江·高三专题练习)在平行四边形ABCD 中,E ,F ,G 分别为边BC ,CD ,DA 的中点,B ,M ,G 三点共线.若(62)AM a AE a AF =+-,则实数a 的值为______. 【答案】143【分析】将AM 化为以,AB AG 为基底可得()3123AM AB a AG =+-,由B ,M ,G 三点共线可知()3+1231a -=,计算即可. 【详解】(62)AM a AE a AF =+-,E ,F ,G 分别为边BC ,CD ,DA 的中点,()()1(62)231232AM a AB AG a AB AG AB a AG ⎛⎫∴=++-+=+- ⎪⎝⎭,B ,M ,G 三点共线,3+1231a -=,解得:143a =. 故答案为:143.6.(2022·全国·高三专题练习)已知O ,A ,B 是不共线的三点,且(,)OP mOA nOB m n R =+∈ (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 【解】(1)证明:若m +n =1,则()1OP mOA m OB =+-,()1OP m m OP =+-⎡⎤⎣⎦, 故()()11mOP m OP mOA m OB +-=+-,即()()()1m OP OA m OB OP -=--,()1mAP m PB =-,即,AP BP 共线,又,AP BP 有公共点,则A ,P ,B 三点共线;(2)证明:若A ,P ,B 三点共线,则存在实数λ,使得AP PB λ=,变形得()OP OA OB OPλ-=-,即()1OP OB OAλλ+=+,111OB OA OB OA OP λλλλλ+==++++,又OP mOA nOB =+,1111λλλ+=++,故1m n +=。

第二章 2.3 2.3.1 平面向量基本定理

第二章 2.3 2.3.1 平面向量基本定理

2.3.1平面向量基本定理1.平面向量基本定理条件e1,e2是同一平面内的两个不共线向量结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.2.向量的夹角条件两个非零向量a和b产生过程作向量OA=a,OB=b,则∠AOB叫做向量a与b的夹角范围0°≤θ≤180°特殊情况θ=0°a与b同向θ=90°a与b垂直,记作a⊥bθ=180°a与b反向[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°.用基底表示向量[典例]如图,在平行四边形ABCD中,设对角线AC=a,BD=b,试用基底a,b表示AB,BC.[活学活用]如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,BA=a,BC=b.试以a,b为基底表示EF,DF,CD.向量夹角的简单求解[典例]已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹角是多少?a-b 与a的夹角又是多少?[活学活用]如图,已知△ABC是等边三角形.(1)求向量AB与向量BC的夹角;(2)若E为BC的中点,求向量AE与EC的夹角.平面向量基本定理的应用[典例]NC,AM与BN相交于点P,求AP∶PM与BP∶PN.[一题多变]1.[变设问]在本例条件下,若CM=a,CN=b,试用a,b表示CP,2.[变条件]若本例中的点N 为AC 的中点,其它条件不变,求AP ∶PM 与BP ∶PN .层级一 学业水平达标1.已知平行四边形ABCD 中∠DAB =30°,则AD 与CD 的夹角为( ) A .30° B .60° C .120°D .150°2.设点O 是平行四边形ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB . A .①② B .①③ C .①④D .③④3.若AD 是△ABC 的中线,已知AB =a ,AC =b ,则以a ,b 为基底表示AD =( ) A .12(a -b )B .12(a +b )C .12(b -a )D .12b +a4.在矩形ABCD 中,O 是对角线的交点,若BC =e 1,DC =e 2,则OC =( ) A .12(e 1+e 2)B .12(e 1-e 2)C .12(2e 2-e 1)D .12(e 2-e 1)5.设D 为△ABC 所在平面内一点,BC =3CD ,则( ) A .AD =-13AB +43AC B .AD =13AB -43ACC .AD =43AB +13AC D .AD =43AB -13AC6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为______.7.已知e 1,e 2是两个不共线向量,a =k 2e 1+⎝⎛⎭⎫1-5k2e 2与b =2e 1+3e 2共线,则实数k =______.8.如下图,在正方形ABCD 中,设AB =a ,AD =b ,BD =c ,则在以a ,b 为基底时,AC 可表示为______,在以a ,c 为基底时,AC 可表示为______.9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM =13BC ,CN =13CA ,AP =13AB ,若AB =a ,AC =b ,试用a ,b 将MN ,NP ,PM 表示出来.10.证明:三角形的三条中线共点.层级二 应试能力达标1.在△ABC 中,点D 在BC 边上,且BD =2DC ,设AB =a ,AC =b ,则AD 可用基底a ,b 表示为( )A .12(a +b )B .23a +13bC .13a +23bD .13(a +b )2.AD 与BE 分别为△ABC 的边BC ,AC 上的中线,且AD =a ,BE =b ,则BC =( ) A .43a +23bB .23a +43bC .23a -23bD .-23a +23b3.如果e 1,e 2是平面α内所有向量的一组基底,那么,下列命题中正确的是( ) A .若存在实数λ1,λ2,使得λ1e 1+λ2e 1=0,则λ1=λ2=0B .平面α内任一向量a 都可以表示为a =λ1e 1+λ2e 2,其中λ1,λ2∈RC .λ1e 1+λ2e 2不一定在平面α内,λ1,λ2∈RD .对于平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对4.已知非零向量OA ,OB 不共线,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则x ,y 满足的关系是( )A .x +y -2=0B .2x +y -1=0C.x+2y-2=0 D.2x+y-2=05.设e1,e2是平面内的一组基底,且a=e1+2e2,b=-e1+e2,则e1+e2=________a +________b.6.已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且|b|=2|a|,则向量a与c的夹角为________.7.设e1,e2是不共线的非零向量,且a=e1-2e2,b=e1+3e2.(1)证明:a,b可以作为一组基底;(2)以a,b为基底,求向量c=3e1-e2的分解式;(3)若4e1-3e2=λa+μb,求λ,μ的值.8.若点M是△ABC所在平面内一点,且满足:AM=34AB+14AC.(1)求△ABM与△ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设BO=x BM+y BN,求x,y的值.。

第一节 平面向量的概念及线性运算

第一节 平面向量的概念及线性运算

第一节平面向量的概念及线性运算考试要求1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.[知识排查·微点淘金]知识点1平面向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或模)平面向量是自由向量零向量长度为0的向量零向量记作0,其方向是任意的单位向量长度等于1个单位长度的向量单位向量记作a0,a0=±a|a|平行向量(共线向量)方向相同或相反的非零向量0与任意向量共线相等向量长度相等且方向相同的向量相等向量一定是平行向量,平行向量不一定是相等向量相反向量长度相等且方向相反的两个向量若a,b为相反向量,则a=-b(1)注意0与0的区别,0是一个实数,0是一个向量,且|0|=0.(2)单位向量有无数个,它们的模相等,但方向不一定相同.(3)零向量和单位向量是两个特殊的向量,它们的模是确定的,但是方向不确定,因此在解题时要注意它们的特殊性.(4)任一组平行向量都可以平移到同一直线上.知识点2平面向量的线性运算向量 运算定义 法则(或几何意义) 运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a +b =b +a ; (2)结合律:(a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算叫作a 与b 的差三角形法则 (3)a -b =a +(-b )数乘求实数λ与向量a 的积的运算(4)|λa |=|λ||a |. (5)当λ>0时,λa 与a的方向相同; 当λ<0时,λa 与a 的方向相反; 当λ=0时,λa =0(6)结合律:λ(μ a )=(λμ)_a =μ(λa );(7)第一分配律:(λ+μ)a =λa +μ_a ;(8)第二分配律:λ(a +b )=λa +λb[微提醒] 向量线性运算的3点提醒 (1)两个向量的和仍然是一个向量.(2)利用三角形法则时,两向量要首尾相连;利用平行四边形法则时,两向量要有相同的起点.(3)当两个向量共线时,三角形法则仍然适用,而平行四边形法则不适用. [微拓展]对于任意两个向量a ,b ,都有:①||a |-|b ||≤|a ±b |≤|a |+|b |;②|a +b |2+|a -b |2=2(|a |2+|b |2).当a ,b 不共线时:①的几何意义是三角形中的任意一边的长小于其他两边长的和且大于其他两边长的差的绝对值;②的几何意义是平行四边形中两邻边的长与两对角线的长之间的关系.常用结论向量线性运算的常用结论(1)在△ABC 中,若D 是BC 的中点,则AD →=12(AC →+AB →);(2)O 为△ABC 的重心的充要条件是OA →+OB →+OC →=0;(3)四边形ABCD 中,若E 为AD 的中点,F 为BC 的中点,则AB →+DC →=2EF →. 知识点3 共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . [微思考]共线向量定理中为什么限定a ≠0?提示:共线向量定理中限定a ≠0,这是因为如果a =0,则λa =0, 当b ≠0时,定理中的λ不存在; 当b =0时,定理中的λ不唯一.因此限定a ≠0的目的是保证实数λ的存在性和唯一性. [微拓展]1.a ∥b ⇔存在不全为零的x ,y ∈R ,使x a +y b =0.2.A ,B ,C 三点共线,O 为A ,B ,C 所在直线外任意一点,则OA →=λOB →+μOC →且 λ+μ=1.[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段表示向量.(×) (2)AB →+BC →+CD →=AD →.(√)(3)若两个向量共线,则其方向必定相同或相反.(×)(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.(×) (5)若a ∥b ,b ∥c ,则a ∥c .(×)(6)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.(√)2.(共线向量定理掌握不准确)对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案:A3.(向量加减法则用错)点D 是△ABC 的边AB 上的中点,则向量CD →=( )A .-BC →+12BA →B .-BC →-12BA →C.BC →-12BA →D .BC →+12BA →答案:A4.(链接教材必修4 P 86例4)已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)解析:如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .答案:b -a -a -b5.(链接教材必修4 P 108B 组T 5)在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________.解析:如图所示,因为AB →+AD →=AC →,AB →-AD →=DB →,所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,四边形ABCD 是矩形.答案:矩形一、基础探究点——向量的有关概念(题组练透)1.下列命题正确的是( ) A .若|a |=|b |,则a =b B .若|a |>|b |,则a >b C .若a =b ,则a ∥b D .若|a |=0,则a =0解析:选C 对于A ,当|a |=|b |,即向量a ,b 的模相等时,方向不一定相同,则a =b 不一定成立,故A 不正确;对于B ,向量的模可以比较大小,但向量不可以比较大小,故B 不正确;C 显然正确;对于D ,若|a |=0,则a =0,故D 不正确,故选C.2.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零;③λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为( ) A .0 B .1 C .2D .3解析:选D ①错误,两向量共线要看其方向而不是起点或终点;②错误,当a =0时,不论λ为何值,λa =0;③错误,当λ=μ=0时,λa =μb =0,此时a 与b 可以是任意向量,故错误的命题有3个,故选D.3.给出下列命题:①若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;②若两个向量相等,则它们的起点相同,终点相同;③a =b 的充要条件是|a |=|b |,且a ∥b .其中真命题的序号是________.解析:①正确.∵AB →=DC →,∴|AB →|=|DC →|,且AB →∥DC →. 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形.反之,若四边形ABCD 为平行四边形,则AB →与DC →的方向相同,且|AB →|=|DC →|,因此AB →=DC →;②不正确.相等向量的起点和终点可以都不同;③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b . 综上所述,真命题的序号是①. 答案:①向量有关概念的关键点(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等.(4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线.二、综合探究点——平面向量的线性运算(多向思维)[典例剖析]思维点1 向量的线性运算[例1] (1)如图所示,AB 是圆O 的一条直径,C ,D 是半圆弧的两个三等分点,则AB →=( )A.AC →-AD →B .2AC →-2AD → C.AD →-AC →D .2AD →-2AC →解析:连接CD (图略),因为C ,D 是半圆弧的两个三等分点,所以CD ∥AB ,且AB =2CD ,所以AB →=2CD →=2(AD →-AC →)=2AD →-2AC →,故选D.答案:D(2)[一题多解]已知A ,B ,C 三点不共线,且点O 满足16OA →-12OB →-3OC →=0,则( ) A.OA →=12AB →+3AC → B.OA →=12AB →-3AC → C.OA →=-12AB →+3AC → D.OA →=-12AB →-3AC →解析:解法一:对于A ,OA →=12AB →+3AC →=12(OB →-OA →)+3(OC →-OA →)=12OB →+3OC →-15OA →,整理,可得16OA →-12OB →-3OC →=0,这与题干中条件相符合,故选A.解法二:已知A ,B ,C 三点不共线,且点O 满足16OA →-12OB →-3OC →=0,所以OA →+12(OA →-OB →)+3(OA →-OC →)=0,即OA →+12BA →+3CA →=0,所以OA →=12AB →+3AC →,故选A.答案:A向量线性运算的解题策略常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.思维点2 根据向量线性运算求参数[例2] 如图所示,在平行四边形ABCD 中E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.解析:由题图可设CG →=x CE →(0<x <1),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.答案:12与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[学会用活]1.(2021·福建高三质检)庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以A ,B ,C ,D ,E 为顶点的多边形为正五边形,且PTAT =5-12.下列关系中正确的是( )A .BP →-TS →=5+12RS →B .CQ →+TP →=5+12TS →C .ES →-AP →=5-12BQ →D .AT →+BQ →=5-12CR →解析:选A 由题意得,BP →-TS →=TE →-TS →=SE →=RS →5-12=5+12RS →,所以A 正确;CQ→+TP →=P A →+TP →=TA →=5+12ST →,所以B 错误;ES →-AP →=RC →-QC →=RQ →=5-12QB →,所以C错误;AT →+BQ →=SD →+RD →,5-12CR →=RS →=RD →-SD →,若AT →+BQ →=5-12CR →,则SD →=0,不合题意,所以D 错误.故选A .2.已知圆心为O ,半径为1的圆上有不同的三个点A ,B ,C ,其中OA →·OB →=0,存在实数λ,μ满足OC →+λOA →+μOB →=0,则实数λ,μ的关系为( )A .λ2+μ2=1B .1λ+1μ=1C .λμ=1D .λ+μ=1解析:选A 解法一:取特殊点,取C 为优弧AB 的中点,此时由平面向量基本定理易得λ=μ=22,只有选项A 符合.故选A . 解法二:依题意得|OA →|=|OB →|=|OC →|=1,-OC →=λOA →+μOB →,两边同时平方,得1=λ2+μ2.故选A .三、应用探究点——共线向量定理及应用(思维拓展)[典例剖析][例3] 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.解:(1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →, ∴AB →,BD →共线,又他们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)B .又a ,b 是两个不共线的非零向量,∴⎩⎪⎨⎪⎧k -λ=0,λk -1=0.∴k 2-1=0.∴k =±1. [拓展变式]1.[变条件]若将本例(1)中“BC →=2a +8b ”改为“BC →=a +m b ”,则m =________时,A ,B ,D 三点共线.解析:BD →=BC →+CD →=(a +m b )+3(a -b )=4a +(m -3)b ,若A ,B ,D 三点共线,则存在实数λ,使BD →=λAB →.即4a +(m -3)b =λ(a +b ),∴4a +(m -3)b =λa +λb ,∴⎩⎪⎨⎪⎧4=λ,m -3=λ,解得m =7. 故当m =7时,A ,B ,D 三点共线. 答案:72.[变结论]若将本例(2)中的“共线”改为“反向共线”,则k 的值为________. 解析:因为k a +b 与a +k b 反向共线, 所以存在实数λ,使k a +b =λ(a +k b )(λ<0).所以⎩⎪⎨⎪⎧k =λ,k λ=1,所以k =±1.又λ<0,k =λ,所以k =-1. 故当k =-1时,两向量反向共线. 答案:-1利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据.注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.即A ,B ,C 三点共线⇔AB →,AC →共线.[学会用活]3.(2021·河北六校第一次联考)已知点O 是△ABC 内一点,且满足OA →+2OB →+mOC →=0,S △AOB S △ABC =47,则实数m 的值为( ) A .-4 B .-2 C .2D .4解析:选D 由OA →+2OB →=-mOC →得,13OA →+23OB →=-m 3OC →,如图所示,设-m 3OC →=OD →,则13OA →+23OB →=OD →,∴A ,B ,D 三点共线,∴OC →与OD →反向共线,m >0, ∴|OD →||OC →|=m 3,∴|OD →||CD →|=m3m 3+1=m m +3,∴S △AOB S △ABC =|OD →||CD →| =m m +3=47,解得m =4.故选D . 限时规范训练 基础夯实练1.(2021·山东烟台期中)若M 为△ABC 的边AB 上一点,且AB →=3AM →,则CB →=( ) A .3CM →-2CA →B .3CA →-2CM →C .3CM →+2CA →D .3CA →+2CM →解析:选A 根据题意作出图形,如图,所以CM →=CB →+BM →=CB →+23BA →=CB →+23(CA →-CB →)=13CB →+23CA →,所以CB →=3CM →-2CA →.故选A .2.已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn 等于( )A .-12B .12C .-2D .2解析:选C ∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,故mn=-2.3.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,其中λ,μ∈R ,则λ+μ等于( )A .1B .12C .13D .23解析:选D 由题意易得AD →=AB →+BD →=AB →+13BC →,则2AO →=AB →+13BC →,即AO →=12AB →+16BC →.所以λ=12,μ=16,故λ+μ=12+16=23.4.(2021·云南曲靖一中月考)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=( )A .13a +512bB .13a -1312bC .-13a -512bD .-13a +1312b解析:选C DE →=DC →+CE →=13BC →+34CA →=13(AC →-AB →)-34AC →=-13AB →-512AC →=-13a -512B .5.(2021·潍坊模拟)若M 是△ABC 内一点,且满足BA →+BC →=4BM →,则△ABM 与△ACM 的面积之比为( )A .12B .13C .14D .2解析:选A 设AC 的中点为D ,则BA →+BC →=2BD →,于是2BD →=4BM →,从而BD →=2BM →,即M 为BD 的中点,于是S △ABM S △ACM =S △ABM 2S △AMD=BM 2MD =12.6.在△ABC 中,AD →=2DB →,CD →=13CA →+λCB →,则λ=________.解析:由题意可得A ,D ,B 共线,∴13+λ=1,∴λ=23.答案:23综合提升练7.(2021·广西名校联考)在△ABC 中,D 是AB 边的中点,点E 在BC 边上,且BE =2EC ,则ED →=( )A .16AB →-23AC →B .16AB →+23AC →C .-16AB →+13AC →D .-16AB →+23AC →解析:选A ED →=BD →-BE →=-12AB →-23BC →=-12AB →-23(AC →-AB →)=16AB →-23AC →,故选A .8.(2021·湖北省黄冈、华师附中等八校联考)已知O 是正方形ABCD 的中心.若DO →=λAB →+μAC →,其中λ,μ∈R ,则λμ=( )A .-2B .-12C .- 2D . 2解析:选A DO →=DA →+AO →=CB →+AO →=AB →-AC →+12AC →=AB →-12AC →,∴λ=1,μ=-12,∴λμ=-2. 9.如图所示,在△ABC 中,D 为线段BC 的中点,E ,F ,G 依次为线段AD 从上至下的3个四等分点,若AB →+AC →=4AP →,则( )A .点P 与图中的点D 重合B .点P 与图中的点E 重合C .点P 与图中的点F 重合D .点P 与图中的点G 重合解析:选C ∵在△ABC 中,D 为线段BC 的中点,E ,F ,G 依次为线段AD 从上至下的3个四等分点,∴AB →+AC →=2AD →,AD →=2AF →,∴AB →+AC →=4AF →,∴点P 与图中的点F 重合.故选C .10.已知向量a ,b 是两个不共线的向量,若向量m =4a +b 与n =a -λb 共线,则实数λ的值为( )A .-4B .-14C .14D .4解析:选B 因为向量a ,b 是两个不共线的向量,向量m =4a +b 与n =a -λb 共线,所以存在实数μ,使得4a +b =μ(a -λb ),即⎩⎪⎨⎪⎧4=μ,1=-λμ,解得λ=-14,故选B .11.在△ABC 中,点D 是线段BC (不包括端点)上的动点.若AB →=xAC →+yAD →,则( ) A .x >1 B .y >1 C .x +y >1D .xy >1解析:选B 设BD →=λBC →(0<λ<1),所以AD →-AB →=λAC →-λAB →,所以(1-λ)AB →=AD →-λAC →,所以AB →=11-λAD →-λ1-λAC →,所以x =-λ1-λ<0,y =11-λ=1-λ+λ1-λ=1+λ1-λ>1,又x +y =1-λ1-λ=1,xy =-λ(1-λ)2<0,故选B . 12.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.解析:由题意可求得AD =1,CD =3,所以AB →=2DC →. ∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12 创新应用练13.(2021·山东省师大附中模拟)设a ,b 是非零向量,则a =2b 是a |a |=b|b |成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 由a =2b 可知,a ,b 方向相同,a |a |,b|b |表示a ,b 方向上的单位向量,所以a |a |=b|b |成立;反之则不成立,故选B . 14.在△ABC 中有如下结论:“若点M 为△ABC 的重心,则MA →+MB →+MC →=0.”设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,点M 为△ABC 的重心.若aMA →+bMB →+33cMC→=0,则内角A 的大小为________,当a =3时,△ABC 的面积为________.解析:由aMA →+bMB →+33cMC →=aMA →+bMB →+33c (-MA →-MB →)=⎝⎛⎭⎫a -33c MA →+⎝⎛⎭⎫b -33c MB →=0,且MA →与MB →不共线,∴a -33c =b -33c =0,∴a =b =33C .△ABC 中,由余弦定理可求得cos A =32,∴A =π6.若a =3,则b =3,c =33,S △ABC =12bc sin A =12×3×33×12=934.答案:π6 934。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量性质
一、常见性质

1、向量:既有大小又有方向的量。三种表示方法:①直接描述AB;②命名为a;③坐标

表示。例:起点与终点的大写字母表示,AB
2、向量加法:设,ABaBCb,则a+b=ABBC=AC。
3、向量的减法:ABACBC。ab可以写成()ab。
4、向量共线(平行):向量b与非零向量a共线有且只有一个实数,使得b=a
5、模:代表着向量的长度,表示为|a|。
6、两个向量的乘法:ab=cosab

7、向量垂直:90,0abab;
8、零向量:长度为0的向量叫零向量,记作:0。注意:零向量的方向是任意的;
9、单位向量:长度为一个单位长度的向量。一般是用向量除以向量的长度(||ABAB);

10、相等向量:长度相等且方向相同的两个向量。
11、向量的运算律:

①交换律:abba, abba;
②结合律:,,abcabcabcabcababab

③分配律:,aaaabab,abcacbc。
二、坐标表示
设1122(,),(,)axybxy,则:
1、向量描述:若1122(,),(,)AxyBxy,则2121,ABxxyy,即有向线段的终点坐标
减去起点坐标。
2、向量的加减法运算:12(abxx,12)yy。
3、实数与向量的积:1111,,axyxy。
4、平面向量数量积:1212abxxyy。
5、向量的模:222222||,||axyaaxy。
6、向量平行(共线)的充要条件://abab22()(||||)abab1212xyyx=0。
7、向量垂直的充要条件:0||||abababab 12120xxyy.

8、平移:
点(,)Pxy按向量,ahk平移至(,)Pxy,也就是把点先向右平移h个

单位,再向上平移k个单位,则xxhyyk。
平面向量练习
1)在四边形ABCD中,若ACABAD,则四边形ABCD的形状一定是 ( )
(A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形
2)如果a,b是两个单位向量,则下列结论中正确的是 ( )

(A) ab (B) 1ab= (C) 22ab (D) ab

3)ABBCAD( )
A、AD B、CD C、DB D、DC
4)已知正方形ABCD的边长为1,ABa,BCb,ACc, 则abc等
于 ( )
(A) 0 (B) 3 (C)2 (D)22
5)下列各组的两个向量,平行的是
A、(2,3)a,(4,6)b B、(1,2)a,(7,14)b

C、(2,3)a,(3,2)b D、(3,2)a,(6,4)b
6)若平行四边形的3个顶点分别是(4,2),(5,7),(3,4),则第4个顶
点的坐标不可能是( )

(A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)7)点),0(mA
)0(m,按向量a平移后的对应点的坐标是)0,(m
,则向量a是( )

A、),(mm B、),(mm C、),(mm D、),(mm
8)已知(6,0)a,(5,5)b,则a与b的夹角为
A、045 B、060 C、0135 D、0120
9)已知)2,3(M,)0,1(N,则线段MN的中点P的坐标是________。

10)已知向量a(1,5),b(3,2),则向量a在b方向上的投影为 .

11)已知3a,4b,a与b的夹角为43, (3)(2)abab=__________.
12)已知3a,4b,且向量a,b不共线,若向量akb与向量akb互
相垂直,则实数k 的值为 .
1、已知向量a,b,且0)(4)2(2)(3baxaxax,则x
2、已知向量a=(1,2),b=(3,1),那么向量2a-21b的坐标是_________.

3、已知
4、若6,4nm,m与n的夹角是135,则nm等于( )

A.12 B.212 C.212 D.12
5、已知6||a,4||b,且a,b的夹角为60,则)3()2(baba .
6、已知向量a,b满足1,4,ab且2ab,则a与b的夹角为( )
A 6 B 4 C 3 D 2
7、若),12,5(),4,3(ba则a与b的夹角的余弦值为( )
A.6563 B.6533 C.6533 D.6563
8、若向量||1,||2,||2,abab则||ab
9、设)3,(xa,)1,2(b,若a和b的夹角为钝角,则x的取值范围是 .
10、平面向量ba,中,已知(4,3)a,1b,且
5ab


,则向量b______

11、已知,ab均为单位向量,它们的夹角为60,那么|3|ab=_____
12、已知(1,1),(4,)abx,2uab,2vab,且//uv,则
x=______

13、与向量)5,12(a平行的单位向量为 .
14、已知),1,(),3,1(xba且a∥b,则x等于( )
A.3 B.3 C.31 D.31
15、设)3,1(A,)3,2(B,)7,(xC若AB∥BC,则x的取值是( )
(A)0 (B)3 (C)15 (D)18
16、设)3,1(ma,)1,1(mb,若)()(baba,则m .

17、已知1||2a,2||b,且aba)(,则a与b的夹角为 .
18、已知平面内三点ACBAxCBA满足),7(),3,1(),2,2(,则x的值为( )
A.3 B.6 C.7 D.9

(3,4)(5,2),ABAB、则

相关文档
最新文档