数学北师大版七年级下册3.2 图形的全等 (2)
北师大版数学七年级下册全套备课教学设计:4.2图形的全等

(4)拓展:将全等图形的性质应用于解决实际问题,提高学生的实际问题解决能力。
(5)总结:对本节课所学内容进行总结,强化重点,突破难点。
3.个性化教学:
(1)关注学生的个体差异,针对不同学生的需求进行分层教学。
(2)针对学生在学习过程中遇到的问题,给予个性化的指导,帮助学生克服困难。
最后,我会鼓励学生课后继续探索全等图形的相关知识,将所学应用于生活实际,提高几何图形素养。同时,布置适量的课后作业,巩固所学知识。
五、作业布置
为了巩固本节课所学内容,培养学生的独立思考能力和实际问题解决能力,特布置以下作业:
1.基础巩固题:
(1ห้องสมุดไป่ตู้根据全等图形的判定条件,判断以下各组图形是否全等,并说明理由。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础题:运用全等图形的判定条件判断两个图形是否全等。
2.提高题:运用全等图形的性质解决实际问题,如计算图形面积、线段长度等。
3.拓展题:结合实际情境,设计具有挑战性的题目,让学生灵活运用全等图形的知识。
(五)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学内容,强化全等图形的概念、判定条件和性质。同时,针对学生在课堂练习中遇到的问题,进行解答和指导。
3.全等图形的性质:全等图形的对应角相等,对应边相等。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。针对以下问题进行讨论:
1.全等图形的判定条件有哪些?
2.如何运用全等图形的性质解决实际问题?
3.你还能想到其他全等图形的判定方法吗?
讨论过程中,我会巡回指导,关注学生的讨论情况,及时解答学生的疑问。讨论结束后,每组选代表进行汇报,分享本组的讨论成果。
图形的全等-【题型·技巧培优系列】七年级数学下册精讲精练(北师大版)2

【解答】解: 、两个图形不全等,故此选项不合题意;
、两个图形全等,故此选项符合题意;
、两个图形不全等,故此选项不合题意;
、两个图形不全等,故此选项不合题意.
故选: .
题型二全等图形的性质
【例题2】(2022秋?琼山区校级期中)下列选项中表示两个全等的图形的是
【分析】根据图形即可得到结论.
【解答】解:由图知, ,
故选: .
【变式3-2】(2021秋?台江区期末)如图,已知方格纸中是4个相同的正方形,则 的度数为
A. B. C. D.
【分析】根据对称性可得 , .
【解答】解:观察图形可知, 所在的三角形与 所在的三角形全等,
,
又 ,
,
故选: .
【变式3-3】(2022秋?鄞州区期中)如图是单位长度为1的正方形网格,则 .
故选: .
【变式2-2】(2022秋?浦口区校级月考)如图,在四边形 与 中, , , .下列条件中:① , ;② , ;③ , ;④ , .添加上述条件中的其中一个,可使四边形 四边形 ,上述条件中符合要求的有
A.①②③B.①③④C.①④D.①②③④
【分析】连接 、 ,通过证明 △ , △ ,即可得到结论.
、能够完全重合的两个图形是全等图形,故此选项正确,符合题意;
故选: .
解题技巧提炼
此题主要考查了全等图形,正确把握全等图形的定义是解题关键.
【变式2-1】(2022秋?金湖县期中)下列说法正确的是
A.两个形状相同的图形称为全等图形
B.两个圆是全等图形
C.全等图形的形状、大小都相同
D.面积相等的两个三角形是全等图形
北师大版七年级数学下册知识点汇总

北师大版七年级数学下册知识点汇总第一章:整式的乘除。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n=a^m + n(m,n 都是正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方与积的乘方。
- 幂的乘方:(a^m)^n=a^mn(m,n都是正整数)。
例如(3^2)^3=3^2×3=3^6。
- 积的乘方:(ab)^n=a^nb^n(n是正整数)。
例如(2×3)^2=2^2×3^2=4×9 = 36。
3. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减。
即a^m÷ a^n=a^m - n(a≠0,m,n都是正整数,且m>n)。
例如3^5÷3^2=3^5 - 2=3^3。
- 零指数幂:a^0=1(a≠0)。
例如5^0=1。
- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p是正整数)。
例如2^-3=(1)/(2^3)=(1)/(8)。
4. 整式的乘法。
- 单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如3x^2y·(- 2xy^3)=-6x^3y^4。
- 单项式与多项式相乘:用单项式去乘多项式的每一项,再把所得的积相加。
即m(a + b + c)=ma+mb+mc。
- 多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如(x + 2)(x - 3)=x^2-3x+2x - 6=x^2-x - 6。
5. 平方差公式。
- 公式:(a + b)(a - b)=a^2-b^2。
例如(3 + 2)(3 - 2)=3^2-2^2=9 - 4 = 5。
6. 完全平方公式。
- (a + b)^2=a^2+2ab + b^2,(a - b)^2=a^2-2ab + b^2。
专题 图形的全等(知识讲解)数学七年级下册基础(北师大版)

专题4.7 图形的全等(知识讲解)【学习目标】1、从图形重合中理解图形全等的对应边、对应角的关系;2.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素;3.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.特别说明:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.特别说明:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.特别说明:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、图形的全等➽➼全等图形的识别1.下列各组图形中不是全等图形的是()A.B.C.D.【答案】B【分析】根据能够完全重合的两个图形是全等图形对各选项分析即可得解.解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中两个图形不可能完全重合,∴不是全等形.故选:B.【点拨】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.举一反三:【变式1】下列各组中的两个图形属于全等图形的是()A.B.C.D.【答案】D【分析】根据全等图形的概念判断即可.解:A、两个图形不能完全重合,不是全等图形,故本选项不符合题意;B、两个图形能够完全重合,不是全等图形,故本选项不符合题意;C、两个图形不能完全重合,不是全等图形,故本选项不符合题意;D、两个图形能完全重合,是全等图形,故本选项符合题意;故选:D.【点拨】本题考查的是全等图形的概念,掌握能够完全重合的两个图形叫做全等形是解题的关键.【变式2】下列图标中,不是由全等图形组合成的是()A.B.C.D.【答案】C【分析】根据全等图形的概念分析即可.解:A 、该图像是由三个全等的图形构成,故该选项不符合题意;B 、该图像是由五个全等的图形构成,故该选项不符合题意;C 、该图像不是由全等图形构成,故该选项符合题意;D 、该图像是由两个全等的图形构成,故该选项不符合题意;故选:C .【点拨】本题考查了全等图形,熟练掌握能够完全重合的两个图形是全等图形是解题的关键.类型二、全等三角形概念➽➼全等图形的识别 2.如图,在ABC 中,AD BC ⊥于点D ,=BD CD .完成下面说明B C ∠=∠的理由的过程.解:AD BC ⊥(已知),ADB ∴∠=___________Rt =∠(垂直的定义). 当把图形沿AD 对折时,射线DB 与DC ___________.BD CD =(___________)∴点B 与点___________重合,ABD ∴与ACD ___________,ABD ∴___________ACD (全等三角形的定义), B C ∴∠=∠(___________). 【答案】ADC ∠;重合;已知;C ;重合;≅;全等三角形的性质【分析】根据全等三角形的定义,即可得到答案.解:AD BC ⊥(已知),ADB ∴∠=ADC ∠Rt =∠(垂直的定义). 当把图形沿AD 对折时,射线DB 与DC 重合.BD CD =(已知)∴点B 与点C 重合,ABD ∴与ACD 重合,ABD ∴≌ACD (全等三角形的定义), B C ∴∠=∠(全等三角形的性质).故答案为:ADC ∠;重合;已知;C ;重合;≅;全等三角形的性质.【点拨】本题主要考查证明三角形全等,掌握全等三角形的定义:能够完全重合的三角形叫做全等三角形,是关键.举一反三:【变式1】如下图,AOC 与BOD 全等.用符号“≌”表示这两个三角形全等.已知A ∠与B ∠是对应角,写出其余的对应角和各对对应边.【答案】AOC BOD △△≌.对应角是:AOC ∠与BOD ∠,ACO ∠与BDO ∠; 对应边是;OA 与OB ,OC 与OD ,AC 与BD .【分析】根据全等三角形的表示法以及全等三角形的性质即可得到答案.解: AOC BOD △△≌. 因为A ∠与B ∠是对应角,所以其余的对应角是:AOC ∠与BOD ∠,ACO ∠与BDO ∠;对应边是;OA 与OB ,OC 与OD ,AC 与BD .【点拨】本题主要考查全等三角形的表示法和性质,准确找到全等三角形的对应角和对应边是关键.【变式2】如图,若ADE BCE ≌△△,1∠与2∠是对应角,AD 与BC 是对应边,写出其他的对应边及对应角.【答案】AE 与BE 是对应边,DE 与CE 是对应边,D ∠与C ∠是对应角,AED ∠与BEC ∠是对应角.【分析】根据全等三角形对应边和对应角的定义即可判断.解:因为ADE BCE ≌△△,所以AE 与BE 是对应边,DE 与CE 是对应边,D ∠与C ∠是对应角,AED ∠与BEC ∠是对应角.【点拨】本题主要考查全等三角形的对应边和对应角,比较基础,熟练掌握全等三角形对应边和对应角的定义是解题关键.类型三、全等三角形的性质➽➼求边✮✮求角✮✮周长✮✮面积3.如图,ABC DEC ≌△△,点A 和点D 是对应点,点B 和点E 是对应点,过点A 作AF CD ⊥,垂足为点F .(1) BAC ∠=______,B ∠=______,AB =______;(2) 若65BCE ∠=︒,完善求CAF ∠度数的解题过程.∴ABC DEC ≌△△, ∴ACB =∠______,∴BCE ACE ACD ACE ,∴______.∴65BCE ∠=︒,∴65ACF ∠=︒.又∴______,∴90AFC ∠=︒,∴CAF ∠=______︒. 【答案】(1) D ∠,E ∠,DE (2) DCE ∠,BCE ACD ∠=∠,AF CD ⊥,25【分析】(1)由ABC DEC ≌△△,即可得到对应角和对应边相等(2)由ABC DEC ≌△△,得到BCE ACD ∠=∠,且AF CD ⊥,即可求得25CAF ∠=︒ (1)解:∴ABC DEC ≌△△,∴BAC D ∠=∠,B E ∠=∠,AB DE =;故答案为:D ∠,E ∠,DE(2)∴ABC DEC ≌△△,∴ACB DCE ∠=∠,∴BCE ACE ACD ACE ,∴BCE ACD ∠=∠.∴65BCE ∠=︒,∴65ACF ∠=︒.又∴AF CD ⊥,∴90AFC ∠=︒,∴25CAF ∠=︒.故答案为:DCE ∠,BCE ACD ∠=∠,AF CD ⊥,25【点拨】本题考查了全等三角形的性质及直角三角形的性质,熟练掌握全等三角形的性质是解决问题的关键举一反三:【变式1】如图,AB 与CD 相交于点E ,连接AD AC BC 、、,若,28ABC ADE BAC ∠=︒△≌△,求B ∠的度数.【答案】48︒ 是ADE 的一个外角,AEC DAE -∠48=︒.【点拨】本题考查了全等三角形的性质,以上知识是解题的关键.】如图,已知ABC △(1) 若6DE =,4BC =,求线段AE 的长;(2) 已知35D ∠=︒,60C ∠=︒,求AFD ∠的度数.【答案】(1) 2AE = (2) 130AFD ∠=︒【分析】(1)根据全等三角形的性质得到6AB DE ==,4BE BC ==,结合图形计算,得到答案;(2)根据全等三角形的性质得到60DBE C ∠=∠=︒,35A D ∠=∠=︒,根据三角形内角和定理求出ABC ∠,计算即可.(1)解:∴ABC DEB △△≌,6DE =,4BC =, ∴6AB DE ==,4BE BC ==, ∴642AE AB BE =-=-=;(2)∴ABC DEB △△≌,35D ∠=︒,60C ∠=︒, ∴60DBE C ∠=∠=︒,35A D ∠=∠=︒,ABC DEB ∠=∠,∴18085ABC A C ∠=︒-∠-∠=︒,∴85DEB ∠=︒,∴95AED ∠=︒,∴3595130AFD A AED ∠=∠+∠=︒+︒=︒.【点拨】本题考查了全等三角形的性质,三角形的内角和定理,三角形外角的性质,熟练掌握全等三角形的性质是解题的关键.4.如图,已知ABC DEB ≌,点E 在AB 上,AC 与BD 交于点F ,8AB =,5BC =,65C =︒∠,20D ∠=︒.(1) 求AE 的长度;(2) 求AED ∠的度数.【答案】(1) 3AE = (2) 85AED ∠=︒【分析】(1)根据全等三角形的性质解答即可;(2)根据全等三角形的性质解答即可. 解:(1)∴ABC DEB ≅,∴3BE BC ==,∴633AE AB BE =-=-=,(2)∴ABC DEB ≅,∴25A D ∠=∠=︒,55DBE C ∠=∠=︒,∴255580AED DBE D ∠=∠+∠=︒+︒=︒.【点拨】本题考查全等三角形的性质,关键是根据全等三角形的对应角和对应边相等即可.举一反三:【变式1】如图,已知△ABC ∴∴DEF ,AF =5cm .(1)求CD 的长.(2)AB 与DE 平行吗?为什么?解:(1)∴∴ABC ∴∴DEF (已知),∴AC =DF ( ),∴AC ﹣FC =DF ﹣FC (等式性质) 即 =∴AF =5cm∴ =5cm(2)∴∴ABC ∴∴DEF (已知)∴∴A = ( )∴AB ( )【答案】(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∴D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【分析】(1)根据△ABC ∴∴DEF ,AF =5cm,可以得到CD =AF ,从而可以得到CD 的长;(2)根据△ABC ∴∴DEF ,可以得到∴A =∴D ,从而可以得到AB 与DE 平行. 解:(1)∴∴ABC ∴∴DEF (已知),∴AC =DF (全等三角形对应边相等),∴AC ﹣FC =DF ﹣FC (等式性质)即AF =CD ,∴AF =5cm∴CD =5cm ;(2)∴∴ABC ∴∴DEF (已知)∴∴A =∴D (全等三角形对应角相等)∴AB DE (内错角相等,两直线平行).故答案为:(1)全等三角形对应边相等,AF ,CD ,CD ;(2)∴D ,全等三角形对应角相等,DE ,内错角相等,两直线平行.【点拨】本题考查全等三角形的性质和平行线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.【变式2】如图,B ,C ,D 三点在同一条直线上,90,,5B D ABC CDE AB ︒∠=∠=∆≅∆=,12,13BC CE ==.(1) 求ABC 的周长.(2) 求ACE △的面积.,然后计算ABC 的周长;,再证明ACE ∠=)ABC ∆≅13AC CE ==ABC 的周长)ABC CDE ∆≅∆13,AC CE ∴==90D ∠=︒,CED ∴∠+∠ACB ∴∠+∠ACE ∴∠=ACE ∴的面积【点拨】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等.熟练掌握知识点是解题的关键.类型四、全等图形➽➼应用5.沿着图中的虚线,用两种方法将下面的图形划分为两个全等的图形.【分析】根据全等图形的定义:对应边都相等,对应角都相等的图形进行构造即可.解:如图所示(任意两种方法,正确即可):【点拨】本题考查全等图形的定义,熟练掌握相关概念是解题的关键.举一反三:【变式1】试在下列两个图中,沿正方形的网格线(虚线)把这两个图形分别分割成两个全等的图形,将其中一部分涂上阴影.【答案】见分析(第一个图答案不唯一)【分析】根据全等图形的定义,利用图形的对称性和互补性来分隔成两个全等的图形.解:第一个图形分割有如下几种:第二个图形的分割如下:【点拨】本题主要考查了学生的动手操作能力和学生的空间想象能力,牢记全等图形的定义是解题的重点.【变式2】沿着图中的虚线,请将如图的图形分割成四个全等的图形.【答案】见分析【分析】直接利用图形总面积得出每一部分的面积,进而求出答案.解:共有3412⨯=个小正方形,∴被分成四个全等的图形后每个图形有1243÷=,∴如图所示:,【点拨】本题主要考查了应用设计图作图,正确求出每部分面积是解题关键.s。
《图形的全等》word教案 (公开课获奖)2022北师版 (6)

4.2 图形的全等一、教材的本质、地位和作用:《图形的全等》是北师大版数学七年级下册第四章第二节的内容。
这节课是在学生学习了线段、角、相交线和平行线及三角形的根本概念后引入的,主要探究全等图形的概念和特征以及全等三角形的概念、性质、对应关系和符号表示。
重点渗透了由一般到特殊、由具体到抽象和对应的数学思想。
内容虽不多,也不难,但却是进一步学习三角形全等的根底,特别是全等三角形的对应关系更是学习三角形全等的核心内容。
二、教学目标分析:知识技能:⒈通过实例理解图形全等的概念及特征,并能识别图形的全等。
⒉理解全等三角形的概念,掌握全等三角形的性质。
数学思考:通过观察、操作等活动,进一步开展学生的空间观念、几何直观,积累数学活动经验,培养学生由一般到特殊,由具体到抽象以及对应的数学思想。
问题解决:通过“看〞、“说〞、“做〞、“议〞、“练〞等活动,培养学生观察操作、合作交流以及解决问题的能力。
情感态度:通过让学生积极参与图形全等的探究过程,从中体味合作与成功的快乐,建立学好数学的自信心,体会数学与现实生活的密切联系。
本节课的教学重难点是:重点:全等图形及全等三角形的性质。
难点:全等三角形对应元素确实定。
三、教学问题诊断在学习本节课之前,学生已经学过了线段、角、相交线、平行线、三角形的有关知识及一些简单的说理内容。
在相关知识的学习过程中,学生已经经历了一些认识图形的活动,解决了一些简单的现实问题,具有了一定的图形分析能力,具备了一定的合作与交流的能力,获得了一些数学活动经验的根底。
因此学生在学习全等图形、全等三角形的定义及性质时困难并不大,但是一下子要学生从直观的图形去概括出抽象的图形全等的概念这是比拟困难的。
因此在设计时我用学生创作的以“中国梦·我的梦〞为主题的艺术作品引出课题,这样做既能让学生对图形全等有一个感性的认识,又能激发起学生的学习兴趣,同时也能让学生感受到数学来源于生活。
然后让学生经历“看、说、做、议、练〞等教学活动,使学生通过“动眼〞、“动手〞、“动口〞、“动脑〞感悟图形的全等——应用图形的全等——创造图形的全等,带动知识发生、开展到应用的全过程。
完整版)北师大版初中数学目录

完整版)北师大版初中数学目录北师大版初中数学目录七年级上册第一章丰富的图形世界1.生活中的立体图形2.展开与折叠3.截一个几何体4.从不同方向看5.生活中的平面图形回顾与思考复题第二章有理数及其运算1.数怎么不够用了2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.水位的变化8.有理数的乘法9.有理数的除法10.有理数的乘方11.有理数的混合运算12.计算器的使用回顾与思考复题第三章字母表示数1.字母能表示什么2.代数式3.代数式求值4.合并同类项5.去括号6.探索规律回顾与思考复题第四章平面图形及其位置关系1.线段、射线、直线2.比较线段的长短3.角的度量与表示4.角的比较5.平行6.垂直7.有趣的七巧板8.图案设计回顾与思考复题第五章一元一次方程1.你今年几岁了2.解方程3.日历中的方程4.我变胖了5.打折销售6.“希望工程”义演7.能追上XXX吗8.教育储蓄回顾与思考复题第六章生活中的数据1.100万有多大2.科学记数法3.扇形统计图4.月球上有水吗5.统计图的选择回顾与思考复题第七章可能性1.一定摸到红球吗2.转盘游戏3.谁转出的四位数大回顾与思考复题课题研究:制成一个尽可能大的无盖长方体总复七年级下册第一章整式的运算1.整式2.整式的加减3.同底数幂的乘法4.幂的乘方与积的乘方5.同底数幂的除法6.整式的乘法7.平方差公式8.完全平方公式9.整流器式的除法回顾与思考复题第二章平行线与相交线1.台球桌面上的角2.探索直线平行的条件3.平行线的特征4.用尺规作线段和角回顾与思考复题第三章生活中的数据1.认识百万分之一2.近似数和有效数字3.世界新生儿图回顾与思考复题课题研究:制作“人口图”第四章概率1.游戏公平吗2.摸到红球的概率3.停留在黑砖上的概率回顾与思考复题第五章三角形1.认识三角形2.图形的全等3.图案设计4.全等三角形5.探索三角形全等的条件6.作三角形7.利用三角形全等测距离8.探索直角三角形全等的条件回顾与思考复题第六章变量之间的关系1.小车下滑的时间2.变化中的三角形3.温度的变化4.速度的变化回顾与思考复题第七章生活中的轴对称本章主要介绍轴对称现象和轴对称图形的性质,以及如何利用轴对称设计图案。
北师大版七年级数学下册第四章 三角形2 图形的全等

对应角:∠A 与∠D ; ∠B 与∠E ;∠C 与∠F .
全等三角形的对应边相等,对应角相等.
全等的表示方法
A
F
B
C
D
E
“全等”用符号“≌”表示,读作“全等于”.
△ABC 与 △DEF 全等,记作 △ABC≌△FDE
注意:记两个三角形全等时,通常把表示对应顶点的 字母写在对应的位置上.
全等三角形的性质的几何语言
2 全等三角形的定义
A
D
B
CE
F
能够完全重合的两个三角形叫做全等三角形. 例如,在图中,△ABC 与 △DEF 能够完全重合, 它们是全等三角形.
A
D
B
C
E
F
你能找出其他的对应顶点、对应边和对应角吗?
对应点:点 A,点 D; 点 B,点 E;点 C,点 F;
对应边:AB 与 DE; AC 与 DF;BC 与 EF;
探究新知
1 全等图形的定义及性质
全等图形的定义: 能够完全重合的两个图形称为全等图形.
议一议
(1) 你能说出生活中全等图形的例子吗?
(2) 观察下面三组图形,它们是不是全等图形? 为什么?与同伴进行交流.
大小不同
形状不同
√
(3) 如果两个图形全等,它们的形状和大小一定都相同 吗?
全等图形的性质:全等图形的形状和大小都相同.
A
F
B
C
D
E
因为△ABC≌△FDE,
所以 AB = FD,AC = FE,BC = DE (全等三角形的对应边 相等),
∠A =∠F,∠B =∠D,∠C =∠E (全等三角形对应角相等)
典例精析 例1 如图,若△BOD≌△COE,指出这两个全等三角形 的对应边;若△ADO≌△AEO,指出这两个三角形的对 应角. 解:△BOD 与△COE 的对应边为: BO 与 CO,OD 与 OE,BD 与 CE; △ADO 与△AEO 的对应角为: ∠DAO 与∠EAO,∠ADO 与∠AEO, ∠AOD 与∠AOE.
3.2《图形的全等》 课件(北师大版) (2)

五环
奥运
同一张底片洗 出的相同尺寸 的照片
你发现了什么?
一模一样
几何中,我们把上面所列 举的“一模一样”的图形叫做 “全等图形”。
思考:
那么我们怎么给“全等图形” 下一个几何定义呢?
请您欣赏
可爱
的兔
子
好 好 学 习 报 效 祖 国
国旗
同一张底片 洗出的相同 尺寸的照片
国画
看了刚才的图片,你有什么发现?
第2个三角形是由第1个三角形怎样变换得到的? 要画出第3个三角形,你应该先确定哪几个点?怎样确定? 你有什么办法验证画出的三角形与原来的三角形是全等的吗? 你能画出各组的第5、6个三角形吗?有什么发现?
请你用不同的方法沿着网格线把正方 形分割成两个全等的图形
练一练
我们看看下面的几种划分方法,与你的 划分方法对比一下,看看自己是如何划 分的。
艺术家 M.C.埃舍尔
把自己称为一个 “图形艺术家”他 专门从事于木板画。 在1956年举办的艺 次画展得到了许多 数学家的称赏,在 他的作品中数学的 原则和思想得到了 非同寻常的形象化。
定义
全等图形 两个能够重合的图 形称为全等图形
议一议:
1、说说你生活中见过的全等图形的例子。
下列同一类的两个图形是怎样由一个图形得到另一个图 形的?它们一定全等吗?
一个图形经过平移、旋转、翻折后得到的图形一 定与原图形全等
议一议
2、观察下面两组图形,它们是不是全等图形?为什么?
大小 不同
形状 相同 形状 不同
(正确) 半径相等的两个圆是全等图形
观察下图3组全等三角形,在各组图中,第2个三角形是怎 样由第1个三角形改变位置得到的?按照相同的方法,在图 (1)、(2)、(3)中分别画出第3、4个三角形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
C
O
A
B
如图,若△ABC≌△EFC,且CF=3cm,∠EFC=64°,
则BC=_____3cm,∠B=_____6.4°
你还能求出哪些边的长度,
A
哪些角的度数?
F
BC
E
沿图形中的虚线,分别把下面图形划分为两个 全等图形(至少找出两种方法)
如果上图1是4×4的方格子有哪些分割方法?
如图,做四个全等的小“L”型纸片,将它们拼 成一个与大“L”全等的图案。
B
C
E
F
你能找到图中的对应边和对应角吗?
表示方法: △ABC≌△DEF
A
D
B
C
E
F
注意:要把表示对应顶点的字母写在 对应的位置上
用纸板、剪刀等工具制作全等三角形 改变它们的摆放位置,找出对应边,对应角.
全等三角形的性质
全等三角形的对应边相等,对应角相等.
练习:
• 找出下列图形中的全等图形
想一想:如图是由几种全等图形拼凑而成的
与图1所示图形全等的图形是
图1
A
B
C
D
将图2绕A点顺时针转90°所得到的图形是
B
A 图2
C A
D
B
C
本课概要
两个能够重合 的图形称为全等图形;
如果两个图形全等,那么它们的 形状和大小一定都相同;
全等三角形的概念 ; 全等三角形的性质 。
课堂小结
通过这节课的学习,你对全等图形有哪些认识?
作业
你能把下面的这个平行四边形 1.分成两个全等的图形吗? 2.分成四个全等的图形吗? 3.分成三个全等的图形吗?
图片欣赏:
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
如图:△ABC≌△AEC, ∠B=30°, ∠ACB=85°, 求出△AEC各内角的度数.
解:因为△AEC≌△ABC
所以∠E=∠B=°
A
∠ACE=∠ABC=85°
∠EAC=∠BAC
B
C
E
=180°- 30°-85°
=65°
如图:△AOD≌△BOC,写出其中相等的角
解:∠A=∠B ∠D=∠C ∠DOA=∠COB
第三章 三角形
2 图形的全等
这些图形中 有些是完全 一样的,如 果把它们叠 在一起,它 们就能重合。 你能分别从 图中找出这 样的图形吗?
欣赏图片
观察下面两组图形,它们是不是全等图形? 为什么?
形状 相同
大小 相同
全等图形的形状和大小都相同
如果两个图形全等,它们的形状和大小一 定都相同
A
D