极限的发展史
数学极限发展史

数学极限发展史
数学极限的概念最早可以追溯到古希腊时期。
在公元前5世纪的希腊,柏拉图学派和亚里士多德学派的数学家们就开始研究运动和变化的概念,其中就包括了极限的思想。
然而,直到17世纪的数学家纳皮尔和菲利波特发展了微积分的基本原理后,对极限的研究才得以深入发展。
他们提出了极限的定义和计算方法,并用它来解决各种数学问题。
随着微积分的发展,极限的研究日益细化和扩展。
19世纪的数学家卡尔·魏尔斯特拉斯和奥斯卡·韦伊尔斯特拉斯等人对连续性和收敛性的概念进行了深入的研究和推广,并建立了现代极限理论的基础。
20世纪,随着实分析和复分析等数学分支的发展,对极限的研究进一步深化。
数学家们提出了更加抽象和一般化的极限理论,如测度论和泛函分析等。
目前,极限理论已经成为数学的重要组成部分,被广泛应用于各个数学分支和其他学科。
极限发展历程总结

总结
极限理论是分析数学中的一个重要工具,而极限思想就是极限
理论的提炼和表现形式。
它是联系微分学、积分学的桥梁,也是处
理初等数学问题中所不能解决的理论和思路的出发点,而且极限思
想的学习已经纳入为高中教学知识点的重点和难点,从这一方面也
能看出极限思想的重要性。
从现代素质教学的标准要求下,对于新
知识的掌握的衡量标准和价值评判水平的角度,已经不再是只对结
果和结论的获得,而是在于过程的探索和理论渊源的理解,以及知
识掌握的广度,应用的灵活度,所以对于极限思想的掌握我们应该
知其然,知其所以然,去探究它的起源、发展过程。
真正的理解它
的内涵,也是为以后解决实际问题提供清新的思路和迁移的能力。
本文通过深入理解前人研究的思想方法的来历,自己加以整理、分类总结,并结合对高中数学对极限思想的学习难度,建立了以故
事串通的方式,合理地联想到理论相关的知识,希望在解题中运用
极限思想方法,顺利解答疑难问题。
同时再结合已有的思想方法,
投入分析思想方法的来历、应用的规律,又可以再次与解题的过程
相结合并在这一过程中进行深化,使之理论、实践、应用升华能融
为一体,这就是本文的出发点和落脚点。
概述数学文化极限概念

概述数学文化极限概念庞加莱说过:能够作出数学发现的人,是具有感受数学中的秩序、和谐、对称、整齐和神秘美等能力的人,而且只限于这种人。
一切数学概念都来自于社会实践,来源于生活现实的思想的火花,被数学家们捕捉到以后,经过千锤百炼,被提炼成概念。
再经过使用,推敲、充实、拓展,不断完善形成经典的理论。
数学中的概念、定理等无一例外都会经历这个过程。
毫无疑问极限也是社会实践的产物。
一、中国古代极限思想“一尺之棰,日取其半,万世不竭”。
这是战国时期庄子在他的《天下篇》记载的惠施的一段话。
也就是说一尺长的木棒,第一天取去一半,还剩二分之一尺,第二天再在这二分之一尺中取去一半,还剩下四分之一尺……。
按照这样的分法分下去,长度越来越小,但无论多小,永远分不完。
也就是说随着分割的次数增加,棰会越来越短,长度接近于零,但又永远不会等于零。
墨家观点与惠施不同,提出一个“非半”的命题,墨子说“非半弗,则不动,说在端” 。
意思是说将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。
墨家有无限分割最后会达到一个“不可分”的思想,名家则有“无限分割”的思想。
名家的命题论述了有限长度“无限可分”性,墨家的命题指出了无限分割的变化和结果。
显然名家和墨家的讨论,对数学理论的发展具有巨大推动作用。
现在看来,先秦诸子中的名、墨两家,对宇宙的无限性与连续性认识已相当深刻,在那时这些认识是片断的、零散的,更多地属于哲学范畴,但已反映出极限思想的萌芽,这无疑成为极限概念产生的丰厚的沃土。
公元3世纪,我国魏晋时期的数学家刘徽在注释《九章算术》时创立了有名的“割圆术”. 他创造性地将极限思想应用到数学领域。
所谓割圆术,具体的方法是把圆周分割得越细,内接多边形的边数越多,其内接正多边形的周长就越是接近圆周。
如此不断地分割下去,一直到圆周无法再分割为止,当到了圆内接正多边形的边数无限多的时候,它的周长就与圆周几乎“吻合”,进而完全一致了。
极限思想的产生与发展

毕业论文题目极限思想的产生与发展专业数学教育院系数学系学号 131002145姓名指导教师二○一三年五月定西师范高等专科学校2010 级数学系系毕业论文开题报告专业班级:数学教育姓名:指导教师:目录内容摘要:................................................................................................................................... (4)关键词: (4)引言: (5)一、极限思想的产生 (6)二、极限思想发展的分期 (6)(一)极限思想的萌芽时期 (6)(二)极限思想的发展时期 (8)(三)极限思想的完善时期 (8)三、极限思想与微积分 (9)(一)微积分的孕育 (10)(二)牛顿与微积分 (11)(三)莱布尼茨与微积分 (12)(四)微积分的进一步发展 (13)结束语 (14)参考文献 (15)致谢 (15)内容摘要本文综述了极限思想的产生和发展历史。
极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。
关键词极限;无穷;微积分引言极限思想作为一种哲学和数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多哲学家、数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。
极限思想的演变历程,是数千年来人类认识世界和改造世界的整个过程的一个侧面反应,是人类追求真理、追求理想,始终不渝地求实、创新的生动写照。
在数学的发展中,数学问题的来源和发展表现为多种多样的途径和极其复杂的情况。
纵观极限思想的发展,首先哲学为其提供了直觉上的发展方向,数学家们依据这种直觉或直观进行应用和探索;其后悖论一次次地出现,又促使数学家们一次一次地进行探究求证,使这一思想不断得以发展和完善。
而数学的求证又给予了哲学以实在的支持,为哲学更好地描述和论证世界提供了强有力的工具。
极限的起源 概念

极限的起源概念极限的概念起源于数学领域,它指的是在无限逼近过程中的临界值或极点。
极限的理念最初由古希腊数学家发展而来,如阿基米德、欧几里得和阿波罗尼奥斯等人。
其中,阿基米德对于正实数的数学无穷小概念的运用影响了后来对于极限的发展。
在欧几里得的《几何原本》中,也可见到对无限小数列和连续性的描述。
然而,真正对极限概念进行系统探索和发展的是17世纪的数学家斯帕诺(Johann Spahn),他从无穷数列的观点出发,研究了数列的逼近和趋势,提出了极限这一概念,并进一步发展了在解析几何和微积分中的应用。
随着数学发展的进程,极限的概念逐渐被引入到函数的研究中。
17世纪末至18世纪初,牛顿和莱布尼茨分别独立地发展了微积分学,并将极限作为微积分的基本概念之一。
微积分学的推广与应用为解析几何学和物理学的发展奠定了坚实基础。
为了系统地处理极限问题,数学家们提出了一系列与极限相关的数学方法和工具,如极限运算法则、级数展开和泰勒级数等。
这些方法和工具使得极限的概念得到更加深入和广泛的应用,为解决各种数学和科学问题提供了有力工具。
从数学的角度来看,极限是数学的一项基本概念,它运用于数学的各个分支,如数列极限、函数极限和无穷级数等。
极限的概念不仅在纯粹数学中具有重要意义,也在应用数学和其他学科中发挥着重要作用。
除了数学,极限的思想也渗透到其他学科领域。
在物理学中,极限概念被广泛应用于描述物理量的变化和趋势,如速度的极限、能量的极限等。
在工程学中,极限分析方法被用于结构和材料的设计与评估。
在经济学和社会科学领域,极限概念用于描述市场的饱和度和消费者的需求弹性等。
总结起来,极限的概念起源于数学,但其理念和方法已经渗透到许多学科领域。
它不仅是数学研究的基础,也是解决实际问题的重要工具。
通过对极限概念的深入研究和应用,我们可以更好地理解事物的发展和变化规律,为科学研究和工程实践提供理论支持和指导。
极限概念的产生与发展

但他们当时也还没有完全弄清楚极限的概念,没能把他们 的工作建立在严密的理论基础上,他们更多的是凭借几何和物 理直观去开展研究工作。
到了 18 世纪,数学家们基本上弄清了极限的描述性定义。 例如牛顿用路程的改变量 s 与时间的改变量 t 之比s t 表示物体的平均速度,让 t 无限趋近于零,得到物体的瞬时 速度,那时所运用的极限只是接近于直观性的语言描述:“如
lim f (x) A。这
xx0样的定义是严格Fra bibliotek,至今还被所有微积分的教科书(至少是
在本质上)普遍采用。
极限理论的建立,在思想方法上深刻影响了近代数学的
发展。
一个数学概念的形成经历了这样漫长的岁月,大家仅从
这一点就可以想像出极限概念在微积分这门学科中显得多
么重要了。
极限概念的产生与发展
极限概念的形成经历了漫长的岁月。 早在两千多年前,我国的惠施就在庄子的《天下篇》中有 一句著名的话:“一尺之棰,日取其半,万世不竭”,惠施提出 了无限变小的过程,这是我国古代极限思想的萌芽。 我国三国时期的大数学家刘徽(约 225 年~295 年)的割 圆术,通过不断倍增圆内接正多边形的边数来逼近圆周,刘徽 计 算 了 圆 内 接 正 3072 边 形 的 面 积 和 周 长 , 从 而 推 得 3.141024< π <3.142704。在国外一千多年以后欧洲人安托尼兹 才算到同样精确度的小数。"π"这扇窗口闪烁着我国古代数学家 的数学水平和才能的光辉。 16 世纪前后,欧洲资本主义的萌芽和文艺复兴运动促进了 生产力和自然科学的发展。17 世纪,牛顿(Newton)和莱布尼 兹(Leibniz)在总结前人经验的基础上,创立了微积分。
果当自变量 x 无限地趋近于 x0时,函数 f (x)无限地趋近于 A, 那么就说 f (x)以 A 为极限”。这种描述性语言虽然人们易于接 受,但是这种定义没有定量地给出两个“无限过程”之间的联 系,不能作为科学论证的逻辑基础。正因为当时缺少严格的极 限定义,微积分理论受到人们的怀疑和攻击。起初微积分主要 应用于力学.天文学和光学,而且出现的数量关系比较简单, 因此在那个时候,极限理论方面的缺限还没有构成严重障碍。
极限发展史

2.1 最早的极限思想公元前770——前221年,在《庄子》“天下篇”中记录:“一尺之棰,日取其半,万世不竭”。
这句话的意思是:有一根一尺长的木棍,如果一个人每天取它剩下的一半,那么他永远也取不完。
庄子这句话充分体现出了古人对极限的一种思考,也形象的描述出了“无穷小量”的实际范例。
迄今为止,微积分中也常常用这个例子来进行教学的导入。
2.2极限的早期使用公元前3世纪,古希腊数学家安提丰(antiphon,约公元前430年)提出了“穷截法”,即在求解圆面积时提出用成倍扩大圆内接正多边形边数,通过求正多边形的面积来近似代替圆的面积。
但安提丰的做法却让许多的希腊数学家产生了“有关无限的困惑”,因为在当时谁也不能保证无限扩大的正多边形能与圆周重合。
通过多边形边数的加倍来产生无限接近的过程,从而出现“差”被“穷竭”的说法虽然不合适,但在现在看来,这个所谓的“差”却构造出了一个“无穷小量”,因此也被认为是人类最早使用极限思想解决数学问题的方法。
在中国公元3世纪,刘徽(约225——295)在《九章算术注》中创立了“割圆术”。
用现代的语言来描述他的方法即是:假设一个圆的半径为一尺,在圆中内接一个正六边形,在此后每次将正多边形的边数增加一倍,从而用勾股定理算出内接的正十二边、二十四边、四十八边等多边形的面积。
这样就会出现一个现象,当边数越多时,这个多边形的面积就越与圆面积接近。
刘徽运用这个相当于极限的思想求出了圆周率,并且由于与现在的极限理论的思想很接近,从而他也被誉为在中国史上第一个将极限思想用于数学计算的的人。
2.3极限定义的产生直到17世纪为止,安提丰制造的“极限恐慌论”都阻挡了极限的发展。
到了17世纪,牛顿(Newton,1642-1727)、莱布尼茨(Leibniz,1646-1716)利用极限的方法创立了微积分,但在那个时候,他们的极限理论还不是十分的严密清楚。
经过十八世纪到十九世纪初,微积分的理论和主要内容基本上已经建立起来了,但几乎它所有的概念都是建立在物理和几何原型上的,带有很大程度上的经验性和直观性。
极限思想的辩证思考以及诠释

极限思维与创造
极限思维激发了人们的创新意识 和创造力。通过对极限问题的探 讨和研究,人们不断提出新的理 论和观点,推动了科学技术的发 展和创新。
极限思维与哲学思考
极限思维引发了人们对哲学问题 的思考和探讨。例如,关于无穷 小、连续性等问题的研究促使人 们对绝对与相对、有限与无限等 哲学问题进行深入思考,为哲学 的发展提供了新的思路和方法。
极限思想的应用领域
在数学领域,极限思想被广泛应 用于微积分、实数理论、概率论 等领域。
在工程学领域,极限思想被用于 优化设计、可靠性分析、控制系 统等领域。
极限思想在数学、物理学、工程 学、经济学等多个领域都有广泛 的应用。
在物理学领域,极限思想被用于 研究质点运动、弹性力学、流体 力学等问题。
在经济学领域,极限思想被用于 研究市场均衡、经济增长、风险 管理等问题。
极限思想与连续性原则
极限思想是连续性原则的延伸
连续性原则是指事物的发展是连续不断的,而极限思想则是 对这种连续性进行深入探讨的工具。通过极限思想,我们可 以更好地理解事物的变化趋势、行为的极限以及这些极限附 近的行为特性。
极限思想在连续性中的应用
在许多实际问题的解决中,如物理学中的运动问题、工程学 中的优化问题等,极限思想都发挥了重要的作用。在这些领 域中,极限常常被用来描述变量在特定条件下趋近于某个值 时的行为特性。
要点二
极限思想的基本概念
极限思想是一种通过考察变量在某一 趋势下的行为,并对其取值进行估计 或逼近的思想方法。它提供了研究函 数性质、进行近似计算、推导极限定 理等的重要工具。
要点三
极限思想的应用
极限思想广泛应用于数学、物理学、 工程学、生物学等众多领域。它不仅 用于解决实际问题,还对理论物理、 化学、生物学等学科的发展起到了重 要的推动作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限的发展史
从极限思想到极限理论
极限的朴素思想和应用可追溯到古代,我国古代哲学名著《庄子》记载着庄子的朋友惠施的一句话:“一尺之棰,日取其半,万世不竭。
”其含义是:长为一尺的木棒,第一天截取它的一半,第二天截取剩下的一半,这样的过程无穷无尽地进行下去。
随着天数的增多,所剩下的木棒越来越短,截取量也越来越小,无限地接近于0,但永远不会等于0。
中国早在2000年前就已能算出方形、圆形、圆柱等几何图形的面积和体积,3世纪刘徽创立的割圆术,就是用园内接正多边形的极限时圆面积这一思想来近似计算圆周率π的,并指出“割之弥细,所失弥少,割之又割,以至不可割,则与圆合体而无所失矣”,这就是早期的极限思想。
到17世纪,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换,还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代。
到17世纪后半叶,牛顿和莱布尼茨在前人研究的基础上,分别从物理与几何的不同思想基础、不同研究方向,分别独立地建立了微积分学。
他们建立微积分的出发点使直观的无穷小量,极限概念被明确提出,但含糊不清。
牛顿子发明微积分的时候,合理地设想:t∆越小,这个平均速度应当越接近物体在时刻t时的瞬时速度。
这一新的数学方法,受到数学家和物理学家欢迎,并充分地运用它解决了大量过去无法问津的科技问题,因此,整个18世纪可以说是微积分的世纪。
但由于它逻辑上的不完备也招来了哲学上的非难甚至嘲讽与攻击,贝克莱主教曾猛烈地攻击牛顿的微分概念。
实事求是地讲,把瞬时速度说成是无穷小时间内所走的无穷小的距离之比,即“时间微分”与“距离微分”之比,是牛顿一个含糊不清的表述。
其实,牛顿也曾在著作中明确指出过:所谓“最终的比”不是“最终的量”的比。
而是比所趋近的极限。
但他既没有清除另一些模糊不清的陈述,又没有严格界说极限的含义。
包括莱布尼茨对微积分的最初发现,也没有明确极限的意思。
因而,牛顿及其后一百年间的数学家,都不能有力地还击贝克莱的这种攻击,这就是数学史上所谓第二次数学危机。
经过近一个世纪的尝试与酝酿,数学家们在严格化基础上重建微积分的努力到19世纪初开始获得成效。
由于法国数学家柯西、德国数学家魏尔斯特拉斯等人的工作,以及实数理论的建立,才使极限理论建立在严密的理论基础之上。
至此极限理论才真正建立起来,微积分这门学科才得以严密化。
因而真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师.所谓“定义”极限,本质上就是给“无限接近”提供一个合乎逻辑的判定方法,和一个规范的描述格式。
这样,我们的各种说法,诸如“我们可以根据需要写出根号2的任一接近程度的近似值”,就有了建立在坚实的逻辑基础之上的意义。
2.1最早的极限思想
公元前770——前221年,在《庄子》“天下篇”中记录:“一尺之棰,日取其半,万世不竭”。
这句话的意思是:有一根一尺长的木棍,如果一个人每天取它剩下的一半,那么他永远也取不完。
庄子这句话充分体现出了古人对极限的一种思考,也形象的描述出了“无穷小量”的实际范例。
迄今为止,微积分中也常常用这个例子来进行教学的导入。
2.2极限的早期使用
公元前3世纪,古希腊数学家安提丰(antiphon,约公元前430年)提出了“穷截法”,即在求解圆面积时提出用成倍扩大圆内接正多边形边数,通过求正多边形的面积来近似代替圆的面积。
但安提丰的做法却让许多的希腊数学家产生了“有关无限的困惑”,因为在当时谁也不能保证无限扩大的正多边形能与圆周重合。
通过多边形边数的加倍来产生无限接近的过程,从而出现“差”被“穷竭”的说法虽然不合适,但在现在看来,这个所谓的“差”却构造出了一个“无穷小量”,因此也被认为是人类最早使用极限思想解决数学问题的方法。
在中国公元3世纪,刘徽(约225——295)在《九章算术注》中创立了“割圆术”。
用现代的语言来描述他的方法即是:假设一个圆的半径为一尺,在圆中内接一个正六边形,在此后每次将正多边形的边数增加一倍,从而用勾股定理算出内接的正十二边、二十四边、四十八边等多边形的面积。
这样就会出现一个现象,当边数越多时,这个多边形的面积就越与圆面积接近。
刘徽运用这个相当于极限的思想求出了圆周率,并且由于与现在的极限理论的思想很接近,从而他也被誉为在中国史上第一个将极限思想用于数学计算的的人。
2.3极限定义的产生
直到17世纪为止,安提丰制造的“极限恐慌论”都阻挡了极限的发展。
到了17世纪,牛顿(Newton,1642-1727)、莱布尼茨(Leibniz,1646-1716)利用极限的方法创立了微积分,但在那个时候,他们的极限理论还不是十分的严密清楚。
经过十八世纪到十九世纪初,微积分的理论和主要内容基本上已经建立起来了,但几乎它所有的概念都是建立在物理和几何原型上的,带有很大程度上的经验性和直观性。
直到法国数学家柯西(Cauchy,1789-1857)才明确的描述了极限的概念及理论,无穷小的本质也因此被揭露出来了。
1821年柯西在拉普拉斯与泊松的支持下发表了《代数分析教程》,书中脱离了一定要将极限概念与几何图形和几何量联系起来的束缚,通过变量和函数概念从开始就给出了精确的极限定义:假如一个变量依次取得的值无限趋近于一个定值,到后来这个变量与定值之间的差值要多小就多小,那么这个定值就是这所有取得的无限接近定值的变量的极限值。
可是,柯西的极限定义还是存在着一些问题,比如他所谓的“无限接近”、“要多小有多小”这些概念都只能在头脑中想象,不能摆脱在头脑中的几何直观想象来建立数学概念的方法。
2.4极限定义的完善
为了摆脱极限定义的几何直观思维方法,19世纪后半期,德国的维尔斯特拉斯(Weierstrass,1815-1897)研究出了一个纯算术的极限定义。
维尔斯特拉斯用实数描述出了极限定义。
他先把变量设为一个字母,而这个字母可以取能取集合中的任意一个数,一个连续变量
最早的极限思想是在公元前770——前221年,在《庄子》“天下篇”中记录:“一尺之棰,日取其半,万世不竭”。
庄子这句话充分体现出了古人对极限的一种思考,也形象的描述出了“无穷小量”的实际范例。
迄今为止,微积分中也常常用
这个例子来进行教学的导入。
极限在高中教学中,概念也经常用到,可分为数列极限和函数极限,同时也为微积分中的导数学习有很大帮助。