近世代数习题与答案
近世代数试题及答案

近世代数试题及答案一、选择题(每题4分,共20分)1. 下列哪个选项不是群的性质?A. 封闭性B. 存在单位元C. 存在逆元D. 交换律答案:D2. 有限群的阶数为n,那么它的子群的个数至少为:A. nB. 1C. n-1D. n+1答案:B3. 以下哪个命题是正确的?A. 任意两个子群的交集仍然是子群B. 任意两个子群的并集仍然是子群C. 子群的子群仍然是子群D. 子群的补集仍然是子群答案:A4. 群G的阶数为n,那么它的元素的阶数不可能是:A. 1B. nC. 2D. n+1答案:D5. 以下哪个不是环的性质?A. 封闭性B. 交换律C. 分配律D. 结合律答案:B二、填空题(每题4分,共20分)1. 如果集合S上的二元运算*满足结合律,那么称S为________。
答案:半群2. 一个群G的所有子群的集合构成一个________。
答案:格3. 一个环R中,如果对于任意的a,b∈R,都有a+b=b+a,则称R为________。
答案:交换环4. 一个环R中,如果对于任意的a,b∈R,都有ab=ba,则称R为________。
答案:交换环5. 一个群G中,如果存在一个元素a,使得对于任意的g∈G,都有ag=ga=e,则称a为G的________。
答案:单位元三、简答题(每题10分,共30分)1. 请简述子群和正规子群的区别。
答案:子群是群G的非空子集H,满足H中的任意两个元素的乘积仍然在H中,并且H对于G的运算是封闭的。
正规子群是子群N,满足对于任意的g∈G和n∈N,都有gng^-1∈N。
2. 请解释什么是群的同态和同构。
答案:群的同态是两个群G和H之间的函数f,满足对于任意的g1,g2∈G,都有f(g1g2)=f(g1)f(g2)。
群的同构是同态,并且是双射,即存在逆映射。
3. 请解释什么是环的零因子和非零因子。
答案:在环R中,如果存在非零元素a和b,使得ab=0,则称a和b 为零因子。
如果环R中不存在零因子,则称R为无零因子环。
近世代数初步石生明课后答案

近世代数初步石生明课后答案一、选择题部分1. 选出所有正整数 a,b,满足条件 a²– 6ab + b² > 0 的是:选 C:a ≠ b2. 在德国哈雷大学上课的学生人数是 210。
其中男生人数与女生人数之比为 3:1,则女生人数是多少人?选 B:703. 已知函数 f(x) = x²– 2x + 1,g(x) = (x + 1)²– 2,则 f(x) = g(x) 的解为:选 B:04. 已知函数 f(x) = 3x + 1,g(x) = 2x – 1,则 f(g(x)) = g(f(x)) 的解为:选 A:05. 设 P(x) = 2x²– 3ax + 2a²– 2,Q(x) = x²– ax + a²– 1。
则 P(x) – Q(x) =0 的解为:选 C:1 或 4a – 26. 已知不等式(x – 2)² + (y – 1)² > 1,则下列几何图形有哪些?选 AB:圆心为(2,1),半径为 1 的圆的外部面积。
7. 设方程 x²– kx + 2 = 0 有两个不同的根,则 k 的取值范围是:选 B:-4 < k < 48. 设 f(x) = x² + 2x + 1,则 f(f(x)) = 0 的根为:选 C:-19. 对于下列哪一个数 a,都不存在整数 b,使得 a = b²– 3b + 1选 B:a = 710. 已知函数 f(x) = x²– 6x + 13,则下列哪一个函数与 f(x) 完全相同?选 A:g(x) = (x – 3)² + 4二、计算题部分1. 联立方程组:y = 8x – 1y = -2x + 17求解:x = 2, y = 152. 计算 2(x – 2)(x + 3) – (x – 2)² + 5(x + 3) – 5 的值:= x² + 53. 已知函数 f(x) = (x + 3)² + 1,求 f(-2) 的值:= 104. 解方程:x²– 6x + 7 = 0x = 1 或 55. 解方程:(x – 1)(x + 1)(x – 4) = 0x = -1, 1, 或 46. 求函数 f(x) = x²– 4x + 4 在 x = 2 处的导数:= 07. 已知函数 f(x) = x² + 2x – 3,求函数 g(x) = f(x + 1) 的表达式:= (x + 3)²– 78. 已知函数 f(x) = x²– 2ax + a² + 1,求 a 的值,使得 f(x) 的最小值为 0:a = 19. 已知函数 f(x) = x²– 2x + 3,求 f(x) 的图象与 x 轴交点的坐标:(1,0)10. 解下列不等式:(x – 1)(x + 2) > 0x < -2 或 x > 1三、证明题部分1. 证明 x² + 4x + 3 > 0 对所有实数 x 成立。
韩士安 近世代数 课后习题解答1

习题1-1(参考解答)1. (1)姊妹关系(2)()(),P S ⊆(3) (),{1},1a b Z a b ∈−≠,.例如(2 ,6 )2,(3 ,6 )3,==但()2,31=.2. 若b 不存在,则上述推理有误.例如{}{~~~~}S a b c R b c c b b b c c =,,,:,,,.3. (1)自反性:,(),,n A M E GL R A EAE ∀∈∃∈=~A A ∴ 对称性:1111,,~,,(),,,,().~.n n A B M A B P Q GL R A PBQ B P AQ P Q GL R B A −−−−∀∈∃∈==∈∴ 传递性:12211221212,,~,~,,,,(),,,,n A BC M A B B C P Q P Q GL R A PBQ B P CQ A PP CQ Q ∀∈∃∈===1212,(),~.n PP Q Q GL R A C ∈∴(2) 自反性:1,(),,~.n A M E GL R A E AE A A −∀∈∃∈=∴ 对称性:()11,,~,(),,,(),~.TT n n A B M ifA B T GL R A T BT B T BT T GL R B A −−∀∈∃∈=∴=∈∴传递性: 121122,,,~,~,,(),,,T T n A B C M ifA B B C T T GL R A T BT B T CT ∀∈∃∈==()12211221,TT T A T T CT T TT CT T ∴==12(),~.n TT GL R A C ∈∴ (3) 自反性:()1,,,~.n n A GL E GL R A E AE A A −∀∈∃∈=∴ 对称性:1,(),~,(),,n n A B GL R ifA B T GL R A T BT −∀∈∃∈= ()11111,(),~n B TAT TAT T GL R B A −−−−−∴==∈∴.传递性:11121122,,(),~,~,,(),,,n n A B C GL R A B B C T T GL R A T BT B T CT −−∀∈∃∈== ()()11112212121,A T T CT T T T C T T −−−∴==21(),~.n T T GL R A C ∈∴ 4. 证明: (1) 反身性:,()(),~a A a a a a φφ∀∈=∴Q(2)对称性: ,,~,()(),()(),.a b A ifa b a b b a b a φφφφ∈=∴==(3) 传递性: ,,,~,~,()(),()(),()(),~.a b c a a b b c a b b c a c a c φφφφφφ∀∈==∴=∴{}[]|()().a x A x a φφ=∈=5. (1)()S P A ∀∈,则S =S~S S ∴,~∴具有反身性(2)设12,()S S P A ∈,若12~S S ,则12S S =,21S S ∴=21~S S ,~∴具有对称性(3)设123,,()S S S P A ∈若12~S S ,23~S S ,则12S S =,23S S =13S S =,13~S S ,~∴具有传递性 ~∴是()P A 上的一个等价关系. []{}{}{}{}{}(),1,1,2,1,2,3,1,2,3,4~P A φ=⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦[]{}φφ={}{}{}{}{}{}11,2,3,4=⎡⎤⎣⎦{}{}{}{}{}{}{}{}1,21,2,1,3,1,4,2,3,2,4,3,4=⎡⎤⎣⎦ {}{}{}{}{}{}1,2,31,2,3,1,2,4,1,3,4,2,3,4=⎡⎤⎣⎦ {}{}{}1,2,3,41,2,3,4=⎡⎤⎣⎦6. 证明:(1)反身性: ,0,~.a Q a a Z a a ∀∈−=∈∴(2) 对称性: 设,,a b Q ∈若~a b , 即,a b Z −∈则(),b a a b Z −=−−∈ ~b a ∴ (3) 传递性: 设,,,a b c Q ∈若~,~a b b c 即,a b Z b c Z −∈−∈那么()(),a c a b b c Z −=−+−∈~a c ∴∴~是Q 上的一个等价关系. 所有的等价类为: []{}|[0,1).~Qa a Q a =∈∈且7. 证明: (1) 反身性: ~a C a a a a ∀∈=∴Q ,,(2) 对称性: a b C ∀∈,,若~a b ,则由a b =,得~b a b a =∴,.(3) 传递性: a b c C ∀∈,,,若~~a b b c ,,则a b b c a c ==∴=,,,即~.a c 所以~是一个等价关系. 商集为[]{}{0}~Ca a R +=∈U8. 设集合(){},/,,0S a b a b Z b =∈≠,在集合S 中,规定关系“~”:()(),~,a b c d ad bc ⇔=证明:~是一个等价关系.证明: 自反性: (),a b S ∀∈,则ab ba =,所以()(),~,.a b a b 对称性: 若()(),,,a b S c d S ∈∈,且()(),~,a b c d 则ad bc =所以cb da =,即()(),~,c d a b 传递性: 若()(),~,a b c d 且()(),~,c d e f由()(),~,a b c d 有ad bc =,所以adc b= 由()(),~,c d e f 有cf de =,所以adf de b⋅= 所以adf bde =,所以 af be =,即()(),~,a b e f . 所以~是一个等价关系9. 设{},,,A a b c d =试写出集合A 的所有不同的等价关系.解: {}{}{}{}{}{}{}{}{}{}1,,,,2,,,,3,,,,4,,,,P a b c d P a b c d P a c b d P a d b c ===={}{}{}{}{}{}{}{}{}{}{}{}5,,,,6,,,,7,,,,8,,,,P a b c d P a c d b P a b d c P b c d a ==== {}{}{}{}{}{}{}{}{}{}{}{}9,,,,,10,,,11,,,,P a b c d P a c b d P a b c d === {}{}{}{}{}{}{}{}12,,,,13,,,,P c d a b P a b c d == {}{}{}{}{}{}{}{}{}14,,,,15,,,P a c b d P a b c d ==10. 不用公式(1 .1),直接算出集合{}1,2,3,4A =的不同的分类数.解: 1212211211135554254254331()((/)(/))(/)152C C C C P C C P C C C P ++++++=.。
《近世代数》习题及答案

《近世代数》作业一.概念解释1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元二.判断题1.Φ是集合n A A A ⨯⨯⨯ 21列集合D 的映射,则),2,1(n i A i =不能相同。
2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。
3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。
4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。
5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。
6.环R 的非空子集S 作成子环的充要条件是:1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。
7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。
8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。
9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。
10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。
11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。
12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么*F 的任何有限子群G 必为循环群。
13. 集合A 的一个分类决定A 的一个等价关系。
( )14. 设1H ,2H 均为群G 的子群,则21H H ⋃也为G 的子群。
( )15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。
( )三.证明题1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。
【大学课程】近世代数教材习题答案

§1.1 集合1、 设A B ⊆ ,证明:A B A = ,A B B = .证明:由A B ⊆,可知A 的所有元素都属于B ,既A 的所有元素,都是A 和B 的共同元, 则由交集定义可知 A A B ⊆ . 又A B A ⊆ ,所以A B A = .由并集定义知,A B 的所有元素,都属于A 或B ; 又A B ⊆,所以A B 的所有元素都属于B ,即A B B ⊆. 又B A B ⊆,故A B B =2、 设B ,()i A i I ∈ 均为集合Ω 的子集,试证:()1 ()i i i I i I B A B A ∈∈⎛⎫=⎪⎝⎭ ()2 ()i i i I i IBA B A ∈∈⎛⎫=⎪⎝⎭ 证明:()1 由定义i i Ix B A ∈⎛⎫∈⎪⎝⎭当且仅当x B ∈且x 属于某一i A ;当且仅当x 属于某一i B A ;当且仅当()i i Ix B A ∈∈.()2 由定义i i I x BA ∈⎛⎫∈⎪⎝⎭当且仅当x 属于B ,或x 属于任一i A ,i I ∈;当且仅当x 属于任一i B A ,i I ∈;当且仅当()i i Ix B A ∈∈.§1.2 等价关系1、设为整数集,问以下各关系是否为M 的等价关系?1)0aRb ab ⇔≥ 2)4aRb a b ⇔+ 3)aRb a b ⇔= 4)220aRb a b ⇔+≥ 解:1)不是,因为不满足传递性2)不是,不满足反身性和传递性 3)是 4)是2、试指出上题中等价关系所决定的分类.解:3)每个元素是一个类 4)整个整数集作成一个类 3、找出下列证明中的错误:若S 的关系R 有对称性和传递性,则必有反身性.这是因为,对任意的a S ∈ ,由对称性,如果aRb ,则bRa .再由传递性,得aRa ,所以R 有反身性.解:以上证明过程中只考虑了当aRb 成立的情况,但是当对于元素a ,不存在b 使aRb 成立时,aRa 就不能得到.4、在复数集中,规定关系"" :a b a b ⇔=. (1)证明:是的一个等价关系;(2)试确定相应的商集,并给出每个等价类的一个代表元素.(1)证明:设a ,b ,c ∈ ,则()a 因为aa =,所以a a ,于是 是有反身性;()b 若ab ,则a b =,于是b a =,从而b a ,说明是具有对称性;()c 若ab ,bc ,则a b =,b c =,于是a c =,从而a c ,从而具有传递性.所以是的一个等价关系.(2)解:相应的商集[]{}0r r R r =∈≥且,其中[]{}()[]{}cos sin 0,2r x x r r i θθθπ=∈==+∈对任意的c ∈ ,等价是[]c :代表元素可取作c .§1.31、{}1,2,,100S = ,找一个A A ⨯到A 的映射.解:设(),a b 表示A A ⨯的任意元素,,a b A ∈ ,则作映射:f A A A ⨯→ ,()(),f a b b = .f 是一个A A ⨯到A 的映射.2、设A ,B 是两个有限集合,则(1)A 到B 的不同映射共有多少?(2)A 到B 的单射共有多少个?解:(1)设A n = , B m =,则A 到B 的映射有n m 个 (2)设A n = , B m =,若n >m ,则A 到B 没有单射; 若n m ≤,则A 到B 有()!!m m n - 个单射. 3、设x 是数域F 上全体n (n >1)阶方阵作成的集合.问::A A ϕ→是否为x 到F 的一个映射?其中A 为A 的行列式,是否为满射或单射?解:ϕ 是映射,且是满射,但不是单射4、设:f A B →为双射,则f 的逆映射1:f B A -→也是一个双射且()11f f --=.证明:设()() ,f x y x A y B =∈∈ ,则1:f y x -→,即()1f y x -=, 因f 是A B →的双射, 所以1f -是B 到A 的双射, 且1f -的逆映射就是f ,即()11ff --=.5、设:f A B →,:g B C →为两个双射到:g f A C → 也是双射且()111g f f g ---= .证明:()()11111B C g f f g g g ---⋅⋅==,()()111111B A fg gf f f ----==,故g f 也是双射,且()111gf f g ---= .§1.41、设A 是一个有限集合,则A 上不同的二元运算共有多少个?解:设A n = ,则2A A n ⨯= ,故A A ⨯到A 有2n n 个不同的映射. 即A 上有2n n 个不同的二元运算.2、{},,A a b c = ,规定A 的两个不同的代数运算.解:()a 第一个代数运算() , ,R x y a xRy x y A →=∀∈ ()b 第二个代数运算() , ,R x y y xRy x y A →=∀∈3、设M 为整数集,问()22 ,a b a b a b M =+∀∈是否满足结合律和交换律.解:交换律满足,但结合律不满足.例如()1104=,()1102= 4、设M 为实数集,问:23a b a b =+ (),a b M ∀∈是否满足结合律和交换律.解:都不满足.例()1004=,()1002=,故()()100100≠,又102=,013=,故1001≠.5、数域F 上全体非零多项式的集合对于()()()()(),f x g x f x g x =是否满足结合律和交换律?其中()()(),f x g x 表示()f x 与()g x 的首项函数为1的最大公因式.解:显然是代数运算且满足交换律.又结合律也满足,因为根据最大公因式的性质知:())()(()()(),,,,f g h f g h f g h f g h ===§2.11、有限群中每个元素的阶都是有限的。
近世代数练习题部分答案(12级)(1)

练习题参考答案一、 判断题1. R 是A 的元间的等价关系.(错 )见教材第27页习题2(2)2. 则G 是交换群.(正确)见教材第37页习题63、则该群一定为有限群.(错 )见教材第39页例44、则G 与整数加群同构.(正确)见教材49页定理1(1)5、那么G 也是循环群.(错 )三次对称群S 3的真子群为循环群,但S 3不为循环群.6、群G 的子群H 是正规子群的充要条件为1,g G g Hg H -∀∈⊆.(正确)见教材84页定理17、群G 的子群H 是正规子群的充要条件为,对Hg gH G g =∈∀,.(正确)见教材83页定义18、那么R 必定没有右零因子.(正确)见教材139页推论9、则N G /也是循环群.(正确)见教材95页定理310、那么R 的单位元一定是非零元.(正确)由于|R|≥2,故R 中存在非零元a ,由于a 0=0≠a ,说明零元不是单位元.11、整数环与偶数环同态.(错误)设Z Z 2:→ϕ为同态满射,且k 2)1(=ϕ,则24)1()1()11()1(k ==⨯=ϕϕϕϕ,即 242k k =,所以02=k 或12=k ,后者不可能,因此有02=k ,则0)1(=ϕ,得0)(=n ϕ,与ϕ为满射矛盾.12、剩余类环}5,4,3,2,1,0{6------=Z ,47Z 均是整环.(错误)根据教材149页定理2,6Z 有零因子,不是整环,47Z 是整环.13、素数阶群一定是交换群.(正确)根据教材69页推论1,该群中的元素除了单位元,其余元的阶等于群的阶,再根据教材50页推论1知该群为循环群,从而为交换群.二、单项选择题1、指出下列哪些运算是给定集合上的代数运算( ④ )2、设 是正整数集上的二元运算,其中{}b a b a ,max = (即取a 与b 中的最大者),关于运算 ,下列结论不正确的是( ④ )3、设G 是实数集,在其上规定运算k b a b a ++= :,这里k 为G 中固定的常数,那么() ,G 中的单位元e 和元x 的逆元分别是(④ )4、设c b a ,,和x 都是群G 中的元素且xac acx bxc a x ==-,12,那么=x (①)5、设H 是群G 的子群,且G 有左陪集分解G HaH bH cH =,如果6=H ,那么G 的阶=G (② )6、设21:R R f →是环同态满射,b a f =)(,那么下列错误的结论为(③ )7、设},),{(为实数y x y x M =,对任意实数a ,规定)),((),0,(),(:M y x a x y x a ∈∀+→τ,}{为实数a G a τ=,下列说法错误的是(③ )三、填空题1、三次对称群3S 关于子群)}12()1{(,=H 的所有左陪集为__H,(13)H,(23)H___.2、Kayley 定理说:任何群都同一个__双射变换________群同构.3、G auss 整环},{][Z b a bi a i Z ∈+=中的所有单位是 __±1,±i _______.4、设)57)(134(),234)(1372(==στ,则||τ=___6__,=-1στσ)241)(3452(.5、设R 是有单位元的环,且理想I =<a >,那么I 中的元素可以表示为x 1ay 1+…+x m ay m ,x i ,y i ∈R ,m 为整数.6、已知---++=253)(3x x x f ,---++=354)(2x x x g 为域6Z 上的多项式,则=+)()(x g x f 544323+++-x x x ,)(x g 在6Z 上的全部根为 3,1. 7、设H 是群G 的子群,G b a ∈,,则⇔=Hb Ha H ba ∈-1.8、设G =><a 是12阶循环群,则G 的生成元有 a ,a 5,a 7,a 11 .9、实数域R 的全部理想是 0, R .10、模8的剩余类环8Z 的全部零因子是6,4,211、阶大于1、有单位元且无零因子的交换 的环称为整环.四、计算与证明题1.解:(2)单位元为,1π414313212111,,,ππππππππ====----;(3)1阶子群:}{1π;2阶子群:},{},,{},,{},,{41313121ππππππππ,4阶子群:},,,{4321ππππ=G .(1)乘法表如下: 4321ππππ43211πππππ34122πππππ21433πππππ12344πππππ4. 设Z 为整数环,证明:(1)利用理想的定义验证,略(2)设有理想K 包含N ,即,R K N ⊆⊆由于Z 为主理想整环,所以K 为主理想,即有整数正k ,使>=<k K ,由于K N ⊂,且,p N ∈故,k p >=<∈K 从而,kn p =由于p 为素数,所以1k =或p k =,若k=p ,则K=N ;若k=1,则K=R ,所以除了Z 和N ,没有其它理想包含N .5.设R 是可交换的有限环,且含有单位元1,证明:R 中的非零元不是可逆元就是零因子.证明:设,},,,{21n a a a R =},,,{021n a a a R a =∈≠∀,且a 不是可逆元,令},,,,{21n aa aa aa S =由乘法封闭性,知 ,R S ⊆又元素a 不是可逆元,所以 n aa aa aa ,,,21 均不等于单位元1,所以S 为R 的真子集,又,n R =从而,1-≤n S 从而一定存在,j i ≠使,j i aa aa =即,0=-)(j i a a a 所以a 为环R 的零因子.6、设环R 含单位元1,证明:首先有N ⊆R ,又R a ∈∀,有1⋅=a a ,由于N 是R 的一个理想且1∈N ,根据理想的吸收性,有N a a ∈⋅=1,所以R ⊆N ,因此N=R.7、设K 是一个有单位元的整环,证明:K=<a >当且仅当a 是K 的可逆元. 证明:必要性 由于K 有单位元且可交换,故<a >={a r |任意r ∈K},如果K=<a >,则1∈<a >,所以存在r ∈K ,使a r =1,因此a 是K 的可逆元; 充分性 a 是K 的可逆元,则存在r ∈K ,使a r =1,所以1∈<a >,任意s ∈K,由理想的吸收性,可知>∈<⋅=a s s 1,得K ⊆<a >,又显然<a >⊆ K ,所以K=<a >19、设环R 的特征char R=n 为合数,且|R|>1,证明环R 存在零因子.祝大家考试取得好成绩!。
近世代数试题库人教版

近世代数试题库人教版近世代数一、单项选择题1、若A={1,2,3,5},B={2,3,6,7},则B A ?=()A 、{1,2,3,4}B 、{2,3,6,7}C 、{2,3}D 、{1,2,3,5,6,7} 答案:C2、循环群与交换群关系正确的是()A 、循环群是交换群B 、交换群是循环群C 、循环群不一定是交换群D 、以上都不对答案:A3、下列命题正确的是()A 、n 次对换群n S 的阶为!nB 、整环一定是域C 、交换环一定是域D 、以上都不对答案:A4、关于陪集的命题中正确的是()设H 是G 的子群,那么 A 、对于,,bH aH ?有φ=?bH aH 或bH aH =B 、H a H aH ∈?=C 、H b a bH aH ∈?=-1D 、以上都对答案:D5、设A=R (实数域), B=R+(正实数域)f :a →10a a ∈A 则 f 是从A 到B 的()A 、单射B 、满射C 、一一映射D 、既非单射也非满射答案:D6、有限群中的每一个元素的阶都() A 、有限 B 、无限 C 、为零 D 、为1 答案:A7、整环(域)的特征为()A 、素数B 、无限C 、有限D 、或素数或无限答案:D8、若S 是半群,则( )A 、任意,,,S c b a ∈都有a(bc)=(ab)cB 、任意,,S b a ∈都有ab=baC 、必有单位元D 、任何元素必存在逆元答案:A9、在整环Z 中,6的真因子是() A 、1,6±± B 、2,3±± C 、1,2±± D 、3,6±± 答案:B10、偶数环的单位元个数为() A 、0个 B 、1个 C 、2个 D 、无数个答案:A11、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A 21到D 的一个映射,那么()A 、集合D A A A n ,,,,21 中两两都不相同;B 、n A A A ,,,21 的次序不能调换;C 、n A A A 21中不同的元对应的象必不相同;D 、一个元()n a a a ,,,21 的象可以不唯一。
韩士安 近世代数 课后习题解答

习题1-1(参考解答)1. (1)姊妹关系(2)()(),P S ⊆(3) (),{1},1a b Z a b ∈−≠,.例如(2 ,6 )2,(3 ,6 )3,==但()2,31=.2. 若b 不存在,则上述推理有误.例如{}{~~~~}S a b c R b c c b b b c c =,,,:,,,.3. (1)自反性:,(),,n A M E GL R A EAE ∀∈∃∈=~A A ∴ 对称性:1111,,~,,(),,,,().~.n n A B M A B P Q GL R A PBQ B P AQ P Q GL R B A −−−−∀∈∃∈==∈∴ 传递性:12211221212,,~,~,,,,(),,,,n A BC M A B B C P Q P Q GL R A PBQ B P CQ A PP CQ Q ∀∈∃∈===1212,(),~.n PP Q Q GL R A C ∈∴(2) 自反性:1,(),,~.n A M E GL R A E AE A A −∀∈∃∈=∴ 对称性:()11,,~,(),,,(),~.TT n n A B M ifA B T GL R A T BT B T BT T GL R B A −−∀∈∃∈=∴=∈∴传递性: 121122,,,~,~,,(),,,T T n A B C M ifA B B C T T GL R A T BT B T CT ∀∈∃∈==()12211221,TT T A T T CT T TT CT T ∴==12(),~.n TT GL R A C ∈∴ (3) 自反性:()1,,,~.n n A GL E GL R A E AE A A −∀∈∃∈=∴ 对称性:1,(),~,(),,n n A B GL R ifA B T GL R A T BT −∀∈∃∈= ()11111,(),~n B TAT TAT T GL R B A −−−−−∴==∈∴.传递性:11121122,,(),~,~,,(),,,n n A B C GL R A B B C T T GL R A T BT B T CT −−∀∈∃∈== ()()11112212121,A T T CT T T T C T T −−−∴==21(),~.n T T GL R A C ∈∴ 4. 证明: (1) 反身性:,()(),~a A a a a a φφ∀∈=∴Q(2)对称性: ,,~,()(),()(),.a b A ifa b a b b a b a φφφφ∈=∴==(3) 传递性: ,,,~,~,()(),()(),()(),~.a b c a a b b c a b b c a c a c φφφφφφ∀∈==∴=∴{}[]|()().a x A x a φφ=∈=5. (1)()S P A ∀∈,则S =S~S S ∴,~∴具有反身性(2)设12,()S S P A ∈,若12~S S ,则12S S =,21S S ∴=21~S S ,~∴具有对称性(3)设123,,()S S S P A ∈若12~S S ,23~S S ,则12S S =,23S S =13S S =,13~S S ,~∴具有传递性 ~∴是()P A 上的一个等价关系. []{}{}{}{}{}(),1,1,2,1,2,3,1,2,3,4~P A φ=⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦[]{}φφ={}{}{}{}{}{}11,2,3,4=⎡⎤⎣⎦{}{}{}{}{}{}{}{}1,21,2,1,3,1,4,2,3,2,4,3,4=⎡⎤⎣⎦ {}{}{}{}{}{}1,2,31,2,3,1,2,4,1,3,4,2,3,4=⎡⎤⎣⎦ {}{}{}1,2,3,41,2,3,4=⎡⎤⎣⎦6. 证明:(1)反身性: ,0,~.a Q a a Z a a ∀∈−=∈∴(2) 对称性: 设,,a b Q ∈若~a b , 即,a b Z −∈则(),b a a b Z −=−−∈ ~b a ∴ (3) 传递性: 设,,,a b c Q ∈若~,~a b b c 即,a b Z b c Z −∈−∈那么()(),a c a b b c Z −=−+−∈~a c ∴∴~是Q 上的一个等价关系. 所有的等价类为: []{}|[0,1).~Qa a Q a =∈∈且7. 证明: (1) 反身性: ~a C a a a a ∀∈=∴Q ,,(2) 对称性: a b C ∀∈,,若~a b ,则由a b =,得~b a b a =∴,.(3) 传递性: a b c C ∀∈,,,若~~a b b c ,,则a b b c a c ==∴=,,,即~.a c 所以~是一个等价关系. 商集为[]{}{0}~Ca a R +=∈U8. 设集合(){},/,,0S a b a b Z b =∈≠,在集合S 中,规定关系“~”:()(),~,a b c d ad bc ⇔=证明:~是一个等价关系.证明: 自反性: (),a b S ∀∈,则ab ba =,所以()(),~,.a b a b 对称性: 若()(),,,a b S c d S ∈∈,且()(),~,a b c d 则ad bc =所以cb da =,即()(),~,c d a b 传递性: 若()(),~,a b c d 且()(),~,c d e f由()(),~,a b c d 有ad bc =,所以adc b= 由()(),~,c d e f 有cf de =,所以adf de b⋅= 所以adf bde =,所以 af be =,即()(),~,a b e f . 所以~是一个等价关系9. 设{},,,A a b c d =试写出集合A 的所有不同的等价关系.解: {}{}{}{}{}{}{}{}{}{}1,,,,2,,,,3,,,,4,,,,P a b c d P a b c d P a c b d P a d b c ===={}{}{}{}{}{}{}{}{}{}{}{}5,,,,6,,,,7,,,,8,,,,P a b c d P a c d b P a b d c P b c d a ==== {}{}{}{}{}{}{}{}{}{}{}{}9,,,,,10,,,11,,,,P a b c d P a c b d P a b c d === {}{}{}{}{}{}{}{}12,,,,13,,,,P c d a b P a b c d == {}{}{}{}{}{}{}{}{}14,,,,15,,,P a c b d P a b c d ==10. 不用公式(1 .1),直接算出集合{}1,2,3,4A =的不同的分类数.解: 1212211211135554254254331()((/)(/))(/)152C C C C P C C P C C C P ++++++=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近世代数习题与答案 Prepared on 22 November 2020
一、 选择题(本题共5小题,每小题3分,共15分)
(从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。
(A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i }
2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。
(A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H
3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。
(A) (2),(3) (B) (2) (C)(3)
4、若Q 是有理数域,则(Q(2):Q)是( )。
(A) 6 (B) 3 (C) 2
5、下列不成立的命题是( )。
(A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内)
1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。
2、F 是域,则[](())
F x f x 是域当且仅当 。
3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~:
A ~
B ⇔秩(A )=秩(B ),则这个等价关系决定的等价类有________个。
4、6次对称群S 6中,(1235)-1(36)=____________。
5、12的剩余类环Z 12的可逆元是 。
三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”)
1、设G 是群,∅≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G ..
( )
2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。
( )
3、商环6Z Z 是一个域。
( )
4、设f 是群G 到群-G 的同态映射,若1()f H G -, 则H G 。
( )
5、任意群都同构于一个变换群。
( ) 四、计算题(本题共2小题,每小题10分,共20分) (要求写出主要计算步骤及结果)
1、找出6Z 的全部理想,并指出哪些是极大理想。
对极大理想K ,写出
6Z K 的全部元。
2、确定3次对称群S 3的所有子群及所有正规子群。
五、证明题(本题共4小题,每小题10分,共40分)
1、 设f 是群G 到群-G 的满同态,N 是G 的正规子群,证明:
G Kerf N G N f =⋅⇔=-)(。
2、设N G, [G:N]=2008, 证明:对G x ∈∀, 恒有2008x N ∈。
3、设R 为交换环,若R 的理想P ≠R ,则R /P 是整环当且仅当P 是素理想。
4、设R [x ]是实数域R 上的一元多项式环,取21[]x R x +∈,证明:2[]
(1)R x C x ≅+,
C
为复数域。
《近世代数》测试题(一)
一、 选择题(本题共5小题,每小题3分,共15分)
(从下列备选答案中选择正确答案)
1、设G =Z ,对G 规定运算o ,下列规定中只有( )构成群。
(A) aob=a+b-2 (B) aob=a b (C) aob=2 a+3 b (“”为数的乘法)
2、设H ≤G ,a ,b ∈G ,则Ha = Hb 的充要条件是( ).
(A) ab ∈H (B) ab -1∈H (C) a -1b ∈H
3、在整数环Z 中,包含(15)的极大理想是( )。
(A) (3) (B) (5) (C) (3)或(5)
4、若Q 是有理数域,则
是( )
(A) 6 (B) 3 (C) 2 5、下面不成立...
的命题是( )
(A) 域是整环 (B) 除环是域 (C) 整数环是整环
二、填空题(本题共5空,每空3分,共15分)
(请将正确答案填入空格内)
1、环Z (i )={a +bi |a,b ∈Z }的单位是________________。
2、若a 是群G 中的一个8阶元,则a 6的阶为________ 。
3、设M 100 (F )是数域F 上的所有100阶方阵的集合,在M 100 (F )中规定等价关系~下:
A ~
B ⇔秩(A )=秩(B ),则这个等价关系所决定的等价类共有_______个。
4、6次对称群S 6中,(1245)-1(46)=____________。
5、12的剩余类环Z 12的零因子是 。
三、判断题(本题共5小题,每小题2分,共10分)
(请在你认为正确的题后括号内打“√”,错误的打“×”)
1、若H N ,H G ,那么NH G 。
( )
2、设I 是一主理想环,则I 是一欧氏环。
( )
3、商环(9)Z 是一个域。
( )
4、设f 是群G 到群-G 的同态映射,H G ,则 f (H )
-
G 。
( ) 5、素数阶的群G 一定是循环群。
( )
四、计算题(本题共2小题,每小题10分,共20分)(要求写出主要计算步骤及结
果)
1、在10次对称群S 10中,σ=⎪⎪⎭
⎫ ⎝⎛1968752431010987654321.
将σ表成一些不相交轮换之积,并求1σ-及()σ。
2、在整数环Z 中,试求出所有包含30的极大理想。
五、证明题(本题共4小题,每小题10分,共40分)
1、设f 是环R 到环R '的满同态,A 为R 的理想,证明:R Kerf A R A f =+⇔'=)(。
2、设N G, [G:N]=2009, 证明:对G x ∈∀, 恒有2009x N ∈。
3、设R 为交换环,则R 的每个极大理想都是素理想。
4、设G与G是两个群,
f
G G,K = Kerf,H G
≤,令H = {x |x∈G,f(x) ∈H},证
明:H G
≤且H H
K≅。