华师大版九上第25章《解直角三角形》word同步测试

合集下载

(小复习)九年级数学上册 第25单元 解直角三角形讲练课件 华东师大

(小复习)九年级数学上册 第25单元 解直角三角形讲练课件 华东师大
则 sinA 的值为( A )
34 A.4 B.3
34 C.5 D.5
图25-10
数学·新课标(HS)
第25章讲练 ┃ 试卷ቤተ መጻሕፍቲ ባይዱ练 【针对第5题训练 】 对于锐角∠A而言,如果2sinA=1,则∠A的余角为( A ) A.60° B.45° C.30° D.15°
数学·新课标(HS)
第25章讲练 ┃ 试卷讲练
方程思想
10,15
数形结合思想
2,3,14
转化思想
21
数学·新课标(HS)
第25章讲练 ┃ 试卷讲练
亮点
2题利用网格图的特殊性来考查锐角三角函数的概念. 13题借助于“两个非负数的和等于0”的形式,考查了特殊角的三 角函数值. 19题结合学生有可能体验到的情况,激发学生学习兴趣. 24题借助于解直角三角形的相关知识帮助做决策.
数学·新课标(HS)
第25章讲练 ┃ 试卷讲练
数学·新课标(HS)
第25章讲练 ┃ 试卷讲练
解:(1)如图 25-9 所示,
(2) 5
(3)∠CAD 1
(4)2
55或∠ADC
2 5 5
图25-9
数学·新课标(HS)
第25章讲练 ┃ 试卷讲练 【针对第3题训练 】
如图 25-10,已知 Rt△ABC 中,∠C=90°,BC=3,AC=4,
第25章讲练 ┃ 试卷讲练
2.在 Rt△ABC 中,∠C=90°,若 AB=2AC,则 cosA 的值为
( B)
A. 3 B.12
C.
3 2
D.
3 3
数学·新课标(HS)
第25章讲练 ┃ 试卷讲练 【针对第21题训练 】 如图25-12,热气球的探测器显示,从热气球A看一栋大楼

华师大版-数学-九年级上册-第二十五章 解直角三角形 复习-2 同步作业

华师大版-数学-九年级上册-第二十五章 解直角三角形 复习-2 同步作业

华师大版九年级(上)《第二十五章·解直角三角形》第25章解直角三角形复习—2 作业一、积累·整合1.如图1,A市东偏北60°方向有一旅游景点M,在A市东偏北30•°的公路上向前行800米到C处,测得M位于C的北偏西15°,则景点M到公路AC•的距离MN为________米。

(结果保留根号)(1) (2) (3)2.如图2,B、C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC的距离是________米。

3.如图3,防洪大堤的横断面是梯形,坝高AC等于6米,背水坡AB的坡度i=1:2,则斜坡AB的长为_______米。

(精确到0.1米)4.如图4,小明想测量电线杆AB的高度,发现电线杆的影子恰好落在山坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成30°角,•且此时测得1米杆的影子长为2米,则电线杆的高度约为_______米。

(结果保留两位有效数字,•2≈1.41,3≈1.73)(4) (5) (6)5.小强和小明去测量一座古塔的高度(如图5),•他们在离古塔60米的A处,用测角仪器得塔顶的仰角为30°,已知测角仪器高AD=1.5米,则古塔BE的高为()A.(203-1.5)米 B.(203+1.5米)C.31.5 D.28.56.如图6是一台54英寸的大背投彩电放置在墙角的俯视图.•设∠DAO=,彩电后背AD平行于前沿BC,且与BC的距离为60cm,若AO=100cm,则墙角O•到前沿BC的距离OE是() A.(60+100sinα)cm B.(60+100cosα)cmC.(60+100tanα)cm D.以上答案都不对二、拓展·应用7.如图,河流的两岸MN,PQ互相平行,•河岸PQ•上有一排间隔为50米的电线杆C、D、E…….某人在河岸MN的A处测得∠DAN=38°,•然后沿河岸走了120米到达B处,测得∠CBN=70°,求河流的宽度CF。

华东师大版九上数学24章《解直角三角形》单元测试题(含答案)

华东师大版九上数学24章《解直角三角形》单元测试题(含答案)

华东师大版九上数学24章《解直角三角形》单元测试题(含答案)解直角三角形测试题一. 选择题:(每小题2分,共20分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=() A.43 B.34 C. 53 D. 352. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是() A. 21 B. 33 C. 1 D. 3 3. 在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是()A.EGEF G =sin B. EF EH G =sin C. FGGH G =sin D. FG FH G =sin 5. sin65°与cos26°之间的关系为()A. sin65°<cos26°< p="">B. sin65°>cos26°C. sin65°=cos26°D. sin65°+cos26°=16. 已知30°<α<60°,下列各式正确的是()A. B. C. D.7. 在△ABC 中,∠C=90°,52sin =A ,则sinB 的值是() A.32 B.52 C.54 D. 521 8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是()米2A. 150B.375C. 9D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i= 2∶3,顶宽是3米,路基高是4米,则路基的下底宽是()A. 7米B. 9米C. 12米D. 15米10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()A. αsin 1B. αcos 1 C. αsin D. 1 二. 填空题:(每小题2分,共10分) 11. 已知0°<α<90°,当α=__________时,21sin =α,当α=__________时,Cota=3.12. 若,则锐角α=__________。

【九年级】九年级上册第25章解直角三角形测试题(华师大版有答案)

【九年级】九年级上册第25章解直角三角形测试题(华师大版有答案)

【九年级】九年级上册第25章解直角三角形测试题(华师大版有答案)第25章解直角三角形检测题(时间:90分钟,满分:100分)一、(每小题3分,共30分)1.计算:a.b.c.d.2.在△, ∠ = 90°,如果,,那么sin的值是()a.b.c.d.3.在△, ∠ = 90,然后是罪()a.b.c.d.4.在△ ABC,如果三边BC、Ca和ab满足BC∶ Ca∶ AB=5∶ 12∶ 13,然后CoSb() a.b.c.d.5.在△, ∠ = 90°,则sin的值为()a.b.c.1d.6.已知于,,则的值为()a.b.c.d.7.如图所示,一个小球沿着斜坡从地面向上移动10。

此时,小球离地面的高度为()a.b.2c.4d.8.如图所示,在钻石中,,,Tan的值∠ 是()a.b.2c.d.9.如果直角三角形的两条右边之和为7,面积为6,则斜边的长度为()a.5b.c.7d.10.如图所示,已知45°<a<90°,则以下公式为真()a.b.c、 d。

二、题(每小题3分,共24分)11.那么__12.若∠是锐角,cos=,则∠=_________.13.小兰想测量南塔的高度她抬头看了看塔顶,测量了30°的仰角,然后向塔的方向移动了50°,测量了60°的仰角,所以塔的高度大约是___________________14.等腰三角形的腰长为2,腰上的高为1,则它的底角等于________.15.如图所示,如果斜面上的高度为RT△ 那就知道了___16.△abc的顶点都在方格纸的格点上,则_.17.数字① 是中国古代著名的“赵双弦图”的示意图,它被四个全等的直角三角形包围。

如果四个直角三角形中边长为6的直角边向外翻倍,得到图中所示的“数学风车”②, 风车的周长是____18.如图是一个艺术窗的一部分,所有的四边形都是正方形,三角形是直角三角形,其中最大正方形的边长为,则正方形a,b的面积和是_________.三、回答问题(共46分)19.(8分)计算下列各题:(1);(2).20.(6分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在树前的平地上选择一个点,测量树顶与该点的仰角为35°;(2)在点和大树之间选择一点(、、在同一直线上),测得由点看大树顶端的仰角恰好为45°;(3)两个测量点之间的距离为4.5请你根据以上数据求出大树的高度.(结果保留3个有效数字)21.(6分)每年的5月15日是“世界残疾人日”。

华师大九年上第25章《解直角三角形》单元测试卷及答案

华师大九年上第25章《解直角三角形》单元测试卷及答案

解直角三角形(满分:100分 时间:120分钟)班级 姓名 成绩一、选择题(每小题5分,共30分)1.已知直角三角形一锐角是300,斜边长是1,那么此直角三角形的周长是 ( )A.52 B.32.∠= 中,C 90,ABC a 、b 、c 分别是∠∠∠、、A B C 的对边,则有 ( ) A.b=a ·tanA B.B=a ·sinA C.a=c ·cosB D.c=a ·sinA3.当锐角A<450时,cosA 的值 ( )C.小于4.如图19-33,∠⊥ ,,,Rt ABC 中C=90CD AB 若AD=8,BD=4,则tanA= ( )5.若太阳光线与地面成,一颗树的影子长为,则树高为( )A.5m B.C.7m D.20mABC图19-336.在离地面高度5m 处引拉线固定电线杆,拉线和地面成600角,如图19-34,则拉线AC 的长为( ) A.10mB.3mC.2m D. 二、填空题(每小题5分,共30分)7.等腰直角三角形的一边长为2,则它的周长为 . 8.计算:cos300 ·tan300+sin600·tan450·cos300= . 9.若锐角A满足sinA-cotA=2,则tan 2A+cot 2A= .10.∠= 中,C 90,ABC AC=3,AB=5,则sinA= ,sinB= . 11.利用计算器查值:sin54025’= ,cot73051’26’’= .12.某人沿斜坡笔直向上走了100米,此时他在竖直方向上升高了50米,则此斜坡的坡度为 . 三、解答题(每小题10分,共40分)13.计算:(1)2cos 2450-3cot450+tan 2600-2sin 2300A DC5cm C图19-34-∙∙010001001(tan 65)2(tan 25)214.在∠∠ ,,,b=6,Rt ABC 中C=90A=60解这个直角三角形.15.如图19-35,在∠== 中,B 60,2,ABC BC 中线⊥CD BC ,求AC 、sinA 的值.16.如图19-36,炮兵在地面C 点观察到空中B 点有一架敌机,仰角为450,敌机在同一高度作直线飞行,经过D 点到达A 点时炮兵观测的仰角为300,而D 点位于炮兵阵地C 的正上方2000米处,该敌机从B 飞到A 用1分钟,求敌机的飞行速度。

九年级数学上册 第25章解直角三角形单元测试 华东师大版

九年级数学上册 第25章解直角三角形单元测试 华东师大版

华东师大版初中九上第25章解直角三角形单元测试(90分钟 100分)一、选择题(每小题3分,共30分)1.在△ABC 中,∠C=90°,∠B=2∠A ,则cosA 等于 ( ) A .23 B .21C .3D .332.如图25—1,已知梯形ABCD 中,AD//BC ,∠B=45°,∠C=120°,AB=8,则CD 的长为 ( ) A .368 B .64 C .328 D .243.△ABC 中,∠C=90°,cosB=54,则AC :BC :AB 等于 ( ) A .3:4:5 B .4:3:5 C .3:5:4 D .5:3:44.如图25—2,河对岸有铁塔AB ,在C 处测得塔顶A 仰角为30°,向塔前进14 m 到达D ,在D 外测得A 的仰角为45°,塔高AB 为 ( ) A .)14316(-m B .)737(+m C .)7316(+mD .)7310(+m5.在△ABC 中,∠C=90°,若cos A=35,则sin B 等于 ( ) A .35 B .55 C .33 D .326.有一拦水坝横断面是等腰梯形,它的上底长为6 m ,下底长为10 m ,高为2 m ,那么此拦水坝斜坡的坡度和坡角分别是 ( )A .︒60,3B .︒30,3C .︒45,1D .︒45,3 7.已知cotA=3,∠A 为锐角,则cosA 的值为 ( ) A .21B .22C .23D .338.身高相同的甲、乙、丙三人放风筝,各人放出线长分别为300 m 、250 m 、200 m ,线与地面所成的角度分别为30°、45°、60°(假设风筝是拉直的)三个人所放风筝中 ( ) A .甲的最高 B .乙的最高 C .丙的最高 D .丙的最低9.在△ABC 中,若∠A=30°,∠B=45°,AC=8,则BC 的长为 ( ) A .4 B .24 C .34 D .6410.如果等腰三角形的底角为30°,腰长为6 cm ,那么这个三角形的面积为 ( ) A .4.5 cm 2 B .2cm 39C .2cm 318D .2cm 36二、填空题(每题3分,共18分)11.化简=︒-︒-⎪⎭⎫ ⎝⎛-︒|30sin 60tan |2145cos 2_________。

华师大版九年级数学上 第25章《解直角三角形》整章测试(含答案)

华师大版九年级数学上 第25章《解直角三角形》整章测试(含答案)

第25章《解直角三角形》整章测试一.选择题(每小题3分,共24分)1.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( )(A(B)14(D)42.计算:2)130(tan -︒=( )(A)331-(B)13- (C)133- (D )1-3 3.在ABC ∆中,,A B ∠∠都是锐角,且sinA =21, cosB =23,则ABC ∆的形状( ) (A )直角三角形(B )钝角三角形 (C )锐角三角形 (D )不能确定4.如图,在Rt ABC △中,tan B =,BC =则AC 等于( ) (A )3(B )4(C)(D )65.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的 眼睛距地面的距离),那么这棵树高是( ) (A)32)m (B)(32)m (D)4m 6.因为1sin 302=,1sin 2102=-, 所以sin 210sin(18030)sin30=+=-;因为2sin 45=,sin 225=-, 所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )(A )12-(B)-(C)-(D)7.如图,客轮在海上以30km/h 的速度由B 向C 航行,在B 处测得 灯塔A 的方位角为北偏东80,测得C 处的方位角为南偏东25,航行1小时后到达C 处,在C 处测得A 的方位角为北偏东20,则C 到A 的距离是( )(A)(B)(C)km (D)km北8.如图,在Rt ABC △中,906cm A AC ∠==,,8cm AB =,把AB 边翻折,使AB 边落在BC 边上,点A 落在点E 处,折痕为BD , 则sin DBE ∠的值为( ) (A)13(B)310二.填空题(每小题3分,共24分) 9.计算sin 60tan 45cos30-的值是 .10. 用“>”或“<”号填空:1sin 50cos 402-0.(可用计算器计算) 11.在Rt ABC △中,90C ∠=,:3:4BC AC =,则cos A = . 12.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为 米.13.如图,一轮船由南向北航行到O 处时,发现与轮船相距40海里的A 岛在北偏东33方向.已知A 岛周围20海里水域有暗礁, 如果不改变航向,轮船 (填“有”或“没有”)触暗礁 的危险.(可使用科学计算器)14. 如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6cm ,3sin 5A =,则菱形ABCD 的面积是__________2cm . 15.根据指令[s,A](s ≥0,0°≤A <360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(-3,3),应下的指令是 .16. 有古诗“葭生池中”今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问: 水深.葭长各几何?(1丈=10尺)回答:水深 ,葭长 . 三.解答题(本大题共52分)17.(本题845sin 60)4︒-︒+.ABCDEA BC18.(本题10分)某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法,如下图所示.图中a b c ,,表示长度,β表示角度.请你求出AB 的长度(用含有a b c β,,,(1)______AB = (2)______AB = (3)______AB =19.(本题10分)小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号).20.(本题12分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.(1)c21.(本题12分)如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A ,B ,C .经测量花卉世界D 位于点A 的北偏东45°方向.点B 的北偏东30°方向上,AB =2km ,∠DAC=15°. (1)求B ,D 之间的距离; (2)求C ,D 之间的距离.四.附加题(本题20分)22. 现代家居设计的“推拉式”钢窗,运用了轨道滑行技术,纱窗装卸时利用了平行四边形的不稳定性,操作步骤如下:(1)将矩形纱窗转化成平行四边形纱窗后,纱窗上边框嵌入窗框的上轨道槽(如图1). (2)将平行四边形纱窗的下边框对准窗框的下轨道槽(如图2).(3)将平行四边形纱窗还原成矩形纱窗,同时下边框嵌入窗框的下轨道槽(如图3).在装卸纱窗的过程中,如图所示α∠的值不得小于81,否则纱窗受损.现将高96cm 的矩形纱窗恰好安装在上.下槽深分别为0.9cm ,高96cm (上.下槽底间的距离)的窗框上.试求合理安装纱窗时α∠的最大整数值.(下表提供的数据可供使用)ABC 中山路文化路D 和平路45° 15° 30°EF 图1图2图3参考答案一.1~8 BABA ACDD 二.9.0 10. > 11.3512. 4 13.没有 14. 6015.225⎡⎤⎣⎦16. 12尺,13尺三.17.解:=原式2=2=18.解:(1)AB = (2)tan AB a β= (3)ac AB b=. 19.解:分两种情况:(1)当ACB ∠为钝角时, BD 是高,90ADB ∴∠=.在Rt BCD △中,40BC =,30BD =∴CD ===在Rt ABD △中,50AB =,∴40AD ==.40AC AD CD ∴=-=-∴211(4030(600)22ABC S AC BD ==-⨯=-△. (2)当ACB ∠为锐角时, BD 是高,90ADB BDC ∴∠=∠=,在Rt ABD △中,5030AB BD ==,,40AD ∴==.同理CD ===∴(40AC AD CD =+=+,∴211(4030(600)22ABC S AC BD ==+⨯=+△.综上所述:2(600)ABC S =±△.20.解:有触礁危险.理由: 过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒= ∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险.21. 解:(1)由题意得,∠EA D =45°,∠FBD=30°.∴ ∠EAC=∠EA D +∠DA C =45°+15°=60°. ∵ AE∥BF∥CD,∴ ∠FBC=∠EAC =60°. ∴ ∠DBC=30°.又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°.∴ ∠DAB=∠ADB. ∴ BD=AB=2. 即B ,D 之间的距离为2km .(2)过B 作BO⊥DC,交其延长线于点O , 在Rt△DBO 中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2×323=,BO=2×cos60°=1. 在Rt△CBO 中,∠CBO=30°,CO=BOtan30°=33, ∴ CD=DO-CO=332333=-(km ). 即C ,D 之间的距离为332km . 22. 解:能够合理装上平行四边形纱窗时的最大高度:960.995.1-=(cm )能够合理装上平行四边形纱窗时的高:96sin α∠或96cos(90)α-∠·° 当81α∠=°时,纱窗高:96sin 81960.98794.75295.1=⨯=<°∴此时纱窗能装进去,当82α∠=°时,纱窗高:96sin82960.99095.0495.1=⨯=<° ∴此时纱窗能装进去.当83α∠=°时,纱窗高:96sin 83960.99395.32895.1=⨯=>° ∴此时纱窗装不进去. 因此能合理装上纱窗时α∠的最大值是82°.。

海南省华东师大版九年级数学上同步练习答案

海南省华东师大版九年级数学上同步练习答案

《新课程课堂同步练习册·数学(华东版九年级上)》参考答案 第22章二次根式§22.1 二次根式(一)一、1. D 2. C 3. D 4. C二、1. 12+x 2. x <-7 3. x ≤3 4. 1 5. x ≥2y三、1. x ≥212. x >-13. x =0 §22.1 二次根式(二)一、1. B 2. B 3. D 4. B二、1.(1)3 (2)8 (3)4x 2 2. x -2 3. 42或(-4)2 27)(或27)(- 4. 1 5. 3a三、1. (1) 1.5 (2) 73(3) 25 (4) 20 2. 原式=(x -1)+(3-x )=23. 原式=-a -b +b -a =-2 a §22.2 二次根式的乘除法(一) 一、1. D 2. B二、1. 14,a 15 2. 30 3. 112-=-n n ·1+n (n ≥3,且n 为正整数)三、1. (1)15 (2)32 (3) -108 2. 1021 cm 2§22.2 二次根式的乘除法(二) 一、1. A 2. C 3. B 4. D二、1. 53 b b 2 2. a 32 72 3. 5三、1. (1) 52 (2) 26 (3) 22 (4) b a 234 2. 14cm §22.2 二次根式的乘除法(三)一、1. D 2. A 3. A 4. C二、1.33, 210 2. x =2 3. 6 三、1.(1) 232 (2) 3-22(3) 10 (4) 2 2. 258528=÷nn ,因此是2倍. 3. (1) 不正确,9494)9(4⨯=⨯=-⨯-;(2) 不正确,574251122512425124==+=. §22.3 二次根式的加减法一、1. A 2. C 3. D 4. B二、1. 52 53-(答案不唯一) 2. 1 3. 3<x <334. 10255+5. 33 三、1.(1)34 (2)33(3) 1 (4)3-25 (5)25-23 (6)3a -2 2. 因为25.45232284242324321824≈=⨯=++=++)()(>45所以王师傅的钢材不够用. 3. 2322)26(-=-第23章一元二次方程§23.1 一元二次方程一、1.C 2.A 3. C二、1. ≠1 2. 3y 2-y +3=0,3,-1,3 3.-1三、1. (1) x 2-7x -12=0,二次项系数是1,一次项系数是-7,常数项是-12(2) 6x 2-5x +3=0,二次项系数是6,一次项系数是-5,常数项是3 2. 设长是xm ,根据题意,列出方程x (x -10)=375 3. 设彩纸的宽度为x 米,根据题意得(30+2x )(20+2x )=2×20×30(或2(20+2x )x +2×30x =30×20 或2×30x +2×20x +4x 2=30×20)§23.2 一元二次方程的解法(一)一、1.C 2.D 3.C 4. C 5. C二、1. x =0 2. x 1=0,x 2=2 3. x 1=2,x 2=21- 4. x 1=-22,x 2=22三、1. (1) x 1=-3,x 2=3; (2) x 1=0,x 2=1;(3) x 1=0,x 2=6; (4) x 1=32-, x 2=1 2. 11米 §23.2 一元二次方程的解法(二) 一、1.D 2. D 3. B二、1. x 1=3,x 2=-1 2. x 1=3+3,x 2=3-3; 3.直接开平方法,移项,因式分解,x 1=3,x 2=1 三、1.(1) x 1=3,x 2=0 (2) x 1=3,x 2=-5(3) x 1=-1+22,x 2=-1-22 (4)x 1=27,x 2=452. x=1或x=31-§23.2 一元二次方程的解法(三) 一、1.D 2.A 3. D二、1. 9,3;3191,; 2. 移项,1 3.3或7三、1. (1)x 1=1,x 2=-5;(2) x 1=2135+,x 2=2135-;(3)x 1=7,x 2=-1;(4)x 1=1,x 2=-9.2. x=2175+或x=2175-.3. x 1=242q p p -+-,x 2=242q p p ---.§23.2 一元二次方程的解法(四)华东版九年级数学(上) 第3页一、1.B 2.D 二、1. 3x 2+5x=-2,3,32352-=+x x ,(65)2,222)65(32)65(35+-=++x x ,65+x ,361,x 1=32-,x 2=-12.41,16253. 4 三、1.(1)222±=x ; (2)4173±-=x ; (3)aac b b x 242-±-=. 2. 原式变形为2(x -45)2+87,因为2452)(-x ≥0,且87>0, 所以2x 2-5x -4的值总是正数,当x=45时,代数式2x 2-5x +4最小值是87.§23.2 一元二次方程的解法(五)一、1.A 2.D二、1. x 2+3x -40=0,169,x 1=5,x 2=-8; 2. b 2-4ac >0,两个不相等的;3. x 1=251+- ,x 2=251-- 三、1.-1或-5; 2. 222±=x ; 3. 3102±=x ; 4.2979±-§23.2 一元二次方程的解法(六)一、1.A 2.B 3. D 4. A二、1. 公式法;x 1=0,x 2=-2.5 2. x 1=0,x 2=6 3. 1 4. 2 三、1. x 1=2155+,x 2=2155-; 2. x 1=4+42,x 2=4-42 ;3. y 1=3+6,y 2=3-64. y 1=0,y 2=-21; 5. x 1=21,x 2=-21(提示:提取公因式(2x -1),用因式分解法) 6. x 1=1,x 2=-31§23.2 一元二次方程的解法(七) 一、1.D 2.B二、1. 90 2. 7三、1. 4m ; 2. 道路宽应为1m §23.2 一元二次方程的解法(八)一、1.B 2. B 3.C二、1. 500+500(1+x )+500(1+x )2=2000, 2. 30% 三、1. 20万元; 2. 10% §23.3 实践与探索(一) 一、1.D 2.A二、1. x (60-2x )=450 2. 50 3. 700元( 提示:设这种箱子底部宽为x 米,则长为(x +2)米,依题意得x (x +2)×1=15,解得x 1=-5,(舍),x 2=3.这种箱子底部长为5米、宽为3米.所以要购买矩形铁皮面积为(5+2)×(3+2)=35(米2),做一个这样的箱子要花35×20=700元钱). 三、1. (1)1800 (2)2592 2. 5元3.设道路的宽为xm ,依题意,得(20-x )(32-x )=540 整理,得x 2-52x +100=0解这个方程,得x 1=2,x 2=50(不合题意舍去).答:道路的宽为2m .§23.3 实践与探索(二)一、1.B 2.D二、1. 8, 2. 50+50(1+x )+50(1+x )2=182 三、1.73%; 2. 20%3.(1)(i )设经过x 秒后,△PCQ 的面积等于4厘米2,此时,PC=5-x ,CQ=2x .由题意,得21(5-x )2x=4,整理,得x 2-5x +4=0. 解得x 1=1,x 2=4.当x=4时,2x=8>7,此时点Q 越过A 点,不合题意,舍去. 即经过1秒后,△PCQ 的面积等于4厘米2.(ii )设经过t 秒后PQ 的长度等于5厘米. 由勾股定理,得(5-t )2+(2t )2=52 .整理,得t 2-2t=0. 解得t 1=2,t 2=0(不合题意,舍去). 答:经过2秒后PQ 的长度等于5厘米.(2)设经过m 秒后,四边形ABPQ 的面积等于11厘米2.由题意,得21(5-m ) ×2m=21×5×7-11,整理得m 2-5m +6.5=0,因为15.614)5(422-=⨯⨯--=-ac b <0,所以此方程无实数解. 所以在P 、Q 两点在运动过程中,四边形ABPQ 的面积不能等于11厘米2..§23.3 实践与探索(三)一、1.C 2.A 3. C二、1. 1,-2, 2. 7, 3. 1,2 4.(x -1)(x +3) 三、1.3; 2. 32-=q .3. k 的值是1或-2. 当k =1时,方程是一元一次方程,只有-1这一个根;当k =-2时,方程另一个根为-31.第24章图形的相似§24.1 相似的图形1.(2)(3)(4) 2. 略 3. 略 §24.2 相似图形的性质(一)一、1.D 2.C 3. A 4. D二、1. 23, 38 2.22221=(或22221=……等) 3.57三、1. 51 2. 5113. 95§24.2 相似图形的性质(二)一、1.A 2.D 3. C二、1. 1:40 000 2. 5 3.180 4.③⑤ 三、1. ∠β=81°,∠α=83°,x =28.2.(1)由已知,得MN =AB ,MD =21AD =21BC .∵ 矩形DMNC 与矩形ABCD 相似,DM MNAB BC=, ∴21AD 2=AB 2,∴ 由AB =4得,AD =42华东版九年级数学(上) 第5页(2)矩形DMNC 与矩形ABCD的相似比为2DM AB =§24.3 相似三角形(一) 一、1.D 2.B二、1. AB ,BD ,AC 2. 21 3.45 ,31三、1.x =6,y =3.5 2.略 §24.3 相似三角形(二)一、1.B 2.A 3. A 4. B二、1. 310 2. 6 3.答案不唯一(如:∠1=∠B 或∠2=∠C 或AD :AB=AE :AC 等)4.28三、1. 因为∠A =∠E =47°,75==ED AC EF AB ,所以△ABC ∽△EFD . 2.CD=213.(1)① △ABE ∽△GCE ,② △ABE ∽△GDA .① 证明:∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,∴ ∠ABE=∠GCE ,∠BAE=∠CGE ,∴ △ABE ∽△GCE .② 证明:∵ 四边形ABCD 是平行四边形,∴ ∠ABE=∠GDA , AD ∥BE ,∴ ∠E=∠DAG ,∴ △ABE ∽△GDA . (2)32.4.(1)正确的结论有①,②,③; (2)证明第①个结论:∵ MN 是AB 的中垂线,∴DA =DB ,则∠A =∠ABD =36°,又等腰三角形ABC 中AB =AC ,∠A =36°,∴ ∠C =∠ABC =72°,∴ ∠DBC =36°, ∴ BD 是∠ABC 的平分线.§24.3 相似三角形(三)一、1.B 2.D 3. C二、1. 3:2, 3:2, 9:4 2. 18 3.2:5 4. 答案不唯一.(如:△ABC ∽△DAC ,5:4 或△BAD∽△BCA ,3:5 或△ABD ∽△CAD ,3:4) 三、1.(1)31,(2)54cm 2.2. 提示:设正方形的边长为x cm.由PN ∥BC ,得△APN ∽△ABC ,BCPN ADAE =, 1288x x =-, 解得x =4.8cm. 3.(1)8,(2)1:4. §24.3 相似三角形(四) 一、1.B 2.A二、1. 1.75 2. 100 3.10 4.712或2 三、1.过E 作EF ⊥BD ,∵∠AEF =∠CEF ,∴∠AEB =∠CED .又∵∠ABE =∠CDE =90°,∴ △ABE ∽△CDE ,∴DE BECD AB =,即1850.050.16=⨯=⨯=DE CD BE AB (米). 2.(1)△CDP ∽△P AE .证明:∵ 四边形ABCD 是矩形,∴ ∠D=∠A=90°,∴ ∠PCD +∠DPC=90°.又∵ ∠CPE=90°,∴ ∠EP A +∠DPC=90°,∴ ∠PCD=∠EP A . ∴ △CDP ∽△P AE .(2)在Rt △PCD 中,CD=AB=6,由tan ∠PCD =CDPD .∴ PD=CD •tan ∠PCD=6•tan 30°=6×33=23. ∴ AP=AD -PD=11-23.解法1:由△CDP ∽△P AE 知AP CD AE PD =, ∴ AE=233116)3211(32-=-⨯=⋅CD AP PD解法2:由△CDP ∽△P AE 知∠EP A =∠PCD =30°,∴ AE=AP •tan ∠EAP=(11-23)•tan 30°=23311-.(3)假设存在满足条件的点P ,设DP=x ,则AP=11-x由△CDP ∽△P AE 知2=AP CD ,∴ 2116=-x,解得x=8,∴ DP=8.§24.4 中位线(一)一、1.D 2.C 3.C二、1. 26 2. 2.5 3.25 4. 12 三、1.(1)提示:证明四边形ADEF 是平行四边形; (2)AC =AB ; (3)△ABC 是直角三角形(∠BAC =90°);(4)△ABC 是等腰直角三角形(∠BAC =90°,AC =AB ) 2. 提示:∵ DC =AC ,CE ⊥AD ,∴ 点E 是AD 的中点. §24.4 中位线(二) 一、1.D 2.D二、1. 7.5 2. 2 3.15 三、1.ab 21 2.2§24.5 画相似图形一、1.D 2.B二、1. 4,画图略 2. P 3. 略 三、1.略 2.略 §24.6 图形与坐标(一) 一、1.D 2.B 二、1.(-2, 1) 2.(7,4) 三、1.略 2.略 §24.6 图形与坐标(二)一、1.C 2.C 3. C 二、1.(1,2) 2.x 轴,横,纵 3.(-a ,b ) 三、1.略 2.略3.(1)平移,P 1(a -5,b +3).(2)如图所示. A 2(-8,2), B 2(-2,4),C 2(-4,0),P 2(2a -10,2b +6).第25章解直角三角形§25.1 测量 一、1. B 2.C 二、1.30 2.200 三、1.13.5m§25.2 锐角三角函数(一)一、1.C 2.B 3.C 4.A华东版九年级数学(上) 第7页二、1.53 2.21 3.54三、1. sinB =53,cosB =54,tanB =43,cotB =34 2.sinA =55,cosA =552,tanA =21,cotA =2§25.2 锐角三角函数(二)一、1. A . 2. C 3. A 4.A 5.C 6.C 二、1. 1 2. 1 3.70三、1.计算:(1(2)-3 (3)0 (4)-12.(1)在Rt △ADC 中55sin =α, 552cos =α, tan α=21,cot α=2(2)在Rt △ABC 中,BC =AC ·cot α=2×2=4,∴BD =BC -CD =4-1=3. §25.2 用计算器求锐角三角函数(三) 一、1. A 2. B二、1. 0.7344 2. 0.464 3. > 三、1.(1)0.9943 (2)0.4188 (3)1.76172.(1)17°18′ (2)57°38′ (3)78°23′ 3. 6.21§25.3 解直角三角形(一) 一、1.A 2.C二、1. 2.5 3.4. 8三、1.答案不唯一. 2.10 §25.3 解直角三角形(二) 一、1.D 2.B二、1.20sin α 2. 520cos 50°(或520sin 40°) 3.1.66 三、1. 3.93米.2. 作CD ⊥AE 交AB 于D ,则∠CAB =27°,在Rt △ACD 中,CD =AC ·tan ∠CAB =4×0.51=2.04(米) 所以小敏不会有碰头危险,姚明则会有碰头危险.§25.3 解直角三角形(三) 一、1. B 2. B二、12. 2633. 30三、1.15米2.如图,由已知,可得∠ACB =60°,∠ADB =45°. ∴在Rt △ABD 中,BD=AB .又在Rt △ABC 中,tan 60AB BC =,ABBC∴=即BC AB =.BD BC CD =+,AB AB CD ∴=+.∴ CD =AB -33AB =180-180×33=180-603(米). 答:小岛C ,D 间的距离为(180-米.3.有触礁危险.ABC D 60°45°理由:过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD =90°-45°=45°.∴ BD =PD =x .在Rt △P AD 中,∵∠P AD =90°-60°=30°,∴x .x AD 330tan =︒= ∵ AD =AB +BD , ∴ x .x +=123∴ )13(61312+=-=x .∵ ,<18)13(6+∴ 渔船不改变航线继续向东航行,有触礁危险.§25.3 解直角三角形(四)一、1.C 2.A二、1. 30° 2.2+3.34 三、1. 作AE ⊥BC ,DF ⊥BC ,垂足分别为E ,F , 在Rt △ABE 中,tan AE B BE =,∴ tan AE BE B ==6tan55. ∴6221624.4tan55BC BE AD =+=⨯+≈(cm ). 答:燕尾槽的里口宽BC 约为24.4cm .2.如图所示,过点A 、D 分别作BC 的垂线AE 、所以△ABE 、△CDF 均为Rt △, 又因为CD =14,∠DCF =30°, 所以DF =7=AE ,且FC =12.1, 所以BC =7+6+12.1=25.1m . 3.延长CD 交PB 于F ,则DF ⊥PB . ∴ DF =BD ·sin 15°≈50×0.26=13.0. ∴ CE =BF =BD ·cos 15°≈50×0.97=48.5. ∴ AE =CE ·tan 10°≈48.5×0.18=8.73. ∴ AB =AE +CD +DF =8.73+1.5+13 =23.2. 答:树高约为23.2米.3.(1)在Rt △BCD 中,CD =BCsin 12°≈10×0.21=2.1(米) (2)在Rt △BCD 中,BD =BCcos 12°≈10×0.98=9.8(米)在Rt △ACD 中,︒=5tan CD AD ≈09.01.2≈23.33(米),AB =AD -BD ≈23.33-9.8=13.53≈13.5(米) 答:(1)坡高2.1米,(2)斜坡新起点与原起点的距离为13.5米.第26章 随机事件的概率§26.1 概率的预测——什么是概率(一)一、1. D 2. B 3. C 4. A 5. B西 东PA CBN M 60° 45°F华东版九年级数学(上) 第9页二、1. 20,30 2. 0.18 3.124. 0.2 三、1.(1)2583,5839,8396,3964,9641,6417 (2)62. ①—D ②—C ③—A ④—B ⑤—E §26.1 概率的预测——什么是概率(二) 一、1. B 2. C3. C4. A二、1. 25 2. 35 3.(1)14 (2)113 (3)413 4. 1三、1.不公平,红色向上概率对于甲骰子是31,而其他色向上的概率是61 2. 提示:任意将其中6个单个的小扇形涂黑即可.3. 24个球分别为4个红球、8个白球、12个黄球.§26.1 概率的预测——在复杂情况下列举所有机会均等的结果 一、1. A 2. C 二、1.13 2. 34 3. 12 4.(1)32;(2)61;(3)21三、1. 树形图:第一张卡片上的整式 x x -1 2第二张卡片上的整式 x -1 2 x 2 x x -1 所有可能出现的结果 1x x - 2x 1x x - 12x - 2x 21x - 所以P (能组成分式)63==. 2.(1)设绿球的个数为x .由题意,得21212x =++.解得x=1.经检验x=1是所列方程的根,所以绿球有1个. (2)根据题意,画树状图:红2 黄 绿 红1 黄 绿 红1 红2 绿 红1 红2 红1 红2 黄绿开始 第二次摸球 第一次摸球 黄由图知共有12种等可能的结果,即(红1,红2),(红1,黄),(红1,绿),(红2,红1),(红2,黄),(红2,绿),(黄,红1),(黄,红2),(黄,绿), (绿,红1),(绿,红2),(绿,黄),其中两次都摸到红球的结果有两种(红1,红2),(红2,红1)∴ P (两次摸到红球)21126==.由表格知共有12种等可能的结果,其中两次都摸到红球的结果有两种. ∴ P (两次都摸到红球)21126==.3. 这个游戏对小慧有利.每次游戏时,所有可能出现的结果如下:(列表)土口木土 (土,土) (土,口) (土,木) 口 (口,土) (口,口) (口,木) 木(木,土) (木,口) (木,木)(树状图)总共有9种结果,每种结果出现的可能性相同, 其中能组成上下结构的汉字的结果有4种:(土,土)“圭”,(口,口)“吕”,(木,口)“杏”或“呆”,土口 木 开始 土(土,土) 口(土,口) 木(土,木) 土(口,土) 口(口,口) 木(口,木) 土(木,土)口(木,口) 木(木,木)华东版九年级数学(上) 第11页 (口,木)“呆”或“杏”.()49P =小敏获胜∴,()59P =小慧获胜,∵()P <小敏获胜()P 小慧获胜.∴ 游戏对小慧有利§26.2 模拟实验——用替代物做模拟实验一、1. A 2. C二、1.两张分别标有0、1的纸片 2. 三张纸片进行抽签,两张写“1”一张写“2”.3.合理三、1. 略 2. 14,后者答案不唯一 3. 点数和为偶数与点数和为奇数的机会各占50%,替代物不唯一§26.2 模拟实验——用计算器做模拟实验一、1. B 2. B二、1.1 6 6 2.1 30 13三、1.(1)0.6;(2)0.6;(3)16、242.(1)若甲先摸,共有15张卡片可供选择,其中写有“石头”的卡片共3张, 故甲摸出“石头”的概率为31155=. (2)若甲先摸且摸出“石头”,则可供乙选择的卡片还有14张,其中乙只有摸出卡片“锤子”或“布”才能获胜,这样的卡片共有8张,故乙获胜的概率为84147=. (3)若甲先摸,则“锤子”、“石头”、“剪子”、“布”四种卡片都有可能被摸出.若甲先摸出“锤子”,则甲获胜(即乙摸出“石头”或“剪子”)的概率为71142=; 若甲先摸出“石头”,则甲获胜(即乙摸出“剪子”)的概率为42147=; 若甲先摸出“剪子”,则甲获胜(即乙摸出“布”)的概率为63147=; 若甲先摸出“布”,则甲获胜(即乙摸出“锤子”或“石头”)的概率为514. 故甲先摸出“锤子”获胜的可能性最大.3.(1)填18,0.55 ;(2)画出正确图形;(3)给出猜想的概率的大小为0.55±0.1均为正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解直角三角形测试题
一、选择题 1、在 Rt △ ABC 中, / C=90° , a: =1 ,c = 4 ,则sinA 的值是 ( )
A .15 1 1 D 、 ■ 15 A 、c —
15 4 3
4 2、在厶ABC 中,乙C =90,如果 tan A -5
,那么sin B 的值等于( 12
5 12 5 12
A 、
B 、 c 、 D 、 —
13 13 12 5
3、在上一二「中,
若 sin
2 ,则■■ ■ ?
的值为(
)
A. 1
B. C. D.
2 2
2
AB 等于( ) 4、如图,为了测量河两岸 A 、B 两点的距离, / ACB = ,那么 5、 A. a sin : C. a ta n :
r e 2 如果 sin a + sin A.15 6、 于
7、 B. a cos : D. a cot : 勺0°=1 那么锐角a B.30 C. AE CF 是锐角△ ABC 的两条高,如果 ) 3: 2 (B ) 2: 3 在厶 ABC 中,/ C = 90
O
4 5 AE (A ) 如图, 9: 4 (C ) ,/ B = 50 (D ) 4: 9
,AB = 10,贝U BC 的长为 A. 10tan50 ° B 、10cos20 C 、 10s
in50
cos50 B
&王英同学从A 地沿北偏西60o 方向走100m 到B 地,再从B 地向正南 方向走200m 到C 地,此时王英同学离 A 地 ( ) (A ) 50.3 m (B ) 100 m (C ) 150m ( D ) 100. 3 m 9、一艘轮船由海平面上 A 地出发向南偏西400的方向行驶40海里到达 B 地,再由B 地向北偏西20o 的方向行驶40海里到达C 地,则A 、C 两 地相距( ) (A ) 30海里 (B ) 40海里 (C ) 50海里 (D ) 60海里
10、化简.(ta n30 -1)2 A 、 1 3 二、填空题 11、计算:2si n60 = B 、 C 、」-1
3
则拉线AC 的长是 m.
16、如图,一艘轮船向正东方向航行,上午
灯塔120海里的M 处,上午11时到达这座灯塔的正南方向的
N 处, 内航行的平均速度是 _________ 海里/时。

三、解答题
9时测得它在灯塔 P 的南偏西30°方向,距离 则
这艘轮船在这段时间
17、计算题:

45
—27 扌亠
2006
°
6tan30
18、计算题: sin 2 30 -cos45» tan6O0+ sin60 . -tan45 cos30
19、如图,灯塔A 在港口 O 的北偏东55°方向上,且与港口的距离为 80海里,一艘船上午 9时从
港口 O 出发向正东方向航行,上午 11时到达B 处,看到灯塔 A 在它的正北方向.试
求这艘船航行的速度 (精确到0.01海里/小时).(供选用数据:sin55 ° = 0.8192 , cos55
=0.5736 ,tan55 ° =1.4281 )
20、如图,小勇想估测家门前的一棵树的高度,他站在窗户 C 处,观察
到树顶端A 正好与C 处在同一水平线上,小勇测得树底B 的俯角为60°, 并发现B 点距墙脚D 之间恰好铺设有六块边长为 0.5米的正方形地砖, 因此测算出B 点到墙脚之间的距离为 3米,请你帮助小勇算出树的高度 果保留1位小数;参考数据:.2 :■ 1.414, ,3 :-1.732 )
12、 某坡面的坡角为 60°,则它的坡度是 __________ 13、
锐角 A 满足 2sin ( A-15 °) = 3 则ZA=
14、 在厶 ABC 中,AB =2 , AC = .2 , . B =30o ,则 / BAC 的度
数 ___________ . _________
15、 图7是引拉线固定电线杆的示意图。

已知: CD ±AB, CD=3・.3 m / CAD=/ DBD=60 ,

AB 约多少米?(结
A
24、一高速铁路即将动工,工程需要测量某一段河的宽度 .如图①,一测量员在河岸边的 A
处测得对岸岸边的一根标杆 B 在它的正北方向,测量员从 A 点开始沿岸边向正东方向前进
100米到达点C 处,测得./ACB =68〔
21、如图,在两面墙之间有一个底端在
A 点的梯子,
当它靠在一侧墙上时,梯子的顶端在
B 点;当它靠在另一侧墙上时,梯子的顶端在
BAC=60,/ DAE=45,点 D 到地面的垂直距离 DE=3薛m 。

求点
D 点。

已知/
22、如图所示,已知:在△ ABC 中,/ A=60°,Z B=45°, AB=8.
求:△ ABC 的面积(结果可保留根号).
23、一艘轮船自西向东航行,在 A 处测得东偏北21.3°方向有一座小岛 C ,继续向东航行
60海里到达B 处,测得小岛C 此时在轮船的东偏北 63.5°方向上.之后,轮船继续向东航
行多少海里,距离小岛 C 最近?(参考数据:
9
~ 一 , tan63. 5 ~ 2)
10
o
9
o
2
sin21.3 °~
,
〜 一
sin63.
25
5

—东
(1)求所测之处河的宽度(sin 68 0.93, cos68 ' 0.37, tan6“ 2.48.);
(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形
25、某山区计划修建一条通过小山的公路,经测量,如图,从山底B到山顶A的坡角是30°, 斜坡AB长为80米•根据地形,要求修好的公路路面BD的坡比i =1:5 (假定A、D两点处于同一垂直线上)•为了减少工程量,若AD乞20米, 米,就要重新设
计,问这段公路是否需要重新设计?。

相关文档
最新文档