《 一元二次方程的解法》导学案
23.2.2_一元二次方程的解法(三)配方法 学案

23.2《一元二次方程的解法——配方法》学案学习目标:1、熟练掌握完全平方公式,会将一个二次三项式配成一个完全平方。
2、理解配方法的根据就是直接开平方。
3、会用配方法解一元二次方程。
注意变形形式的求解。
重点:1、理解配方法解方程的要求,2、能正确用配方法解一元二次方程。
难点:配完全平方的技巧。
学习过程:一、 复习导学:1、若x 2=a (a ≥0),则x =_______.若(x +1)2=a (a ≥0),则x =_______,即 x 1=_______,x 2=________. 直接开平方法解一元二次方程要求方程左边是一个含有未知数 的 ,右边是一个 。
2、解方程:(1)、23270x -= (2)、2(3)25x +=我们知道,形如02=-A x 的方程,可变形为)0(2≥=A A x ,再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如20x bx c ++=的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题. 二、新课研讨:问题1、解下列方程:2x +2x =5; (2)2x -4x +3=0.思考:能否经过适当变形,将它们转化为()2= a 的形式,应用直接开方法求解?解:(1)原方程化为2x +2x +1=6, (方程两边同时加上1)_____________________, _____________________, _____________________.(2)原方程化为2x -4x +4=-3+4 (方程两边同时加上4)_____________________, _____________________, _____________________.1、象上面的方程求解,通过配成 式来解一元二次方程的方法,叫做配方法,配方法是为了 ,把一个一元二次方程转化为两个 来解。
2、配方法是将方程左边变成含有未知数的 ,右边是 ,再用 直接开平方法求解。
一元二次方程的解法1-直接开平方法

1.探究(x-m)2=n的解的情况.
2.关于x的一元二次方程mx2=-n(n≠0)有实数解,则必须具备的条件是什么?
3.将方程x2-6x+5=0化成(x+n)2=p的形式,则n= ,p= .
4.证明关于x的方程(m2-8x+17)x2+2mx+1=0不论m为何值,该方程都是一元二次方程.
重点
用直接开平方法解一元二次方程.
难点
将方程转化成形如(mx+n)2=p(p≥0)的形式
教法
预习指导法
学法
课前预习,小组合作法.
一、预习导航
1.填空:将下列各数的平方根填在后面的括号内.
9(),5(),49( ),8( ),24( ),1.6( ),( )
2.若x2=4,则x1= ,x2=
想一想:求x2=4的解的过程,就相当于求4的什么的过程?
x2+x+____=(x+___)2
x2+6x+____=(x+___)2
滦县三中九年级数学学科第一学期导学案
课题:一元二次方程的解法-直接开平方法主备人:李素香主审人:王淑娟使用时间:2004.9编号:2
教学过程:
教学
目标
1.掌握用直接开平方法解形如(mx+n)2=p(p≥0)类方程的方法,理解其降次的思维方法.
2.理解一元二次方程无实数根的意义,了解在什么时候会出现方程无实数根的情况.
四、巩固练习
1.解下列方程.
①(x-1)2=8②(2x+3)2=24③(x-)2=9④(x+1)2-3=0
⑤(4x+)(4x-)=0⑥x2+4x+4=8
2.填上适当的数,使下列等式成立.
一元二次方程的解法习题课导学案

第8课时一元二次方程的解法习题课主备人刘爱国 审核 班级 学生姓名学习目标1.了解一元二次方程的各种解法。
2.学会选择适当的方法来解一元二次方程。
学习重点难点能正确地选择适当的方法来解一元二次方程,熟练解出一元二次方程的解。
教学过程一.练习反馈:一元二次方程共有几种解法?________种,分别为:①形如方程)0(02≥=-k k x 或())0(2≥=+k k h x 可以用 求解。
②形如a.b = 0 ⇒a= 0或b = 0用 解。
③配方法的关键步骤是:④公式法:一元二次方程)0(02≠=++a c bx ax 的求根公式是二、自学讨论:例1、用直接开平方法解下列方程:(1)03412=-x (2) (2x-1) 2-18=0例2、用配方法解下列方程:(1)2x 2 -3x -4=0例3、用公式法解下列方程:(1) x 2-3x-2=0 (2) 2x 2 -3x-4=0三、 交流提升1、选用适当的方法解下列方程:(1) 3x 2+4x-1=0 (2) (3x -2)2-49=0(3) x 2+6x -5=0 (4) (x-2)2 =2(x-2)2、用配方法证明:关于x 的方程(m 2-12m +37)x 2+3mx+1=0,无论m 取何值,此方程都是一元二次方程3、若a 、b 、c 为ΔABC 的三边,且a 、b 、c 满足(a -b)(a -c)=0,判断△ABC 的形状。
四、抽测达标1、一元二次方程x 2-ax+6=0, 配方后为(x-3)2=3, 则a=______________.2、已知关于x 的方程(a 2-1)x 2+(1-a )x+a-2=0,下列结论正确的是( )A 、当a ≠±1时,原方程是一元二次方程B 、当a ≠1时,原方程是一元二次方程。
C 、当a ≠-1时,原方程是一元二次方程D 、原方程是一元二次方程。
3、请你写出一个有一根为1的一元二次方程:4、下列方程是一元二次方程的是( )A 、0512=+-x xB 、x (x+1)=x 2-3C 、3x 2+y-1=0D 、2213x +=315x - 5、方程x 2-8x+5=0的左边配成完全平方式后所得的方程是( )A 、(x-6)2=11B 、(x-4)2=11C 、(x-4)2=21D 、以上答案都不对6、关于x 的一元二次方程(m-2)x 2+(2m —1)x+m 2—4=0的一个根是0,则 m 的值是( )A 、 2B 、—2C 、2或者—2D 、127、要使代数式22231x x x ---的值等于0,则x 等于( ) A 、1 B 、-1 C 、3 D 、3或-18、三角形两边长分别是6和8,第三边长是x 2-16x+60=0的一个实数根,求该三角形的第三条边长。
2.2一元二次方程的解法(2)导学案

2.2 一元二次方程的解法(2)班级__________________ 姓名__________________〖学习目标〗1.巩固用配方法解一元二次方程的基本步骤;2.会用开平方法解二次项系数的绝对值不为1的一元二次方程。
〖学习重点与难点〗重点:用配方法解二次项系数的绝对值不是1的一元二次方程。
难点:二次项系数为小数或分数时,用配方法解一元二次方程是本节学习的难点。
一、复习引入(把握时间,看看你的复习情况)1.用配方法解下列方程:(1) 162=+x x (2)11342-=x x2.回顾:上个星期学习的配方法解方程有哪些步骤?3.思考:当二次项系数不为1时,我们该怎么办?比如 11052+=x x ,此时二次项系数不为1,你觉得怎么用配方法来解?4.用配方法解二次项系数不为1的一元二次方程,有哪些步骤?跟之前比较,多了哪些步骤?二、例题精讲(先思考,然后和老师一起完成)例3 用配方法解下列一元二次方程:⑴03422=-+x x ⑵03832=--x x⑶x x 353122=-⑷05.01.02=++x x三、巩固练习1.用配方法解方程0122=--x x 时,配方结果正确的是( ) (A )43)21(2=-x (B )43)41(2=-x (C )1617)41(2=-x (D )169)41(2=-x2.用配方法解下列方程:⑴03622=++x x ⑵05722=+-x x四、当堂检测(仔细思考,总结解题的步骤)用配方法解方程: ⑴132)1(=--n n n ⑵02222=--x x⑶02142=++x x ⑷08121432=--x x总结:用配方法解二次项系数不为1的一元二次方程,有哪些步骤?你又掌握了哪些?五、小结这节课,你收获了哪些知识?。
32一元二次不等式及其解法导学案参考修改模板范本

3、2 一元二次不等式及其解法(导学案)(集美中学 杨正国)一、学习目标1、理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2、经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;二、本节重点熟练掌握一元二次不等式的解法三、本节难点理解一元二次不等式、一元二次函数及一元二次方程的关系四、知识储备1、提问:你能回顾一下以前所学的一元二次不等式、一元二次函数及一元二次方程吗?2、比较,,a b c 的大小:22,5a b c ==-五、通过预习掌握的知识点① 若判别式240b ac ∆=->,设方程20ax bx ++=的二根为1212,()x x x x <,则:0a >时,其解集为{}12|,x x x x <>或;0a <时,其解集为{}12|x x x x <<. ② 若0∆=,则有:0a >时,其解集为|,2b x x x R a ⎧⎫≠-∈⎨⎬⎩⎭;0a <时,其解集为∅. ③ 若0∆<,则有:0a >时,其解集为R ;0a <时,其解集为∅.. ④ 一元二次不等式的解集与其相应的一元二次方程的根及二次函数的图象有关,从而可数形结合法分析其解集.我们由此总结出解一元二次不等式的三部曲“方程的解→函数草图→观察得解”六、知识运用1、求不等式2610x x --≤的解集. 2、不等式22ax bx ++>的解集是}11|23x x ⎧-<<⎨⎩,则a b +的值是_________ 3、变式训练:已知不等式20ax bx c ++>的解集为(,)αβ,且0αβ<<,求不等式20cx bx a ++<的解集.4、若01a <<,则不等式1()()0a x x a-->的解是___________5、解关于x 的不等式:2(1)10ax a x -++<七、重点概念总结解一元二次不等式的步骤:① 将二次项系数化为“+”:A=c bx ax ++2>0(或<0)(a>0) ② 计算判别式∆,分析不等式的解的情况:ⅰ.∆>0时,求根1x <2x ,⎩⎨⎧<<<><>.002121x x x A x x x A ,则若;或,则若ⅱ.∆=0时,求根1x =2x =0x ,⎪⎩⎪⎨⎧=≤∈<≠>.00000x x A x A x x A ,则若;,则若的一切实数;,则若φⅲ.∆<0时,方程无解,⎩⎨⎧∈≤∈>.00φx A R x A ,则若;,则若 ③ 写出解集.一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=2一元二次方程 ()的根002>=++a c bx ax 有两相异实根)(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集)0(02><++a c bx ax {}21x x x x <<∅∅。
九年级数学上一元二次方程的解法教案(优秀5篇)

九年级数学上一元二次方程的解法教案(优秀5篇)数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。
方程,只有当时,才叫做一元二次方程。
如果且,它就是一元二次方程了。
解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
初三上册数学教学工作计划篇二【学习目标】1、了解整式方程和一元二次方程的概念。
2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
【重点、难点】重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定【学习过程】一、知识回顾1、什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。
《一元二次方程的解法—配方法(2)》导学案

第3课时一元二次方程的解法一、知识目标1、会用配方法二次项系数不为1的一元二次方程.2、经历探究将一般一元二次方程化成()0()2≥=+n n m x 形式的过程,进一步理解配方法的意义。
3、在用配方法解方程的过程中,体会转化的思想。
重点:使学生掌握用配方法解二次项系数不为1的一元二次方程 难点:把一元二次方程转化为的(x +m )2= n (n ≥0)形式二、知识准备1、用配方法解下列方程:(1)x 2-6x-16=0; (2)x 2+3x-2=0;2、请你思考方程x 2-25x+1=0与方程2x 2-5x+2=0有什么关系三、学习内容如何解方程2x 2-5x+2=0点拨:对于二次项系数不为1的一元二次议程,我们可以先将两边同时除以二次项系数,再利用配方法求解四、典型例题例1、解方程:01832=++x x例2、-01432=++x x五、知识梳理1、对于二次项系数不为1的一元二次方程,用配方法求解时要注意什么2、用配方法解一元二次方程的步骤是什么系数化一,移项,配方,开方,解一元二次方程六、达标检测1、填空:(1)x 2-31x+=(x-)2, (2)2x 2-3x+=2(x-)2. (3)a 2+b 2+2a-4b+5=(a+)2+(b-)22、用配方法解一元二次方程2x 2-5x-8=0的步骤中第一步是。
3、方程2(x+4)2-10=0的根是.4、用配方法解方程2x 2-4x+3=0,配方正确的是()+4=3+4 B. 2x 2-4x+4=-3+4 +1=23+1 D. x 2-2x+1=-23+1 5、用配方法解下列方程:(1)04722=--t t ;(2)x x 6132=-(3)x x 10152=+(4) 3y 2-y-2=06、已知(a+b)2=17,ab=3.求(a-b)2的值.七、学习反馈:1、本节课有困惑的题目是:2、本节课的学习收获是:。
初中数学初二数学下册《一元二次方程的解法》教案、教学设计

(三)情感态度与价值观
1.培养学生勇于探索、善于思考的精神,增强学生克服困难的信心。
2.培养学生合作交流的意识,让学生在合作中学会倾听、表达和尊重他人。
3.培养学生严谨、认真的学习态度,提高学生的数学素养。
4.引导学生体会数学在生活中的应用,感受数学的价值,激发学生学习数学的兴趣。
初中数学初二数学下册《一元二次方程的解法》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元二次方程的标准形式,掌握其基本性质。
2.学会使用直接开平方法求解一元二次方程,并掌握其适用条件。
3.学会使用配方法求解一元二次方程,理解其原理和步骤。
4.学会使用公式法求解一元二次方程,并熟练运用公式。
5.能够根据问题情境选择合适的解法求解一元二次方程,提高解决问题的能力。
(2)开展数学实践活动,让学生在实际操作中体验数学的乐趣和价值。
(3)鼓励学生参加数学竞赛、讲座等活动,拓宽学生的知识视野。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
(1)通过一个实际问题引入一元二次方程,如:一块正方形菜地的边长比它的面积多1,求这块菜地的边长。让学生尝试用已学过的知识解决问题,引导学生发现一元一次方程无法解答该问题。
2.难点:
(1)理解并掌握配方法的原理和步骤,特别是如何通过添加和减去同一个数使方程变形。
(2)熟练运用求根公式求解一元二次方程,并理解公式中各个参数的含义。
(3)在实际问题中,能够根据方程的特点选择合适的解法。
(二)教学设想
1.对于重点内容的教授:
(1)通过实际例题引入,让学生感受一元二次方程解法的必要性,激发学生的学习兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.2一元二次方程的解法
第二课时直接开平方法和因式分解法(2)教学目标:
知识技能目标
1.通过对形如(ax+b)2=c(其中a、b、c是常数且c≥0)的一元二次方程解法的探讨,让学生进一步熟悉直接开平方法;
2.熟练掌握运用因式分解法解一元二次方程;
过程性目标
1.体会运用直接开平方法与因式分解法解某些一元二次方程;
2.进一步了解,解一元二次方程的方法虽然有所不同,但结果是一样的;
3.经历各种类型的一元二次方程,灵活选取适当的方法解一元二次方程.
情感态度目标
1.通过新方法的学习,培养学生分析问题解决问题的能力及探索精神;
2.让学生在实际解题中进一步体会转化的思想.
重点和难点:
合理选择直接开平方法与因式分解法解某些一元二次方程,理解一元二次方程无实根的解题过程.
教学过程:
一、创设情境
问题如何解下列方程:(1) (x+1)2-4=0;(2)12(2-x)2-9=0.
对于这两个方程,你想到了哪些求解方法?你能从上一课学习的内容中得到一些启发吗?
二、探究归纳
分析对于(1),如果退一步解x2-4=0,同学们都能想到运用直接开平方法求解;那么将这里的x换成x+1,不是同样的思考方法吗?实际上,这两个方程都可以化成( )2=a的形式.
解(1)原方程可以变形为(x+1)2=4,
直接开平方,得
x +1=±2,即x +1=2或 x +1=-2.
所以原方程的解是x 1=1,x 2=-3.
(2)原方程可以变形为()4322=-x , 直接开平方,得
232±=-x ,即232=-x 或232-=-x . 所以原方程的解是232,23221+=-=x x . 思考 你对上面两个方程还有其他解法吗?
三、实践应用
例1 用因式分解法解方程:(1) (x +1)2-4=0;(2)12(2-x ) 2-9=0. 分析 对(1)左边容易分解为(x +1+2)(x +1-2);而对(2)左边应分解为()()3243243--+-x x .(为什么?)
解 (1)原方程左边分解因式,得(x +1+2)(x +1-2)=0.
所以x +3=0,或x -1=0.
原方程的解是x 1=1,x 2=-3.
(2)方程左边分解因式,得3(4-2x +3)(4-2x -3)=0.
所以4-2x +3=0,4-2x -3=0.
原方程的解是2
321-
=x ,2322+=x . 例2 用适当的方法解方程(1)5(3x +1)2=20;(2)4(x -1)2-(x +2)2=0. 分析 (1)变形为(3x +1)2=4时,用直接开平方法来解简单;(2)把左边分解因式成[2(x -1)+(x +2)] [2(x -1)-(x +2)],再进一步化成两个一元一次方程求解.
解 (1)原方程可以变形为(3x +1)2=4.
直接开平方,得
3x +1=±2,即3x +1=2或 3x +1=-2.
所以原方程的解是1,3121-==x x .
(2)原方程左边分解因式,得[2(x -1)+(x +2)] [2(x -1)-(x +2)]=0. 整理为3x (x -4)=0.
所以3x =0,或x -4=0.
原方程的解是x 1=0,x 2=4.
例3 小张和小林一起解方程x (3x +2)-6(3x +2)=0.
小张将方程左边分解因式,得(3x +2)(x -6)=0
所以3x +2=0,或x -6=0, 方程的两个解为6,3
221=-=x x .
小林的解法是这样的:移项得x (3x +2)=6(3x +2),
方程两边都除以3x +2,得x =6. 小林说:“我的方法多简便!”可另一个解32-=x 哪里去了?小林的解法对吗?为什么?
分析 小林的解法中有一步“方程两边都除以3x +2”是错误的,根据等式的性质,在方程两边只能乘以或除以同一个不等于零的数,等式才成立,现在小林在方程两边都除以3x +2,就会丢失一个解.因此,在解一元二次方程时,不可以在方程两边都除以一个含有未知数的代数式.
四、交流反思
1.若方程是( )2=a 的形式,用直接开平方法求解简单;有时方程经过变形后可以得到形如( )2=a 的形式,也适合用直接开平方法;
2.所谓因式分解,是将一个多项式分解成几个一次因式积的形式.如果一元二次方程的左边是一个易于分解成两个一次因式积的二次三项式,而右边为零.用因式分解法更为简单.例如:x 2+5x +6=0,因式分解后(x +2)(x +3)=0,得x +2=0或x +3=0,这样就将原来的一元二次方程转化为一元一次方程,方程便易于求解.可以说二次三项式的因式分解是因式分解法解一元二次方程的关键.“如果两个因式的积等于零,那么两个因式至少有一个等于零”是因式分解法解方程的理论依据.方程的左边易于分解,而方程的右边等于零是因式分解法解方程的条件.满足这样条件的一元二次方程用因式分解法最简单;
3.因式分解法解一元二次方程的步骤是:
(1)化方程为一般形式;
(2)将方程左边因式分解;
(3)至少有一个因式为零,得到两个一元二次方程;
(4)两个一元一次方程的解就是原方程的解.
4.运用直接开平方法和因式分解法解一元二次方程,突出了转化的思想方法,鲜明地显示了“二次”转化为“一次”的过程.两种方法的选择,要具体情况具体分析.
五、检测反馈
1.解下列方程:
(1)(x+2)2-16=0; (2)(x-1)2-18=0;
(3)(1-3x)2=1; (4)(2x+3)2-25=0.
2.用适当的方法解下列方程:
(1) 3(x-5)2=2(5-x); (2) x2-x-6=0;
(3) (x-1)2=(2x+3) 2; (4)2(3x-1)2=16.
3.当x为何值时,代数式3x2-2x+1的值与2x+1的值相等.
六、布置作业
习题22.2的2,3.。