大学数学(高数微积分)专题四第1讲立体几何(课堂讲义)
立体几何专题讲义

立体几何专题讲义一、考点分析1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱★ 底面为矩形底面为正方形 侧棱与底面边长相等 2. 棱锥棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
3.球球的性质:①球心与截面圆心的连线垂直于截面;★②r =d 、球的半径为R 、截面的半径为r )★球与多面体的组合体:球与正四面体,球与长 方体,球与正方体等的内接与外切.注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2344,3S R V R ππ==球球(其中R 为球的半径)1.求异面直线所成的角(]0,90θ∈︒︒:解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。
常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。
常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角[]0,90θ∈︒︒:关键找“两足”:垂足与斜足解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。
3求二面角的平面角[]0,θπ∈解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。
俯视图二、典型例题1._________________.第1题2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________.第2题 第3题3.一个几何体的三视图如图3所示,则这个几何体的体积为 .4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 .第4题 第5题5.如图5是一个几何体的三视图,若它的体积是 a侧(左)视图 正(主)视图 3 俯视图6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 .第6题 第7题7.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm 8.设某几何体的三视图如图8(尺寸的长度单位为m ),则该几何体的体积为_________m 3。
大学数学(高数微积分)专题五第1讲解析几何(课堂讲义)

x,y的系数应对应相等.
主干知识梳理
4.圆的方程的两种形式
(1)圆的标准方程:(x-a)2+(y-b)2=r2.
(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).
本 讲
5.直线与圆、圆与圆的位置关系
栏 目
(1)直线与圆的位置关系:相交、相切、相离,代数判断法与
开 关
几何判断法.
本
讲 栏 目
=12sin∠AOB≤12.
开 关
当∠AOB=2π时,S△AOB面积最大.
此时O到AB的距离d=
2 2.
设AB方程为y=k(x- 2)(k<0),
即kx-y- 2k=0.
热点分类突破
由d=
|k22+k|1=
22得k=-
3 3.
(也可k=-tan∠OPH=- 33).
(2)设P(x,0),设C1(2,3)关于x轴的对称点为C1′(2,-3),
即x2+(y+1)2=4,
所以点M在以D(0,-1)为圆心,2为半径的圆上.
由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点, 则2-1≤|CD|≤2+1,
热点分类突破
即1≤ a2+2a-32≤3.
由5a2-12a+8≥0,得a∈R;
本
讲 栏 目
由5a2-12a≤0,得0≤a≤152.
开 关
k 2
,0)位于直线x-y-1
=0上,于是有-2k-1=0,即k=-2,
因此圆心坐标是(1,0),半径是1.
由题意可得|AB|=2 2,直线AB的方程是-x2+2y=1,
热点分类突破
即x-y+2=0,圆心(1,0)到直线AB的距离等于
|1-0+2| 2
微分几何引论讲义.pdf

绪 论几何学是数学中一门古老的分支学科. 几何学产生于现实生产活动. “geometry ”就是“土地测量”.Pythagoras 定理和勾股定理(《周髀算经》). 数学:人类智慧的结晶,严密的逻辑系统. 以欧几里德(Euclid)的《几何原本》(Elements )为代表.《自然辩证法》和《反杜林论》:数学与哲学;数与形的统一:解析几何;坐标系:笛卡儿和费马引入.对微分几何做出突出贡献的数学家:欧拉(Euler),蒙日(Monge),高斯(Gauss),黎曼(Riemann). 克莱因(Klein)关于变换群的观点. E. Cartan 的活动标架方法.微分几何:微积分,拓扑学,高等代数与解析几何知识的综合运用. 内容简介第一章:预备知识. 第二章:曲线论. 第三章至第五章:曲面论. 第六章:曲面上的曲线,非欧几何. 第七章*:活动标架和外微分.第一章 预备知识本章内容:向量代数知识复习;正交标架;刚体运动;等距变换;向量函数 计划学时:3学时难点:正交标架流形;刚体运动群;等距变换群引言为什么要研究向量函数?在数学分析中,我们知道一元函数()y f x =的图像是xy 平面上的一条曲线,二元函数(,)z f x y =的图像是空间中的一张曲面.采用参数方程,空间一条曲线可以表示成()()(),(),()r r t x t y t z t ==.这是一个向量函数,它的三个分量都是一元函数.所有这些例子中,都是先取定了一个坐标系. 所以标架与坐标是建立“形”与“数”之间联系的桥梁.§ 1.1 三维欧氏空间中的标架一、向量代数复习向量即有向线段:AB ,r ,r. 向量相等的定义:大小和方向. 零向量:0,0 . 反向量:a - . 向量的线性运算. 加法:三角形法则,多边形法则. 向量的长度. 三角不等式. 数乘.内积的定义::||||cos (,)ab a b a b =∠外积的定义.二重外积公式:()()()a b c a c b b c a ⨯⨯=⋅-⋅ ;()()()a b c a c b a b c ⨯⨯=⋅-⋅内积的基本性质:对称性,双线性,正定性. 外积的基本性质:反对称性,双线性.二、标架仿射标架{};,,O OA OB OC. 定向标架.正交标架(即右手单位正交标架):{};,,O i j k. 笛卡尔直角坐标系. 坐标.内积和外积在正交标架下的计算公式. 两点距离公式. 三维欧氏空间3E 和3.三、正交标架流形取定一个正交标架{};,,O i j k (绝对坐标系). 则任意一个正交标架{}123;,,P e e e被P 点的坐标和三个基向量{}123,,e e e的分量唯一确定:123111121322122233313233,,,.OP a i a j a k e a i a j a k e a i a j a k ea i a j a k ⎧=++⎪=++⎪⎨=++⎪⎪=++⎩(1.6) 其中123(,,)a a a a =可以随意取定,而(,1,2,3)ij a i j =应满足31ikjk ij k aa δ==∑, (1.7)即过渡矩阵()ij a A =是正交矩阵. 又因为123,,e e e是右手系,det 1A =,即矩阵111213212223313233(3)a a a A a a a SO a a a ⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭(1.8, 1.9) 是行列式为1的正交矩阵. 我们有一一对应:{正交标架}←→3(3)E SO ⨯,{}123;,,(,)P e e e a A ←→.所以正交标架的集合是一个6维流形.四、正交坐标变换与刚体运动,等距变换空间任意一点Q 在两个正交标架{};,,O i j k 和{}123;,,P e e e中的坐标分别为(,,)x y z 和(,,)xy z ,则两个坐标之间有正交坐标变换关系式: 111213*********132333,,.x a xaya za y a xaya za z a xa ya za =+++⎧⎪=+++⎨⎪=+++⎩ (1.10) 如果一个物体在空间运动,不改变其形状和大小,仅改变其在空间中的位置,则该物体的这种运动称为刚体运动.QOPki1e j2e 3e QO()P O σ=ki1e j2e 3e ()QQ σ=在刚体运动33:E E σ→下,若σ将正交标架{};,,O i j k 变为{}123;,,P e e e,则空间任意一点(,,)Q x y z 和它的像点 (,,)Q xy z (均为在{};,,O i j k 中的坐标)之间的关系式为 111213121222323132333,,.x a xa ya za y a xa ya za za xa ya za =+++⎧⎪=+++⎨⎪=+++⎩ (1.11) 定理1.1 3E 中的刚体运动把一个正交标架变成一个正交标架;反过来,对于3E 中的任意两个正交标架,必有3E 的一个刚体运动把其中的一个正交标架变成另一个正交标架.空间3E 到它自身的、保持任意两点之间的距离不变的变换33:E E σ→称为等距变换. 刚体运动是等距变换,但等距变换不一定是刚体运动. 一般来说,等距变换是一个刚体运动,或一个刚体运动与一个关于某平面的反射的合成(复合映射).仿射坐标变换与仿射变换.§ 1.2 向量函数所谓的向量函数是指从它的定义域D 到3中的映射3::()r p r p →D .设有定义在区间[,]a b 上的向量函数()((),(),()),r t x t y t z t a t b =≤≤. 如果(),(),()x t y t z t 都是t 的连续函数,则称向量函数()r t是连续的;如果(),(),()x t y t z t 都是t 的连续可微函数,则称向量函数()r t是连续可微的. 向量函数()r t的导数和积分的定义与数值函数的导数和积分的定义是相同的,即0000()()lim t t t r t t r t drdt t∆→=+∆-=∆0000000()()()()()()lim ,,t x t t x t y t t y t z t t z t t t t ∆→+∆-+∆-+∆-⎛⎫= ⎪∆∆∆⎝⎭()000(),(),()x t y t z t '''=,0(,)t a b ∈, (2.6)()1()lim ()(),(),()nbbbbi i aaaai r t dt r t t x t dt y t dt z t dt λ→='=∆=∑⎰⎰⎰⎰, (2.7)其中01n a t t t b =<<<= 是区间[,]a b 的任意一个分割,1i i i t t t +∆=-,1[,]i i i t t t -'∈,并且{}max |1,2,,i t i n λ=∆= . (由向量加法和数乘的定义可以得到)向量函数的求导和积分归结为它的分量函数的求导和积分,向量函数的可微性和可积性归结为它的分量函数的可微性和可积性.由(1.6)可得()()()()()(),()()()()()()a t b t a t b t t at t a t t a t λλλ''''''+=+=+. 定理2.1 (Leibniz 法则) 假定(),(),()a t b t c t是三个可微的向量函数,则它们的内积、外积、混合积的导数有下面的公式:(1) ()()()()()()()a t b t a t b t a t b t '''⋅=⋅+⋅;(2) ()()()()()()()a t b t a t b t a t b t '''⨯=⨯+⨯;(3) ()()()()(),(),()(),(),()(),(),()(),(),()a t b t c t a t b t c t a t b t c t a t b t c t ''''=++.定理2.2 设()a t是一个处处非零的连续可微的向量函数,则 (1) 向量函数()a t 的长度是常数当且仅当()()0a t a t '⋅≡. (2) 向量函数()a t的方向不变当且仅当()()0a t a t '⨯≡.(3) 设()a t 是二阶连续可微的. 如果向量函数()a t与某个固定的方向垂直,那么 ()(),(),()0a t a t a t '''≡. 反过来,如果上式成立,并且处处有()()0a t a t '⨯≠,那么向量函数()a t必定与某个固定的方向垂直.证明 (1) 因为()()22()()()()|()|a t a t a t a t a t '''== ,所以|()|a t 是常数2|()|a t ⇔是常数()()0a t a t '⇔⋅≡.(2) 因为()a t 处处非零,取()a t方向的单位向量1()|()|()b t a t a t -= . 则()()()a t f t b t = ,其中()|()|f t a t =连续可微. 于是()()2()()()()()()()()()()(),.a t a t f t b t f t b t f t b t f t b t b t t ''''⨯=⨯+=⨯∀“⇒”由条件知()b t c = 是常向量,()0b t c ''== . 从而()()0a t a t '⨯≡.“⇐”由条件得()()0b t b t '⨯≡,所以()b t ,()b t ' 处处线性相关. 因为()b t 是单位向量,处处非零,所以()()()b t t b t λ'= . 用()b t 作内积,得()12()()()()()0t b t bt b t b t λ''=⋅=⋅≡ . 于是()0b t '≡ ,()b t c =是常向量.(3) 设向量函数()a t与某个固定的方向垂直,那么有单位常向量1e 使得1()0a t e ⋅≡ . 求导得到1()0a t e '⋅≡ ,1()0a t e ''⋅≡ . 从而(),(),()a t a t a t '''共面,()(),(),()0a t a t a t '''≡ .反之,设()(),(),()0a t a t a t '''≡ . 令()()()b t a t a t '=⨯. 由条件,()b t 处处非零. 且()b t '= ()()a t a t ''⨯连续. 根据二重外积公式,()()()()()()()()()()()(),(),()()(),(),()()(),(),()()0.b t b t a t a t a t a t a t a t a t a t a t a t a t a t a t a t a t a t ''''⨯=⨯⨯⨯''''''=-'''=≡根据已经证明的(2),()b t 的方向不变. 设这个方向为1e . 则1()|()|b t b t e = . 用()a t作内积,得()1|()|()()()()()()0b t a t e a t b t a t a t a t '⋅=⋅=⋅⨯≡.由于()b t 处处非零,得到1()0a t e ⋅≡ ,即()a t与固定方向1e 垂直. □课外作业: 1. 证明定理2.1.2. 设33:E E σ→为等距变换. 在3E 中取定一个正交标架{};,,O i j k . 令3 为3E 中全体向量构成的向量空间. 定义映射33::()()AB A B σσ→ . 如果()O O σ=,证明 是线性映射.3. 设向量函数()r t 有任意阶导(函)数. 用()()k r t 表示()r t 的k 阶导数,并设()(1)()()k k r t r t +⨯处处非零. 试求()()(1)(2)(),(),()0k k k r t r t r t ++≡的充要条件.第二章 曲线论本章内容:弧长,曲率,挠率;Frenet 标架,Frenet 公式;曲线论基本定理 计划学时:14学时,含习题课3学时. 难点:曲线论基本定理的证明§ 2.1 参数曲线三维欧氏空间3E 中的一条曲线C 是一个连续映射3:[,]p a b E →,称为参数曲线. 几何上,参数曲线C 是映射p 的象.取定正交标架{};,,O i j k,则曲线上的点()([,])p t t a b ∈与它的位置向量()Op t 一一对应. 令()()r t Op t =. 则()()()()((),(),())r t x t i y t j z t k x t y t z t =++=,[,]t a b ∈, (1.3)其中t 为曲线的参数,(1.3)称为曲线的参数方程.由定义可知()()01()lim (),(),()()()t r t x t y t z t r t t r t t∆→''''==+∆-∆,(,)t a b ∈. (1.4)如果坐标函数(),(),()x t y t z t 是连续可微的,则称曲线()r t是连续可微的. 此概念与标架的取法无关.(为什么?)导数()r t '的几何意义:割线的极限位置就是曲线的切线.如果()0r t '≠ ,则()r t '是该曲线在()r t 处的切线的方向向量,称为该曲线的切向量. 这样的点称为曲线的正则点. 曲线在正则点的切线方程为()()()X u r t ur t '=+, (1.5) 其中t 是固定的,u 是切线上点的参数,()X u是切线上参数为u 的点的位置向量.定义. 如果()r t是至少三次以上的连续可微向量函数,并且处处是正则点,即对任意的t ,()0r t '≠ ,则称曲线()r t是正则参数曲线. 将参数增大的方向称为曲线的正向.上述定义与3E 中直角坐标系的选取无关. 正则曲线:正则参数曲线的等价类.曲线的参数方程中参数的选择不是唯一的. 在进行参数变换时,要求参数变换()t t u =满足:(1)()t u 是u 的三次连续可微函数;(2) ()t u '处处不为零. 这样的参数变换称为可允许的参数变换. 当()0t u '>时,称为保持定向的参数变换.根据复合函数的求导法则,[]()(())()()d d du dt t t u r t u r t t u ='=⋅ .这种可允许的参数变换在所有正则参数曲线之间建立了一种等价关系. 等价的正则参数曲线看作是同一条曲线,称为一条正则曲线. 以下总假定()r t是正则曲线.如果一条正则参数曲线只允许作保持定向的参数变换,则这样的正则参数曲线的等价类被称为是一条有向正则曲线. (返回Frenet 标架)例1.1 圆柱螺线()(cos ,sin ,),()r ta t a t bt t =∈ ,其中,ab 是常数,0a >.()()sin ,cos ,r t a t a t b '=- ,|()|0()0r t r t ''=>⇒≠所以圆柱螺线是正则曲线.例1.2 半三次曲线32()(,),()r t t t t =∈.2()(3,2)r t t t '= ,(0)0r '= .这条曲线不是正则曲线.连续可微性和曲线的正则性(光滑性)是不同的概念. (与数学分析中的结论比较) 平面曲线的一般方程()y f x =和隐式方程(,)0F x y =. 空间曲线的一般方程(),()y f x z g x == (1.6)和隐式方程(,,)0,(,,)0.F x y zG x y z =⎧⎨=⎩ (1.8) 这些方程可以化为参数方程. (习题4:正则曲线总可以用一般方程表示)曲线(1.8)的切线方向,正则性. 课外作业:习题2,5§ 2.2 曲线的弧长设3E 中一条正则曲线C 的方程为(),[,]r r t t a b =∈. 则|()|b as r t dt '=⎰(2.1)是该曲线的一个不变量,即它与正交标架的选取无关,也与曲线的可允许参数变换无关.不变量s 的几何意义是该曲线的弧长,因为1max||01|()|lim|()()|i nbi i at i s r t dt r t r t +∆→='==-∑⎰.其中01n a t t t b =<<<= 是区间[,]a b 的任意一个分割,1i i i t t t +∆=-,max λ={|1,i t i ∆=2,,n . (为什么?)令()|()|t as t r d ττ'=⎰. (2.4)则()s s t =是曲线C 的保持定向的可允许参数变换,称为弧长参数. 它是由曲线本身确定的,至多相差一个常数,与曲线的坐标表示和参数选择都是无关的. 因此任何正则曲线都可以采用弧长s 作为参数,当然,允许相差一个常数.注意|()|ds r t dt '=也是曲线的不变量,称为曲线的弧长元素(或称弧微分).虽然理论上任何正则曲线都可以采用弧长参数s ,但是具体的例子中,曲线都是用一般的参数t给出的. 由(2.4),即使|()|r t '是初等函数,()s t 也不一定是初等函数. 下面的定理给出了判别一般参数是否是弧长参数的方法.定理 2.1 设(),[,]r r t t a b =∈是3E 中一条正则曲线,则t 是它的弧长参数的充分必要条件是|()|1r t '=. 即t 是弧长参数当且仅当(沿着曲线C )切向量场是单位切向量场.证明. “⇐”由(2.4)可知,s t a =-. “⇒”如果t 是弧长参数,则s t =,从而|()|1ds r t dt '==. □以下用“﹒”表示对弧长参数s 的导数,如()r s ,()r s 等等,或简记为,rr 等等. 而“'”则用来表示对一般参数t 的导数.课堂练习:4课外作业:习题1,2(1),3.§ 2.3 曲线的曲率和Frenet 标架设曲线C 的方程为()r r s =,其中s 是曲线的弧长参数. 令()()s r s α=. (3.1) 对于给定的s ,令θ∆是()s α 与()s s α+∆之间的夹角,其中0s ∆≠是s 的增量.定理3.1 设()s α 是曲线()r r s = 的单位切向量场,s 是弧长参数. 用θ∆表示向量()s s α+∆与()s α之间的夹角,则lim|()|ss s θα∆∆∆→= . (3.2) 证明. ()001||lim lim ()()s s d s s s ds s s ααααα∆→∆→∆===+∆-∆∆()()2200022sin sin lim lim lim ||s s s s s s θθθθθ∆∆∆∆→∆→∆→∆∆===∆∆∆, ()r s 0s =图2-5O()s αs L=()s s α+∆()r s s +∆()s s α+∆()s α()()s s s αα+∆-θ∆因为θ∆=定义 )为该曲线的曲率向量.把曲线C . 其方程就是(3.3)当然,s (3.4) 所以(3.5) 即曲率κ由|()s α 如果在一点s 处()0s κ≠. 于是在该点有(3.6) 在()s κ (3.7)}),()s s γ ,称为曲线在该点的Frenet 标架(见图2-2). 它的确定不受曲线的保持定向的参数变换的影响.注意. 如果在一点0s 处0()0s κ=,则一般来说无法定义在该点的Frenet 标架. 1. 若()0s κ≡,则C 是直线,可以定义它的Frenet 标架.2. 若0s 是κ的孤立零点, 则在0s 的两侧都有Frenet 标架. 如果00()()s s ββ-+=,则可以将Frenet 标架延拓到0s 点.3. 在其他的情况下将曲线分成若干段来考察.切线、主法线和次法线,法平面、从切平面和密切平面,以及它们的方程.切线:()()()u r s u s ρα=+;主法线:()()()u r s u s ρβ=+ ;次法线:()()()u r s u s ργ=+法平面:[()]()0X r s s α-= ;从切平面:[()]()0X r s s β-= ;密切平面:[()]()0X r s s γ-=在一般参数t 下,曲率κ和Frenet 标架的计算方法.3|()()|()|()|r t r t t r t κκ'''⨯==' ,()|()|r t r t α'=' ,()()|()()|r t r t r t r t γ'''⨯='''⨯,βγα=⨯ . (3.13) 证明. 设()s s t =为弧长参数,()t t s =为其反函数. 则由(2.4),()|()|ds s t r t dt''==. 故(())()()()|()|(())()(),():(())|()|dr s t ds t r t r t r t s t s t t s t ds dt r t αααα''''====='. (3.12) 由曲率κ的定义,||0κα=≥ ,可知主法向量||αβα= 满足ακβ= . 上式再对t 求导,得 2d d ds r s s s s s s dt ds dtααααακβ'''''''''''=+=+=+.于是2333()()||r r s s s s s r r s αακβκαβκγκ'''''''''''''⨯=⨯+=⨯=⇒⨯= .所以33|()()||()()||()|r t r t r t r t s r t κ''''''⨯⨯==''. 代入上式得()()|()()|r t r t r t r t γ'''⨯='''⨯. □ 例3.1 求圆柱螺线()(cos ,sin ,),()r t a t a t bt t =∈的曲率和Frenet 标架,其中0a >.解. ()r t 'r ' 所以例3.2 .解法1. 22t k ππ=+于是当/t π=r 所以在1)-,γ=解法2. 对应的参数为0s =. 则有 (0)((0),(0),(0))(0,0,1)r x y z ==, (1)以及22222222()()()1,(,).()()()0,()()()1,x s y s z s s x s y s x s xs y s z s εε⎧++=⎪∀∈-+-=⎨⎪++=⎩ (3.14) 求导得到()()()()()()0,2()()2()()()0,()()()()()()0.x s x s y s y s z s z s x s x s y s y s x s x s x s y s y s z s z s ++=⎧⎪+-=⎨⎪++=⎩(3.15) 令0s =,由(1)和上述方程组得到(0)(0)0xz == ,(0)1y =± . 通过改变曲线的正方向,可设(0)1y= ,于是 (0)((0),(0),(0))(0,1,0)xy z α==. (3.16) 对(3.15)前两式再求导,利用(3.14)得22()()()()()()1,2()()2()2()()2()()0.x s x s y s y s z s z s x s x s x s y s y s y s x s ++=-⎧⎨+++-=⎩(3.17) 令0s =,由(3.15)和(3.16)得(0)0y= ;由(1)和(3.17)第1式得(0)1z =- ;再由(3.17)第2式得(0)2x = . 所以(0)(0)((0),(0),(0))(2,0,1)r x y zα===-. 由此得(0)(0,0,1)r =处的曲率(0)|(0)|κα== ,Frenet 标架为:(0)(0,0,1)r = ;(0)(0,1,0)α=,1(0)(0)(0)1)κβα==-,(0)(0)(0)1,0,2)γαβ=⨯=-- . □课外作业:习题1(2,4),4,7§ 2.4 曲线的挠率和Frenet 公式密切平面对弧长s 的变化率为||γ,它刻画了曲面偏离密切平面的程度,即曲线的扭曲程度. 定义4.1 函数τγβ=-⋅ ,即()()()s s s τγβ=-⋅ 称为曲线的挠率.注. 由0γγ⋅= ,()0γαγαγκβ⋅=-⋅=-⋅= 可知//γβ . 因此可设γτβ=- , (4.1)从而||||τγ= ,即挠率的绝对值刻画了曲线的扭曲程度. 定理4.1 设曲线C 不是直线,则C 是平面曲线的充分必要条件是它的挠率0τ≡.证明. 设曲线C 的弧长参数方程为()r r s =,[0,]s L ∈. 因为C 不是直线,0κ≠(见定理3.2 ),存在Frenet 标架{};,,r αβγ.“⇒” 设C 是平面曲线,在平面:()0X a n ∏-= 上,其中a是平面上一个定点的位置向量,n 是平面的法向量,a 和n均为常向量. 则有(())0,[0,]r s a n s L -=∀∈.求导得()0,()()0()0,s n s s n s n s ακββ==⇒=∀.于是()//s n γ , 由于|()|||1s n γ== ,所以()s n γ=± 是常向量,从而0γ≡ ,||||0τγ=≡ . 即有0τ≡.“⇐”设0τ≡. 由(4.1)得0γτβ=-= . 所以()0s c γ=≠ 是常向量. 由(())()()()0d r s c r s c s s ds αγ=== 可知()r s c是一个常数,即0()()r s c r s c = ,其中0[0,]s L ∈是固定的. 于是曲线C 上的点满足平面方程0[()()]0r s r s c -= ,其中0()r s 是平面上一个定点的位置向量,c是平面的法向量. □设正则曲线C 上存在Frenet 标架. 对Frenet 标架进行求导,得到Frenet 公式,,,.r αακββκατγγτβ⎧=⎪=⎪⎨=-+⎪⎪=-⎩(4.8) 上式中的后三式可以写成矩阵的形式00000ακαβκτβγτγ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎪ ⎪- ⎪⎝⎭⎝⎭⎝⎭. (4.9) 作为Frenet 公式的一个应用,现在来证明定理4.2 设曲线()r r s =的曲率()s κ和挠率()s τ都不为零,s 是弧长参数. 如果该曲线落在一个球面上,则有222111d a ds κτκ⎡⎤⎛⎫⎛⎫+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, (4.10) 其中a 为常数.证明. 由条件,设曲线所在的球面半径是a ,球心是0r,即有()220()rs r a -= . (4.11)求导得到()0()()0rs r s α-=. 这说明0()r s r - 垂直于()s α,可设 0()()()()()r s r s s s s λβμγ-=+. (4.12)再求导,利用Frenet 公式得()()()()[()()()()]()()()()()s s s s s s s s s s s s s αλβλκατγμγμτβ=+-++-. 比较两边,,αβγ的系数,得1λκ=-,λμτ= ,μλτ=- , (4.13) 其中略去了自变量s . 所以1λκ=-,111d d ds ds λλμτττκ⎛⎫===- ⎪⎝⎭. (4.14)将(4.12)两边平方可得()22220r r a λμ+=-=,再将(4.14)代入其中,即得(4.10). □注记 由证明过程中的(4.13)第3式还可得110d d ds ds τκτκ⎡⎤⎛⎫+= ⎪⎢⎥⎝⎭⎣⎦. (4.16) 在一般参数下挠率的计算公式.2(,,)||r r r r r τ''''''='''⨯ . (4.18)证明. 因为()|()|ds s t r t dt''==,利用Frenet 公式,有 ()()(())ds dr r t s t s t dt dsα''==,2()()(())()(())(())r t s t s t s t s t s t ακβ'''''=+,23(())()()(())3()()(())(())()(())()(())[(())(())(())(())].d s t r t s t s t s t s t s t s t s t s t dts t s t s t s t s t s t κακββκκατγ''''''''''=++'+-+于是3()()()(())(())r t r t s t s t s t κγ''''⨯= ,从而()362()()()()(())(())()(),(),()()(())(()).r t r t r t s t s t s t r t rt r t r t s t s t s t κγκτ''''''''''''''''=⨯⋅=⋅'=由(3.13)可知622()(())|()()|s t s t r t r t κ''''=⨯ ,代入上式即得(4.18). □定理4.3 曲线()r r t = 是平面曲线的充要条件是(,,)0r r r ''''''=. □例 求圆柱螺线()(cos ,sin ,)r t a t a t bt =的挠率.解. ()(sin ,cos ,)r t a t a t b '=- ,()(cos ,sin ,0)r t a t a t ''=-,|()|r t '=2(sin ,cos ,)(sin ,cos ,)r r ab t ab t a a b t b t a '''⨯=-=-,||r r '''⨯=()(sin ,cos ,0)r t a t t '''=-所以2(,,)r r r a b ''''''= ,22b a b τ=+. □课外作业:习题1(2, 4),4,10§ 2.5 曲线论基本定理已经知道正则参数曲线的弧长、曲率、挠率是曲线的不变量,与坐标系取法及保持定向的参数无关,都是曲线本身的内在不变量. 在空间的刚体运动下,弧长、曲率、挠率保持不变(为什么?). 反之,这三个量也是曲线的完备不变量系统,对确定空间曲线的形状已经足够了,即有定理 5.1 (唯一性定理) 设111222:(),:()C r r s C r r s ==是3E 中两条以弧长s 为参数的正则参数曲线,[0,]s l ∈. 如果它们的曲率处处不为零,且有相同的曲率函数和挠率函数,即12()()s s κκ=,12()()s s ττ=,则有3E 中的一个刚体运动σ将1C 变成2C .证明 选取3E 中的刚体运动σ将2C 在0s =处的Frenet 标架{}2222(0);(0),(0),(0)r αβγ变为1C 在0s =处的Frenet 标架{}1111(0);(0),(0),(0)r αβγ. 则这个刚体运动σ将2C 变为正则曲线3C .设3C 的弧长参数方程为33()r r s =. 由于在刚体运动下,弧长、曲率、挠率保持不变,1C 与3C 也有相同的曲率和挠率函数:13()()s s κκ=,13()()s s ττ=.且在0s =处它们有相同的Frenet 标架:13131313(0)(0),(0)(0),(0)(0),(0)(0).r r ααββγγ====令{}1111();(),(),()r s s s s αβγ 和{}3333();(),(),()r s s s s αβγ分别为1C 和3C 的Frenet 标架. 则它们都满足一阶线性常微分方程组初值问题,,,.r αακββκατγγτβ⎧=⎪=⎪⎨=-+⎪⎪=-⎩(5.6) 1111(0)(0),(0)(0),(0)(0),(0)(0).r r ααββγγ=⎧⎪=⎪⎨=⎪⎪=⎩(5.7)根据解的唯一性(见附录定理1.1),有13()()r s r s =,即1C 与3C 重合. □注 常微分方程组(5.6)中,共有12个未知函数:()()(),(),()r s x s y s z s =,()123()(),(),()s s s s αααα= , ()123()(),(),()s s s s ββββ= ,()123()(),(),()s s s s γγγγ=.初始条件为:()1123(0)(,,)(0),(0),(0)r a a a x y z ==,()123111213(0),(0),(0)(,,)a a a ααα=,()123212223(0),(0),(0)(,,)a a a βββ=,()123313233(0),(0),(0)(,,)a a a γγγ=.定理5.2设111222:(),:()C r r t C r r u ==是3E 中两条正则参数曲线,它们的曲率处处不为零.如果存在三次以上的连续可微函数()u t λ=([,]t a b ∈),()0t λ'≠,使得这两条曲线的弧长函数、曲率函数和挠率函数之间满足121212()(()),()(()),()(())s t s t t t t t λκκλττλ===, (5.4) 则有3E 中的一个刚体运动σ将1C 变成2C .证明 不妨设()0t λ'>. 对2C 作可允许参数变换()u t λ=,可将2C 的参数方程写成32()(())r t r t λ=. 则1C 的弧长为11()|()|t a s t r d ξξ'=⎰ ,2C 的弧长为 ()23322()()|()||()|(())()t t t a a a dr s t r d d d s t r duλλξξλξξηλη'''====⎰⎰⎰.由条件,可取132()()()s s t s t s t λ=== 作为1C 和2C 的弧长参数. 因为13()()s t s t =有相同的反函数()t s μ=,即111111322()s s s s μλλ-----==== ,12s λμ-= . 于是 1111112222()()()()()()s s s s s s s s κκκμκλμκκ--≡===≡ .同理,21()()s s ττ= 根据定理5.1,有3E 中的一个刚体运动σ将1C 变成2C . □定理5.3 (存在性定理) 设(),()s s κτ是定义在区间[,]a b 上的任意二个给定的连续可微函数,并且()0s κ>. 则除了相差一个刚体运动之外,存在唯一的3E 中的正则曲线:()C r r s =,[,]s a b ∈,使得s 是C 的弧长参数,且分别以给定的函数()s κ和()s τ为它的曲率和挠率.证明 唯一性由定理5.1即得. 只要证明存在性.考虑含有12个未知函数的一阶线性常微分方程组初值问题(5.6),(5.7).:,,,.dr ds d ds d ds d dsαακββκατγγτβ⎧=⎪⎪⎪=⎪⎨⎪=-+⎪⎪⎪=-⎩(5.6) 0000(0),(0),(0),(0).r r ααββγγ=⎧⎪=⎪⎨=⎪⎪=⎩ (5.7)根据解的唯一存在定理(见附录定理1.1),对任意给定的初始条件(5.7),(5.6)都有定义在区间[,]a b 上[,]a b 11[,]a b [0,]l λ1s 2s1κ2κμ的解. 取(5.6)的满足初始条件(0)0,(0),(0),(0)r i j k αβγ====(5.7)’的解,其中{};,,O i j k是一个正交标架(即右手单位直角标架). 为了使用求和号,记123,,,ij i j e e e g e e αβγ====, (5.9)11121321222331323300000a a a a a a a a a κκττ⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪-⎝⎭⎝⎭. (5.5) 因为123,,,r e e e 是(5.6)的解,所以()r r s = 是三阶连续可微的. 下面来证明()r r s =就是所要求的曲线. 由(5.6)可得311,,1,2,3i ij j j de dr e a e i dsds ====∑(5.6)’ 首先来证明(),,1,2,3ij ij g s i j δ==. (5.10)由(5.6)得333111()()iji j j i j i ik k j jk i k ik kj jk ki k k k dg d e e de de e e a e e a e e a g a g ds ds ds ds =====+=+=+∑∑∑, 由初始条件(5.7)’可知有(0)(0)(0)ij i j ij g e e δ==,,1,2,3i j =. 这说明9个函数()ij g s 满足一阶线性常微分方程组初值问题31()ij ik kj jk ki k dF a F a F ds==+∑,(0)ij ij F δ=,,1,2,3i j =.另一方面由(5.5)可知ij ji a a =-,,1,2,3i j =. 于是9个函数()ij ij F s δ=也满足上面的一阶线性常微分方程组初值问题. 由解的唯一性,必有()()ij ij ij g s F s δ==.因此123(),(),()e s e s e s 是两两正交的单位向量. 从而混合积()123(),(),()1e s e s e s =±. 但是函数()123()(),(),()f s e s e s e s = 是连续的,并且由初始条件得()123(0)(0),(0),(0)1f e e e ==. 所以123(),(),()e s e s e s构成右手系.现在,由(5.6)’可知11dr e ds==. 所以()r r s = 是正则曲线,并且s 是:()C r r s = 的弧长参数,1()()s e s α=是C 的单位切向量场. 由(5.6)第2式及()0s κ>可知C 的曲率为()s κ,主法向量场为2()()s e s β=. 最后,因为123(),(),()e s e s e s 是右手单位正交基,所以3()()s e s γ= 是次法向量场. 再由(5.6)第3式可知C 的挠率为()()()s s s γβτ-= . □例 求曲率和挠率分别是常数00κ>,0τ的曲线C 的参数方程.解 我们已经知道圆柱螺线()(cos ,sin ,)r t a t a t bt =的曲率和挠率都是常数,分别为22aa b +和22b a b +. 根据定理 5.1,曲线C 一定是圆柱螺线. 由022a a b κ=+和022ba bτ=+解出02200a κκτ=+,02200b τκτ=+. 因此所求曲线C 的参数方程为()00022001()cos ,sin ,r t t t t κκτκτ=+ .因为C的弧长参数s ==t就可得到C 的弧长参数方程:))()00022001()cos ,sin,r s κκτκτ=+ . □课外作业:习题1,4,6§ 2.6 曲线参数方程在一点的标准展开对于定义在区间[,]a b 上的n 次连续可微的函数()f x ,可以在区间(,)a b 内任意一点0x 邻近展开为Taylor 展式:2()11000000002!!()()()()()()()()()n n n n f x f x f x x x f x x x fx x x o x x '''=+-+-++-+- . 同样,对于一条三次连续可微的弧长参数曲线(),(,)r r s s εε=∈-,可在0s =处展开为 233112!3!()(0)(0)(0)(0)()r s r sr s r s r o s =++++ , (6.1) 其中3()o s是一个向量函数,满足330()lim 0s o s s→=. (6.2) 由Frenet 公式可得 2(0)(0),(0)(0)(0),(0)(0)(0)(0)(0)(0)(0)(0)r r r ακβκακβκτγ===-++ (6.3)代入(6.1)得23233300000()(0)(0)(0)(0)()6266r s r s s s s s o s κκκκταβγ⎛⎫⎛⎫=+-++++ ⎪ ⎪⎝⎭⎝⎭ ,其中000(0),(0),(0)κκκκττ=== . 以0s =处的Frenet 标架{}(0);(0),(0),(0)r αβγ 建立右手直角坐标系,则曲线C 在0s =附近的参数方程为2330123300233003(),6(),26().6x s s o s y s s o s z s o s κκκκτ⎧=-+⎪⎪⎪=++⎨⎪⎪=+⎪⎩(6.4) 上式称为曲线:()C r r s =在0s =处的标准展开式.在标架{}(0);(0),(0),(0)r αβγ下,考虑C 的近似曲线232300000011:(),,(0)(0)(0)(0)2626C r s s s s r s s s κκτκκταβγ⎛⎫=≡+++ ⎪⎝⎭. (6.5)近似曲线1C 与原曲线C 在0s =处有相同的Frenet 标架{}(0);(0),(0),(0)r αβγ,有相同的曲率0κ和相同的挠率0τ. 这是因为s 是1C 的一般参数,并且1(0)(0,0,0)(0)r r ==,1(0)(1,0,0)(0)r α'== ,100(0)(0,,0)(0)r κκβ''==,10000(0)(0,0,)(0)rκτκτγ'''== , 从而1(0)1r '= ,111(0)(0)(0)(0)r r αα'==' ,()1100(0)(0)(0)(0)(0)r r ακβκγ'''⨯=⨯=,110(0)(0)r r κ'''⨯=,111031(0)(0)(0)(0)r r r κκ'''⨯==' ,11111(0)(0)(0)(0)(0)(0)r r r r γγ'''⨯=='''⨯ , 111(0)(0)(0)(0)(0)(0)βγαγαβ=⨯=⨯=,2111001022011(0)(0)(0)(0)(0)(0)r r r r r κτττκ''''''⨯⋅==='''⨯ . 在0s =邻近,近似曲线1C 的性状近似地反映了原曲线C 的性状. 近似曲线1C 的图形见下图,其在各坐标平面上的投影见书上图2-6.在密切平面上的投影是抛物线:20,,02x s y s z κ===,在从切平面上的投影是三次曲线:300,0,6x s y z s κτ===,在法平面上的投影是半三次曲线:230000,,26x y s z s κκτ===.定义 设两条弧长参数曲线111222:(),:()C r r s C r r s ==相交于0p ,012(0)(0)Op r r == . 取1122,p C p C ∈∈,使得 0102p p p p s ==∆. 若有正整数n 使得121200|||()()|lim lim 0n n s s p p r s r s s s ∆→∆→∆-∆==∆∆ ,1210|()()|lim 0n s r s r s s +∆→∆-∆≠∆, (6.9) 则称1C 与2C 在0p 处有n 阶切触.定理6.1 设两条弧长参数曲线111222:(),:()C r r s C r r s ==在0s =处相交. 则它们在0s =处有n 阶切触的充分必要条件是()()12(0)(0)k k r r =,1,2,,k n = ,(1)(1)12(0)(0)n n r r ++≠ . (6.10)证明 在0s =处,有0s s s ∆=-=. 因为12,C C 在0s =处相交,所以12(0)(0)r r =. 根据Taylor 公式,12()()12121()()()(0)(0)!kn n k k k s r s r s o s r r k ++=-=+⎡⎤-⎣⎦∑ . 充分性. 由(6.10),12(1)(1)1212()()()(0)(0)(1)!n n n n s r s r s o s r r n ++++-=+⎡⎤-⎣⎦+ ,所以 2(1)(1)12121210001()||()()lim lim lim ||0(0)(0)(1)!n n n n n n s s s o s p p r s r s s r r n s s s++++∆→→→-===+⎡⎤-⎣⎦+∆, 2(1)(1)1212121110001()||()()lim lim lim 0(0)(0)(1)!n n n n n n s s s o s p p r s r s r r n s s s++++++∆→→→-==≠+⎡⎤-⎣⎦+∆. 即12,C C 在0s =处有n 阶切触.必要性. 由条件,12,C C 在0s =处有n 阶切触,则1n ≥. 如果12(0)(0)r r ''≠ ,则12121200||()()lim lim 0(0)(0)s s p p r s r s r r s s∆→→-''==>-∆, 从而120||lim0ns p p s ∆→≠∆,矛盾. 设1m ≥是满足()()12(0)(0)k k r r = ,1,2,,k m = ,(1)(1)12(0)(0)m m r r ++≠的正整数. 由充分性,12,C C 在0s =处有m 阶切触. 由条件得m n =,故(6.10)成立. □ 推论 (1) 一条曲线与它在一点的Taylor 展开式中的前1n +项之和(即略去()ns ∆的高阶无穷小)至少有n 阶切触;与它在一点的切线至少有1阶切触;与它在一点的近似曲线至少有2阶切触. (2) 两条相交曲线在交点处有二阶以上切触的充分必要条件是这两条曲线在该点处相切,且有相同的有向密切平面和相同的曲率.曲率圆(密切圆):在弧长参数曲线:()C r r s = 上一点()r s处的密切平面上,以曲率中心1()()()r s s s βκ+ 为圆心,以曲率半径1()R s κ=为半径的圆. 它的方程是:()11()()()cos ()sin ()()()X t r s s t s t s s s βαβκκ=+++ . 曲线与曲面的切触阶,密切球面,曲率轴. (略) 课外作业:习题2,3§2.7 存在对应关系的曲线偶设两条正则参数曲线111222:(),:()C r r t C r r u ==之间存在一个一一对应关系()t u t ↔=,()0u t '≠. 对曲线2C 作参数变换,可设222:()C r r t =,从而12,C C 之间的一一对应就是参数相同的点之间的一一对应.定义7.1 如果两条互不重合的曲线12,C C 之间存在一个一一对应,使得它们在对应点有公共的主法线,则称这两条曲线为Bertrand 曲线偶,其中每一条曲线称为另一条曲线的侣线,或共轭曲线.事实上,因为,所以,. 另一方面由可知. 因此//n α . 设rn κα=. 于是C 的曲率 ()()|()||||()|||(),()rs s n s x s y s κακ=====. 当常数λ充分小时,1()[1()]()0r r s s s λκα'=+≠ ,所以1C 是正则参数曲线. 因为0λ≠,所以曲线C 和1C 不重合.现在来证明在对应点C 和1C 有相同的主法线. 在相同的参数s 点处,C 的主法线l 是过()r s(的终)点且垂直于()s α 的直线,所以l 的方程为()()()X u r s un s =+,u ∈ .同理,在相同的参数s 点处,1C 的主法线1l 是过1()r s 点且垂直于1()//()r s s α' 的直线. 所以1//l l (因为它们都垂直于()s α ). 由定义可知1()r s在直线l 上,所以l 与1l 重合. □下面考虑空间挠曲线,即挠率0τ≠的曲线.定理7.1 设1C 和2C 是Bertrand 曲线偶. 则1C 和2C 在对应点的距离是常数,并且1C 和2C 在对应点的切线成定角.证明 设曲线1C 的弧长参数方程为11()r r s = ,Frenet 标架为{}1111();(),(),()r s s s s αβγ,曲率和挠率分别为1()s κ和1()s τ. 因为1C 和2C 之间存在一一对应,设2C 上与1()r s 对应的点是22()r r s = ,s 是2C 的一般参数,2C 的Frenet 标架为{}2222();(),(),()r s s s s αβγ,曲率和挠率分别为2()s κ和2()s τ. 再设2C 的弧长参数为()ss s = . 由条件,2()r s 在曲线1C 上的点1()r s 处的主法线11()()()X u r s u s β=+上,所以()121//()()()s r s r s β-,并且12()()s s ββ=± . 因此可设211()()()()r s r s s s λβ=+,21()()s s βεβ= , (7.3)其中1ε=±是常数,()121()()()()s s r s r s λβ=-是可微函数.将(7.3)两边对s 求导,利用Frenet 公式,得21111()()()()()()[()()()()]ss s s s s s s s s s ααλβλκατγ''=++-+111[1()()]()()()()()()s s s s s s s s λκαλβλτγ'=-++. (7.4)以21βεβ=分别与上式两边作内积,可得()0s λ'=,()s c λ=是常数. 再由(7.3)得211|()()||()()|||r s r s s s c λβ-==,即1C 和2C 在对应点的距离是常数||(0c >,因为1C 和2C 不重合).设12()((),())s s s θαα=∠ ,则()12()()cos ()s s s ααθ=. 因为()112212122211120d ss dsκβακαβεκβαεκαβαα''=+=+=, 所以()cos ()s θ是常数,从而()s θ是常数. □定理7.2 设正则曲线C 的曲率κ和挠率τ都不为零. 则C 是Bertrand 曲线的充分必要条件是:存在常数,λμ,且0λ≠,使得1λκμτ+=.证明 必要性. 设曲线C 有侣线1C ,它们的参数方程分别是()r s 和1()r s,其中s 是C 的弧长参数. 如同定理7.1的证明过程一样,设{}();(),(),()r s s s s αβγ和{}1111();(),(),()r s s s s αβγ分别是C和1C 的Frenet 标架,11,κτ分别是1C 的曲率和挠率,s是1C 的弧长参数. 现在(7.3)和(7.4)分别成为 1()()()r s r s s λβ=+,1()()s s βεβ= , (7.3) 1()()[1()]()()()ss s s s s s αλκαλτγ'=-+. (7.5) 其中0λ≠是常数. 因此由0τ≠得|()|0ss '=≠,()s s ε'= 其中11ε=±也是一个常数.由定理7.1,1()()s s c αα= 是常数. 用()s α与(7.5)两边作内积,得22221()(1)[1()][()]c s c s c s ελκλκλτ=-⇒--=.由()0s λτ≠可知2(1)0c -≠,从而1()()s s λκμτ-==是常数. 这就是说,存在常数0,λμ≠,使得.充分性. 设正则弧长参数曲线:()C r r s =的曲率κ和挠率τ满足1λκμτ+=,其中,λμ是常数,且0λ≠. 令1()()()r s r s s λβ=+,则1()[1()]()()()()[()()]0r s s s s s s s s λκαλτγτμαλγ'=-+=+≠. 所以由参数方程11()r r s =定义的曲线1C 是正则曲线,并且与曲线C 不重合(因为0λ≠).由于1|r τ'= 1C 的单位切向量场1()[sin ()cos ()]s s s αθαθγ=±+,其中arctan(/)θμλ=是常数,满足sin θ=,cos θ=.设s是1C 的弧长参数,利用Frenet 公式,有111(sin cos )d ds ds ds ακβθκθτβ==±- .如果sin cos 0θκθτ-≠,则有1ββ=±,从而曲线1C 是C 的侣线,1C 和C 是Bertrand 曲线偶(在参数s 相同的点,1C 和C 得主法线有相同方向,并且1()r s 在()r s处的主法线上). 如果sin cos 0θκθτ-=,则μκλτ=. 结合1λκμτ+=可知κ和τ都是非零常数,C 是圆柱螺线,从而是Bertrand 曲线. □定义7.2 如果两条曲线12,C C 之间存在一个一一对应,使得曲线1C 在任意一点的切线正好是2C 在对应点的法线(即垂直于2C 在该点的切线),则称曲线2C 是1C 的渐伸线. 同时称曲线1C 是2C 的渐缩线.定理7.3 设:()C r r s =是正则弧长参数曲线. 则C 的渐伸线的参数方程为1()()()()r s r s c s s α=+-. (7.7) 证明 设渐伸线1C 上与()r s 对应的点为1()r s . 则1()r s 在曲线C 上()r s点处的切线上,故有函数()s λλ=使得1()()()()r s r s s s λα=+. (7.8) 由渐伸线的定义,1()()r s s α'⊥,所以10()()[()()()()()()]()1()r s s s s s s s s s s ααλαλκβαλ'''==++=+. 由此得()1s λ'=-,()s c s λ=-. 代入(7.8)即得(7.7). □曲线C 的渐伸线可以看作是该曲线的切线族的一条正交轨线,位于C 的切线曲面∑上. 定理7.4设:()C r r s =是正则弧长参数曲线. 则C 的渐缩线的参数方程为()111()()()tan ()()()()r s r s s s ds s s s βτγκκ=+-⎰. (7.10) 证明 设渐缩线1C 上与()r s 对应的点为1()r s . 由定义,1[()()]()()rs r s r s s α-⊥=,可设 1()()()()()()r s r s s s s s λβμγ=++. (7.11) 求导得1()()()()()[()()()()]()()()()()r s s s s s s s s s s s s s s αλβλκατγμγμτβ'''=++-++-[1()()]()[()()()]()[()()()]()s s s s s s s s s s s λκαλμτβμλτγ''=-+-++.因为11()//[()()]()()()()r s r s r s s s s s λβμγ'-=+,所以1()[()()()()]0r s s s s s λβμγ'⨯+=,即有()()1s s λκ=,()[()()()]()[()()()]s s s s s s s s μλμτλμλτ''-=+. (7.12)所以()1/()s s λκ=,且由(7.12)第2式得22()μλλμμλτ''-=+,arctan μτλ'⎛⎫⇒=- ⎪⎝⎭,()()()tan ()s s s ds μλτ⇒=-⎰.所以有(7.10). □课外作业:习题4,8§2.8 平面曲线本节研究平面曲线的特殊性质.一、平面曲线的Frenet 标架在平面2E 上取定一个正交标架(右手直角标架){};,O i j. 则平面曲线C 的弧长参数方程为()((),())r s x s y s =, [,]s a b ∈. (8.1)它的单位切向量为()()()(),()cos(()),sin(())s xs y s s s αθθ==, (8.2) 其中()(,())s i s θα=是由i到()s α的有向角(允许相差2π的整数倍),逆时针方向为正. 当区间[,]a b 是闭区间时,函数()s θ可以成为定义在整个[,]a b 上的连续可微函数.将()s α 右旋/2π,得到与()s α正交的单位向量()s β ,()()()22()cos(()),sin(())sin(()),cos(())(),()s s s s s y s x s ππβθθθθ=++=-=- . (8.3)这样,得到沿曲线C 的(平面)Frenet 标架{}();(),()r s s s αβ.二、平面曲线的Frenet 公式由于()s α 是单位切向量场,有0αα⋅= ,故//αβ ,可设 ()()()rs s s ακβ= , (7.4) 其中()()()()()()()(),()(),()()()r x s y s s s s x s y s y s x s x s y s καβ=⋅=⋅-= (7.5)称为曲线C 的相对曲率. 曲线C 的曲率为()|()|r s s κκ=. ()r s κ的符号的几何意义见图2-8.利用(7.4)得到平面曲线的Frenet 公式Cyxs =s l=O()s α ()s β(),()x f x i。
高等数学4教材答案详解

高等数学4教材答案详解一、导数与微分1. 导数的定义导数是函数在某一点处的瞬时变化率,通常用f'(x)表示。
导数的定义可以表达为:f'(x) = lim(h→0) [f(x+h) - f(x)] / h2. 导数的基本运算法则2.1 常数规则:如果f(x) = C(C为常数),则f'(x) = 0。
2.2 乘积规则:若f(x) = u(x) v(x),则f'(x) = u'(x) v(x) + u(x) v'(x)。
2.3 商数规则:若f(x) = u(x) / v(x),则f'(x) = [u'(x) v(x) - u(x) v'(x)] / [v(x)]²。
3. 微分与近似计算微分是导数的一个重要应用,它可以用于函数的线性近似计算。
微分的公式为:dy = f'(x) dx其中dy表示函数f(x)在点(x, f(x))处的微小变化量,dx表示自变量x 的微小变化量。
二、函数的极限1. 极限的定义函数f(x)在点x=a处的极限为L,可以表示为:lim(x→a) f(x) = L2. 极限的性质2.1 唯一性:如果极限存在,则极限唯一。
2.2 有界性:如果极限存在,则函数在某个邻域内有界。
2.3 保号性:如果lim(x→a) f(x) > 0,则存在a的某个邻域内,使得f(x) > 0。
3. 极限的计算方法3.1 四则运算法则:对于函数的四则运算,可以利用极限的性质进行计算。
3.2 复合函数的极限:如果f(x)的极限为L,g(x)在L处连续,那么f(g(x))的极限为f(L)。
三、一元函数的连续性1. 连续函数的定义如果函数f(x)在点x=a处的极限存在,并且f(a)等于该极限值,那么称函数在点x=a处连续。
2. 连续函数的性质2.1 连续函数的四则运算:连续函数的加、减、乘、除仍然是连续函数。
2.2 复合函数的连续性:若f(x)在x=a处连续,g(x)在f(a)处连续,则f(g(x))在x=a处连续。
立体几何—建系讲义

立体几何(向量法)一建系引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一•所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、利用共顶点的互相垂直的三条线构建直角坐标系例1 (2012高考真题重庆理19)(本小题满分12分如图,在直三棱柱ABC AB iG中,AB=4, AC=BC=3 D为AB 的中点(I)求点C到平面A1ABB1的距离;(n)若AB1 AC求二面角的平面角的余弦值.【答案】解:(1)由AC= BC, D为AB的中点,得CD丄AB.又CD丄AA1,故CD丄面A1ABB1,所以点C到平面A1ABB1的距离为CD = BC2—BD2= 5.(2)解法一:如图,取D1为A1B1的中点,连结DD1,贝U DD1// AA1 //CC1.又由(1)知CD丄面A i ABB i,故CD丄A i D, CD丄DD i,所以/ A i DD i为所求的二面角A i —CD —C i的平面角.因A i D为A i C在面A i ABB i上的射影,又已知AB i丄A i C,由三垂线定理的逆定理得AB i丄A i D,从而/ A i AB i、/ A i DA都与/ B i AB互余,因此/ A i AB i =AA i ^\i B i/ A i DA,所以Rt A A i AD s Rt A B i A i A.因此応=云石,即卩AA i = ADA i B i = 8,得AA i = 22.从而A i D = ,AA i + AD2= 2 3.所以,在Rt△ A i DD i中,/ DD i AA i V6cos/A iDDi= A i D = A i D =亍解法二:如图,过D作DD i// AA i交A i B i于点D i,在直三棱柱中,易知DB,DC,DD i两两垂直.以D为原点,射线DB,DC,DD i分别为x轴、y轴、z轴的正半轴建立空间直角坐标系D —xyz.设直三棱柱的高为h,则A( —2,0,0), A i( —2,0,h),B i(2,0, h),C(0,5, 0),C i(0, 5, h),从而A B i= (4,0, h), A i C= (2, 5,—h).由晶i丄A i C,有8—h2= 0, h = 2 2.故D X i= ( —2,0,2 2), CC i = (0,0,2 2), DC =(0, 5, 0).设平面A i CD的法向量为m= (x i, y i, z i),贝U m丄DC, m丄DA i,即卩cos BD, EFBD ?FE|BD||FE|0 18 64 82 100 ^82 10设异面直线BD 与EF 所成角为,则cos| cosBD, EF-82直线BD 与 EF 所成的cos〈 m ,m-n _ 2|m||n 厂;2+ 1 1 J6 3 .所以二面角A 1 — CD — C 1的平面角的余弦值为_36.、利用线面垂直关系构建直角坐标系例2.如图所示, AF 、DE 分别是圆O 、圆O 1的直径,AD 8. BC 是圆 O 的直径,AB AC 6 , OE // AD .(I) 求二面角B AD F 的大小;(II) 求直线BD 与EF 所成的角的余弦值. 19.解:(I ) •/ AD 与两圆所在的平面均垂直,••• ADLAB, AD 丄AF,故/ BAD 是二面角 B — AD — F 的平面角, 依题意可知,ABCD 是正方形,所以/ BAD= 450. 即二面角B — AD — F 的大小为45°;(II)以O 为原点,BC AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示) ,贝U O (0, 0, 0) , A (0, 3/2 ,0), B ( ^' 2 , 0 , 0) ,D (0 , 3/2, 8) , E (0 , 0 , 8) , F(0 , 3 2 , 0)所以,BD ( 3、2, 3.2,8),FE (0,3 2,8) 、■‘5y= 0, —2x i + 2 2z i = 0,取乙=1,得 m = ( :2, 0,1),设平面C i CD 的法向量为n = (X 2, y 2, Z 2),贝U n 丄DC, n 丄CC i ,即:5y2= 0,2 :2z 2 = 0,取 X 2= 1,得 n = (1,0,0),所以AD 与两圆所在的平面均垂直,角为余弦值为竺•10三、利用图形中的对称关系建立坐标系例3(2013年重庆数学(理))如图,四棱锥P ABCD中,PA 底面ABCD , BC CD 2,A C 4, ACB ACD 3,F为P C 的中点,AF P B.B【答案】(1)求PA的长;(2) 求二面角B AF D的正弦值•題(13)0z- 2解: (1)如图,联结BD 交AC 于O,因为BC = CD ,即△ BCD 为等腰三角形,又AC 平分/ BCD , 故AC 丄BD.以O 为坐标原点,OB , OC , AP 的方向分别为x 轴,y 轴,z 轴的正方向,建立 n n空间直角坐标系 O — xyz,则 0C = CDcosT = 1,而 AC = 4,得 AO = AC — OC = 3•又 OD = CDsin3 3 3=3,故 A(0, — 3, 0), B( 3, 0, 0), C(0, 1, 0), D( — . 3 , 0 , 0) •因PA 丄底面ABCD ,可设P(0 , — 3 , z),由F 为PC 边中点,得F 0 , — 1, 2 ,又A F =—z),因 AF 丄 PB ,故AF PB = 0,即 6 — - = 0, z = 2,3(舍去一2.3),所以 |PA|= 2 .3(2)由⑴知 AD = (— 3, 3, 0), AB = ( 3 3, 0), AF = (0, 2, '3) •设平面 FAD 的法 向量为1=(x i , y i , z i ),平面FAB 的法向量为2= (X 2, y 2, Z 2).由 i AD = 0, i AF = 0,得 —3xi+ 3yi =0,因此可取 i =(3, 3 — 2).2y i + . 3z i = 0,由2 AB = 0, 2 AF = 0,得 3x 2+ 3y 2= 0, _故可取2= (3,—衍,2).2y 2 + .3Z 2= 0,从而向量i , 2的夹角的余弦值为 n i n 2 icos 〈 i , 2>= =-.|n i | |n 2| 8故二面角B — AF — D 的正弦值为 斗78四、利用正棱锥的中心与高所在直线,投影构建直角坐标系 例4-i (20i3大纲版数学(理))如图,四棱锥P ABCD中,ABC BAD 90o , BC 2AD, PAB 与 PAD 都是等边三角形(I)证明:PB CD; (II)求二面角 A PD C 的余弦值•【答案】 解:⑴取BC 的中点E ,联结DE ,则四边形 ABED 为正方形. 过P 作PO 丄平面 ABCD ,垂足为 O.联结 OA , OB , OD , OE.由厶FAB 和厶FAD 都是等边三角形知 PA = PB = PD,所以OA = OB= OD,即点0为正方形ABED对角线的交点,故OE丄BD,从而PB丄OE.因为O是BD的中点,E是BC的中点,所以OE // CD.因此PB丄CD.所以 cos / AFG = FG 2+ AF 2— AG 2 _2 F G AF —63 .解法由⑴知,OE , OB , OP 两两垂直. O —xyz.(2)解法一:由(1)知 CD 丄 PB , CD 丄 PO , PB A PO = P , 故CD 丄平面PBD. 又PD?平面PBD ,所以CD 丄PD. 取PD 的中点F , PC 的中点G ,连FG. 则 FG // CD , FG 丄 PD.联结AF ,由△ APD 为等边三角形可得 AF 丄PD. 所以/ AFG 为二面角A — PD — C 的平面角. 联结 AG , EG ,贝U EG // PB. 又PB 丄AE ,所以EG 丄AE.1设 AB = 2,贝U AE = 2 .2, EG = ?PB = 1, 故 AG = AE 2 + EG 2= 3,1在厶 AFG 中,FG = ^CD = .2, AF = .3, AG = 3.以O 为坐标原点,OE 的方向为x 轴的正方向建立如图所示的空间直角坐标系设|AB|= 2,则A( —2, 0, 0), D(0,- ,2, 0),C(2 2,—2, 0), P(0, 0, .2),PC= (2 .2,—. 2 , —2), PD = (0 , —2 , —2),AP= ( 2 , 0 , 2) , AD = ( 2 , —2 , 0).设平面PCD的法向量为1= (x , y , z),贝V1 PC = (x , y , z) (2 2 , — 2 , —2) = 0 ,1 PD = (x , y , z) (0 , —2 , —2) = 0 ,可得2x—y —z= 0 , y+ z= 0.取y =—1,得x= 0 , z= 1,故i= (0 , —1 , 1). 设平面PAD的法向量为2= (m , p , q),贝U2 AP = (m , p , q) (- 2 , 0 , 2) = 0 ,2 AD = (m , p , q) (• 2 , — 2 , 0) = 0 ,可得m + q = 0 , m—p= 0.取m= 1,得p = 1 , q=—1,故2= (1, 1, —1).于是COS〈, 2> = n1n2 .6「|n 1||n2| 3 .例4-2如图1--5 ,在三棱柱ABC—A1B1C1 中,已知AB = AC = AA1 = 5 , BC =4,点A1在底面ABC的投影是线段BC的中点O.(1) 证明在侧棱AA1上存在一点E ,使得0E丄平面BB1C1C ,并求出AE的长;(2) 求平面A1B1C与平面BB1C1C夹角的余弦值.【答案】解:⑴证明:连接人0,在厶AOA i 中,作 0E 丄AA i 于点E ,因为0B = 0C ,所以 A0丄BC ,所以BC 丄平面 AA i O. 所以0E 丄平面 AA i = . 5,AA i // BB i ,所以 0E 丄BB i .因为A i 0丄平面ABC ,所以A i 0丄BC. 因为AB = AC ,所以BC 丄0E , BB i C i C ,又 A0= AB 2— B02= i ,得AE =疇、违(2)如图,分别以0A , 0B , 0A i 所在直线为x , y , z 轴,建立空间直角坐标系,贝U A(i,0,0), B(0,2,0), C(0,— 2,0), A i (0,0,2),cos 〈 OE ,〉OE n V 30 |0E| |n| 10A A Q由AE = 5AA 1得点E 的坐标是5, 0, 2 ,— 4 2由⑴得平面BB i C i C 的法向量是0E = 5,0,5,设平面A I B I C 的法向量=(x , y , z),AB = 0,— x + 2y = 0,由得nAC = 0 y +z = 0,令 y = 1,得 x = 2, z =— 1,即二(2,1,— 1),所以即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是三、利用面面垂直关系构建直角坐标系例5 (2012高考真题安徽理18)(本小题满分12分)平面图形ABB 1A 1C 1C 如图1— 4(1)所示,其中BB 1C 1C 是矩形,BC = 2, BB 110=4, AB=AC= 2, A i B i= A i C i= 5.图1-4现将该平面图形分别沿BC和B i C i折叠,使△ ABC与厶A i B i C i所在平面都与平面BB i C i C垂直,再分别连接A i A, A i B, A i C,得到如图i-4(2)所示的空间图形.对此空间图形解答下列问题.(i)证明:AA i 丄BC;⑵求AA i的长;(3)求二面角A-BC-A i的余弦值.【答案】解:(向量法):(i)证明:取BC,B iC i的中点分别为D和D i,连接A i D i, DD i, AD. 由BB i C i C为矩形知,DD i丄B i C i,因为平面BB i C i C丄平面A1B1C1,所以DD i丄平面A i B i C i,又由A i B i = A i C i 知,A i D i 丄B iC i.故以D i为坐标原点,可建立如图所示的空间直角坐标系D i—xyz.由题设,可得A i D i = 2, AD = i.由以上可知AD丄平面BB i C i C, A i D i丄平面BB i C i C,于是AD// A i D i.所以A(0,—i,4), B(i,0,4), A i(0,2,0), C( —i,0,4), D(0,0,4). 故A A i= (0,3,—4), BC= ( —2,0,0), AA i BC = 0, 因此A X i丄BC, 即卩AA i丄BC.(2) 因为AA i = (0,3,—4),所以| AA i卜5,即AA匸5.(3) 连接A i D,由BC丄AD, BC丄AA i,可知BC丄平面A i AD, BC丄A i D,所以/ ADA i为二面角A—BC—A i的平面角.cos〈IDA, DA i>因为D A = (0,—i,0), DA i = (0,2,—4),所以2即二面角A—BC—A i的余弦值为—电5(综合法)(1)证明:取BC, B i C i的中点分别为D和D i,连接A i D i, DD i, AD, A i D.由条件可知,BC丄AD, B i C i丄A i D i,由上可得AD丄面BB i C i C, A i D i丄面BB i CC因此AD // A i D i,即AD, A i D i 确定平面AD i A i D.又因为DD i / BB i, BB i丄BC,所以DD i丄BC.又考虑到AD丄BC,所以BC丄平面AD i A i D,故BC丄AA i.⑵延长A i D i到G点,使GD i= AD,连接AG.因为AD綊GD i,所以AG綊DD i綊BB i.由于BB i丄平面A i B i C i,所以AG丄A i G. 由条件可知,A i G = A i D i + D i G= 3, AG = 4, 所以AA i = 5.⑶因为BC丄平面AD i A i D,所以/ ADA i为二面角A-BC- A i的平面角. 在Rt A A i DD i 中,DD i = 4, A i D i = 2,解得sin/ D i DA i =5冗 / ^[5cos/ ADA i = cos 2+/ D i DA i = —g.即二面角A- BC- A i的余弦值为—f.。
《微分几何》教学大纲

《微分几何》课程教学大纲课程名称:《微分几何》课程编码:074112303适用专业及层次:数学与应用数学(本科)课程总学时:72学时课程总学分:4一、课程的性质、目的与任务等。
1、微分几何简介及性质微分几何是高等院校数学和数学教育各专业主要专业课程之一,是运用微积分的理论研究空间的几何性质的数学分支学科。
古典微分几何研究三维空间中的曲线和曲面,而现代微分几何开始研究更一般的空间----流形。
微分几何与拓扑学等其他数学分支有紧密的联系,对物理学的发展也有重要影响,爱因斯坦的广义相对论就以微分几何中的黎曼几何作为其重要的数学基础。
本课程的前导课程为解析几何、高等代数、数学分析和常微分方程。
2、教学目的:通过本课程的教学,使学生掌握三维欧氏空间中的曲线和曲面的局部微分理论和方法,分析和解决初等微分几何问题,并为进一步学习微分几何的近代内容打下良好的基础。
3、教学内容与任务:本课程主要应用向量分析的方法,研究一般曲线和曲面的局部理论,同时还采用了张量的符号讨论曲面论的基本定理和曲面的内蕴几何内容,并且讨论了属于整体微分几何的高斯崩尼(Gauss-Bonnet)公式。
重点让学生把握理解本教材的前二章。
二、教学内容、讲授大纲与各章的基本要求第一章曲线论教学要点:本章主要研究内容为向量分析,曲线的切线,法平面,曲线的弧长参数表示,空间曲线的基本三棱形,曲率和挠率的概念和计算,曲线论的基本公式和基本定理,从而对空间曲线在一点邻近的形状进行研究,同时对特殊曲线特别是一般螺线和贝特朗曲线进行研究。
通过本章的教学,使学生理解和熟记有关概念,掌握理论体系和思想方法,能够证明和计算有关问题教学时数:22学时。
教学内容:第一节向量函数1.1 向量函数的极限1.2 向量函数的连续性1.3 向量函数的微商1.4 向量函数的泰勒(TayLor)公式1.5 向量函数的积分第二节曲线的概念2.1 曲线的概念2.2 光滑曲线、曲线的正常点2.3 曲线的切线和法面2.4 曲线的弧长、自然参数第三节空间曲线3.1 空间曲线的密切平面3.2 空间曲线的基本三棱形3.3 空间曲线的曲率、挠率和伏雷内(Frenet)公式3.4 空间曲线在一点邻近的结构3.5 空间曲线论的基本定理3.6 一般螺线考核要求:1、理解向量函数的极限、连续性、微商、泰勒(TayLor)公式和积分等概念,能推导和熟记有关公式,并能使用它们熟练地进行运算。
周建伟微分几何讲义

周建伟微分几何讲义一、微分几何概述1.1 什么是微分几何微分几何是研究曲线、曲面及高维空间中的几何性质的数学分支。
它通过引入微分、积分和向量等工具,研究切向量、曲率、曲率线等概念,揭示了几何对象与微分方程之间的密切关系。
1.2 微分几何的应用领域微分几何在很多领域有广泛的应用,例如物理学中的广义相对论、机器学习中的降维算法、计算机图形学中的曲面建模等。
它为解决实际问题提供了数学工具和理论基础。
二、微分流形2.1 流形的定义流形是具有良好局部欧几里德结构的空间。
它可以用参数化局部坐标系来刻画,并且能够通过坐标变换进行衔接。
2.2 流形的分类根据维度的不同,流形可以分为一维曲线、二维曲面和高维流形。
高维流形的研究对于理解现实世界中的复杂结构具有重要意义。
2.3 流形上的切空间切空间是流形上每一点处切向量的集合,它与流形的局部变换相联系。
切空间的研究是微分几何的重要内容之一,可以用来描述曲线的切线、曲面的切平面等。
2.4 流形上的度量度量是流形上定义的一种距离概念,用于测量流形上两点之间的距离。
在微分几何中,度量可以用来定义曲线的长度、曲率等重要概念。
三、微分几何的基本概念3.1 曲率曲率是刻画流形弯曲程度的量度。
在一维曲线上,曲率即为曲线的弯曲程度;在二维曲面上,曲率包括高斯曲率和平均曲率等。
3.2 平行性平行性是流形上切向量平行的概念。
通过引入仿射联络,可以在流形上定义平行性的概念,从而研究平行移动、测地线等重要概念。
3.3 高斯-博内定理高斯-博内定理是微分几何中的重要定理之一。
它描述了曲面上的曲率和曲面内外几何关系之间的联系,对于研究曲面的性质具有重要意义。
3.4 微分形式微分形式是微分几何中的关键工具,用于描述切向量场和流形局部性质。
微分形式的引入使得微分几何与微分方程能够建立起联系。
四、微分几何的应用案例4.1 物理学中的应用微分几何在物理学中有广泛的应用,例如广义相对论中的时空曲率、黑洞的几何性质等。
凌晨讲数学 立体几何

凌晨讲数学立体几何凌晨讲数学:立体几何大家好,欢迎来到凌晨的数学世界。
今天我们要探讨的是立体几何。
立体几何,与平面几何相对,主要研究三维空间中图形的性质和关系。
一、三维空间与点、线、面首先,我们要理解三维空间。
想象一下,我们生活的世界就是一个三维空间。
每一个物体,无论大小,都可以被视为这个空间中的一个点。
线是由无数个点组成的,而面则是由无数条线组成的。
1. 点:在三维空间中,点具有三个坐标(x, y, z),表示其在三个方向上的位置。
2. 线:通过两个不同的点可以确定一条直线。
此外,还有平面、曲面等不同的线。
3. 面:在一个平面内,可以通过三个不共线的点来确定一个平面。
而曲面则是通过其他方式定义的。
二、空间中的几何图形除了点、线、面这些基本元素外,立体几何还研究其他一些常见的几何图形,如球体、立方体、圆锥等。
1. 球体:球体是一个中心对称的几何体,所有点到球心的距离都相等。
2. 立方体:立方体是一个具有六个面的几何体,每个面都是一个正方形。
3. 圆锥:圆锥由一个圆面和一个曲面组成,圆面称为底面,曲面称为侧面。
三、空间几何的性质空间几何有一些重要的性质,如平行性、垂直性、角度和距离等。
这些性质是理解和解决空间几何问题的基础。
1. 平行性:在三维空间中,两条直线如果永远不相交,则它们是平行的。
2. 垂直性:如果一条直线与一个平面永远垂直,则这条直线称为该平面的垂线。
3. 角度和距离:在空间中,我们可以定义线与线之间的角度,以及点到线或点到点的距离。
以上就是立体几何的一些基本概念和性质。
立体几何是数学中非常有趣且实用的一个领域,它不仅在解决实际问题中有广泛应用,而且对于培养我们的空间想象力和逻辑思维能力也很有帮助。
希望通过今天的讲解,大家能够对立体几何有更深入的理解和认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热点分类突破
AB· AC 12 AH= BC = . 5
本 讲 栏 目 开 关
作 A1M⊥BB1 于 M,A1N⊥CC1 于 N.连接 MN. 1 12 1 V= ×(5×3)× +(3×4)× ×2=24. 3 5 2
答案 (1)C
(2)24
热点分类突破
(1)求几何体的表面积及体积问题,可以多角度、多 方位地考虑,熟记公式是关键所在.求三棱锥的体积,等体积
本 所以 AE⊥平面 BCD. 讲 栏 因为 AB=AD=CD=1,BD= 2, 目 开 2 1 3 关 所以 AE= ,EO= .所以 OA= .
3 所以四面体 ABCD 的外接球的球心为 O,半径为 . 2 4 33 3 所以该球的体积 V= π( ) = π.故选 A. 答案 A 3 2 2
2 1 3 在 Rt△BDC 中,OB=OC=OD= BC= , 2 2
本 讲 栏 目 开 关
(2)将三视图还原为直观图后求解. 根据三视图可知几何体是一个长方体挖去一个圆柱, 所以 S=2×(4+3+12)+2π-2π=38.
答案 (1)A (2)38
热点分类突破
考点三
多面体与球
例 3 如图所示,平面四边形 ABCD 中,AB=AD=CD=1, BD= 2,BD⊥CD,将其沿对角线 BD 折成四面体 ABCD,
答案 (1)B
(2)D
热点分类突破
空间几何体的三视图是从空间几何体的正面、 左面、 上面用平行投影的方法得到的三个平面投影图, 因此在分析空
本 讲 栏 目 开 关
间几何体的三视图问题时,先根据俯视图确定几何体的底面, 然后根据正视图或侧视图确定几何体的侧棱与侧面的特征, 调 整实线和虚线所对应的棱、面的位置,再确定几何体的形状, 即可得到结果.
本 讲 栏 目 开 关
主干知识梳理
本 讲 栏 目 开 关
1 ②V锥体= Sh(S为底面面积,h为高); 3 1 ③V台= (S+ SS′+S′)h(不要求记忆); 3 4 3 ④V球= πR . 3
热点分类突破
考点一 例1
本 讲 栏 目 开 关
三视图与直观图的转化 ( )
(1)已知三棱柱的正视图与俯视图如图, 那么该三棱锥的
本 讲 栏 目 开 关
热点分类突破
解析
(1)由三视图可想象出如图所示的三棱锥,
SA⊥平面 ABC,△ABC 中∠ABC=90° ,SA= AB=4,BC=3,
因此图中四个面的三角形均为直角三角形,
本 讲 栏 目 开 关
SB=4 2,AC=5,S△SAC=10,S△SAB=8,S△SBC=6 2,S△ABC =6, 所以最大面积是 10. (2)由三视图可知,其直观图为: AB=4,AC=3,∠BAC=90° , ∴BC=5. 作 AH⊥BC 于 H,
主干知识梳理
4.空间几何体的两组常用公式 (1)柱体、锥体、台体的侧面积公式: ①S柱侧=ch(c为底面周长,h为高); 1 ②S锥侧= ch′(c为底面周长,h′为斜高); 2 1 ③S台侧= (c+c′)h′(c′,c分别为上下底面的周长,h′ 2 为斜高); ④S球表=4πR2(R为球的半径). (2)柱体、锥体和球的体积公式: ①V柱体=Sh(S为底面面积,h为高);
本 讲 栏 目 开 关
2 则 AB=3×3sin 60° = 3,BO=1, ∴该棱柱的外接球半径为 R= AB2+BO2=2, ∴球的表面积是 S=4πR2=16π.
答案 (1)D
(2)16π
热点分类突破
1.空间几何体的面积有侧面积和表面积之分,表面积就是全
本 讲 栏 目 开 关
面积, 是一个空间几何体中“暴露”在外的所有面的面积, 在计算时要注意区分是“侧面积还是表面积”.多面体的 表面积就是其所有面的面积之和,旋转体的表面积除了球 之外,都是其侧面积和底面面积之和. 2. 在体积计算中都离不开空间几何体的“高”这个几何量(球 除外),因此体积计算中的关键一环就是求出这个量.在计 算这个几何量时要注意多面体中的“特征图”和旋转体中 的轴截面.
本 讲 栏 目 开 关
热点分类突破
解析
(1)根据已知条件作出图形:四面体 C1-A1DB,标出各
个点的坐标如图(1)所示,可以看出正视图为正方形,如图 (2) 所示.故选 A.
本 讲 栏 目 开 关
热点分类突破
(2)根据几何体的三视图知识求解.
本 讲 栏 目 开 关
由于该几何体的正视图和侧视图相同,且上部分是一个矩形, 矩形中间无实线和虚线,因此俯视图不可能是 D.
热点分类突破
3. 一些不规则的几何体, 求其体积多采用分割或补形的方法, 从而转化为规则的几何体, 而补形又分为对称补形(即某些 不规则的几何体,若存在对称性,则可考虑用对称的方法 进行补形)、 还原补形(即还台为锥)和联系补形(某些空间几
本 讲 栏 目 开 关
何体虽然也是规则几何体,不过几何量不易求解,可根据 其所具有的特征,联系其他常见几何体,作为这个规则几 何体的一部分来求解). 4.长方体的外接球 (1)长、宽、高分别为 a、b、c 的长方体的体对角线长等于 外接球的直径,即 a2+b2+c2=2R; (2)棱长为 a 的正方体的体对角线长等于外接球的直径,即 3a=2R.
本 讲 栏 目 开 关
使平面 ABD⊥平面 BCD, 若四面体 ABCD 的顶点在同一个 球面上,则该球的体积为 ( )
3 A. π 2
B.3π
2 C. π 3
D.2π
热点分类突破
要求出球的体积就要求出球的半径,需要根据已知 数据和空间位置关系确定球心的位置,由于△BCD是直角三
本 讲 栏 目 开 关
主干知识梳理
3.直观图的斜二测画法 空间几何体的直观图常用斜二测画法来画,其规则是: (1)原图形中 x 轴、y 轴、z 轴两两垂直,直观图中,x′轴、
本 讲 栏 目 开 关
y′轴的夹角为 45° (或 135° ),z′轴与 x′轴和 y′轴所在 平面垂直. (2)原图形中平行于坐标轴的线段,直观图中仍分别平行于 坐标轴.平行于 x 轴和 z 轴的线段在直观图中保持原长度 不变, 平行于 y 轴的线段长度在直观图中变为原来的一半.
角形,根据直角三角形的性质:斜边的中点到三角形各个顶 点的距离相等,只要再证明这个点到点A的距离等于这个点 到B,C,D的距离即可确定球心,进而求出球的半径,根据 体积公式求解即可.
热点分类突破
解析
如图,取 BD 的中点 E,BC 的中点 O,
连接 AE,OD,EO,AO. 由题意,知 AB=AD,所以 AE⊥BD. 由于平面 ABD⊥平面 BCD,AE⊥BD,
2
2
热点分类突破
多面体与球接、切问题求解策略 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面 体中的特殊点(一般为接、切点)或线作截面,把空间问题转化
本 讲 栏 目 开 关
为平面问题,再利用平面几何知识寻找几何体中元素间的关 系,或只画内切、外接的几何体的直观图,确定球心的位置, 弄清球的半径(直径)与该几何体已知量的关系,列方程 (组)求 解. (2)若球面上四点 P,A,B,C 构成的三条线段 PA,PB,PC 两两互相垂直,且 PA=a,PB=b,PC=c,一般把有关元素 “补形”成为一个球内接长方体,则 4R2=a2+b2+c2 求解.
本 讲 栏 目 开 关
第1讲
【高考考情解读】
空间几何体
高考对本节知识的考查主要有以下两个考向:
本 讲 栏 目 开 关
1.三视图几乎是每年的必考内容,一般以选择题、填空题的 形式出现,一是考查相关的识图,由直观图判断三视图或 由三视图想象直观图,二是以三视图为载体,考查面积、 体积的计算等,均属低中档题. 2.对于空间几何体的表面积与体积,由原来的简单公式套用 渐渐变为三视图及柱、锥与球的接切问题相结合,特别是 已知空间几何体的三视图求表面积、体积是近两年高考考 查的热点,题型一般为选择题或填空题.
主干知识梳理
1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直 平行六面体、长方体之间的关系.
本 讲 栏 目 开 关
主干知识梳理
2.空间几何体的三视图 (1)三视图的正视图、侧视图、俯视图分别是从物体的正前 方、正左方、正上方看到的物体轮廓线的正投影形成的平
本 讲 栏 目 开 关
面图形. (2)三视图排列规则:俯视图放在正视图的下面,长度与正 视图一样; 侧视图放在正视图的右面, 高度和正视图一样, 宽度与俯视图一样. (3)画三视图的基本要求:正俯一样长,俯侧一样宽,正侧 一样高.看不到的线画虚线.
讲 栏 答案 目 开 关
Cቤተ መጻሕፍቲ ባይዱ
押题精练
2.在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直, 2 3 6 △ABC,△ACD,△ABD的面积分别为 , , , 2 2 2 则三棱锥A-BCD的外接球体积为 A. 6π
热点分类突破
(1)(2013· 课标全国Ⅱ)一个四面体的顶点在空间直 角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1), (0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影 面,则得到的正视图可以为
本 讲 栏 目 开 关
(
)
热点分类突破
(2)(2012· 湖南)某几何体的正视图和侧视图均如图所示,则该 几何体的俯视图不可能是 ( )
侧视图可能为
热点分类突破
(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该 几何体的侧视图为
本 讲 栏 目 开 关
(
)
热点分类突破
解析
(1)底面为正三角形,一侧棱垂直于底
面.由虚线知可能有一侧棱看不见.
由题知这个空间几何体的侧视图的底面边长 是 3,
本 讲 栏 目 开 关