金相组织鉴别

合集下载

热处理金相组织判定标准

热处理金相组织判定标准

热处理金相组织判定标准
热处理金相组织的判定标准包括以下几个方面:
1. 碳化物的颗粒大小:理想的退火组织中,碳化物颗粒应细小,呈点状或细粒状。

2. 碳化物的分布均匀性:碳化物应均匀分布在铁素体基体上,不应出现局部的密集或稀少。

3. 碳化物的球化程度或形态:碳化物应呈球状或粒状,球化完全,且分布较均匀。

根据这些标准,可以将退火金相组织分为不同的等级。

具体如下:
1. 1级:细点状+细粒状珠光体+局部细片状珠光体。

这是不合格的组织,形成原因是加热不足,部分锻造组织被保留下来。

2. 2级:点状珠光体+细粒状珠光体。

这是优良的合格组织,碳化物颗粒细小呈点状和细粒状,圆度好,分布较均匀。

3. 3级:球状珠光体。

这是良好的合格组织,碳化物颗粒大于2级,球化完全,分布较均匀。

4. 4级:球状珠光体。

这是合格组织,碳化物颗粒较粗,均匀性较差,碳化物分布不均,有的区域密集,有的区域稀少。

在实际应用中,可以根据具体标准和需求对热处理金相组织进行判定。

如有需要,建议咨询专业人士获取准确的信息。

金属材料常见金相组织的名称和特征

金属材料常见金相组织的名称和特征

金属材料常见金相组织的名称和特征1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在a-fe中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体-碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。

过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。

若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。

金相组织鉴别

金相组织鉴别

贝氏体、马氏体和针状铁素体在显微镜下怎么区分?金相组织金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织.金相即金相学,就是研究金属或合金内部结构的科学。

不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。

所谓外部条件就是指温度、加工变形、浇注情况等。

所谓内在因素主要指金属或合金的化学成分。

金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。

1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在a-fe中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体-碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。

金相组织检验方法

金相组织检验方法

金相组织检验方法金相组织检验方法是金相显微镜检验技术的一种,用于对材料的组织结构进行观察和分析。

该方法可以通过金相显微镜观察材料的显微结构,了解材料的晶体形态、组织相、晶粒大小、晶界、位错、包含物等信息,从而评估材料的性能和质量。

首先是样品的制备。

要进行金相组织检验,首先需要从待测材料中取得一个小的标本。

样品通常根据材料的大小和形状进行切割、研磨和研磨,最后用金相显微镜进行观察。

在制备过程中,需要注意使用适当的研磨纸和研磨液,以保证样品表面的平整度和光洁度。

接下来是显微结构观察。

将制备好的样品放置在金相显微镜上,并调整显微镜的放大倍数和焦距,使得样品的显微结构能够清晰可见。

观察时,可以通过改变镜筒和台架的位置,旋转样品,以便观察不同方向上的显微结构。

观察时应注意调节光源的亮度和对比度,以获得清晰的图像。

最后是结构分析。

在观察样品的显微结构后,可以通过对观察到的组织、晶粒、晶界等特征进行分析,以获得对材料性能和质量的评估。

例如,结构分析可以通过计数晶粒的数量来确定晶粒大小的分布范围,进一步评估材料的均匀性。

还可以通过观察晶粒边界和晶界的形态来判断材料的结晶性能和纯度。

此外,还可以通过观察包含物、位错、缺陷等特征来评估材料的质量。

需要指出的是,金相组织检验方法需要配备金相显微镜和相关配件,包括样品制备工具和设备。

此外,进行金相组织检验时,还需要操作员具备一定的金相显微镜操作技能和对材料组织结构的理解。

对于不同类型的材料,可能需要使用不同的显微镜和特殊的显微观察技术来实现金相组织检验。

综上所述,金相组织检验方法是一种通过金相显微镜观察材料的显微结构来评估材料性能和质量的技术。

通过样品的制备、显微结构观察和结构分析三个步骤,可以获得材料的晶体形态、组织相、晶粒大小、晶界、位错、包含物等信息,从而对材料进行评估和分析。

金相浅析及完整检验标准

金相浅析及完整检验标准

金相浅析及完整检验标准金相金属或合金内部结构指金属或合金的化学成分以及各种成分在合金内部的物理状态和化学状态。

金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。

广义的金相组织是指两种或两种以上的物质在微观状态下的混合状态以及相互作用状况。

金相组织金属材料的内部结构,只有在显微镜下才能观察到。

在显微镜下看到的内部组织结构称为显微组织或金相组织。

钢材常见的金相组织有:铁素体、奥氏体、渗碳体、珠光体等金相显微镜金相显微镜是将光学显微镜技术、光电转换技术、计算机图像处理技术完美地结合在一起而开发研制成的高科技产品,可以在计算机上很方便地观察金相图像,从而对金相图谱进行分析,评级等以及对图片进行输出、打印。

众所周知,合金的成分、热处理工艺、冷热加工工艺直接影响金属材料的内部组织、结构的变化,从而使机件的机械性能发生变化。

因此用金相显微镜来观察检验分析金属内部的组织结构是工业生产中的一种重要手段。

金相显微镜主要由光学系统、照明系统、机械系统、附件装置(包括摄影或其它如显微硬度等装置)组成。

根据金属样品表面上不同组织组成物的光反射特征,用显微镜在可见光范围内对这些组织组成物进行光学研究并定性和定量描述。

它可显示500~0.2m尺度内的金属组织特征。

早在1841年,俄国人(п.п.Ансов)就在放大镜下研究了大马士革钢剑上的花纹。

至1863年,英国人(H.C.Sorby)把岩相学的方法,包括试样的制备、抛光和腐刻等技术移植到钢铁研究,发展了金相技术,后来还拍出一批低放大倍数的和其他组织的金相照片。

索比和他的同代人德国人(A.Martens)及法国人(F. Osmond)的科学实践,为现代光学金相显微术奠定了基础。

至20世纪初,光学金相显微术日臻完善,并普遍推广使用于金属和合金的微观分析,迄今仍然是金属学领域中的一项基本技术。

金相显微镜是用可见光作为照明源的一种显微镜可分为正立式和倒置式两种。

金相组织判定依据

金相组织判定依据

金相组织判定依据金相组织是指金属材料在显微镜下的显微结构。

通过对金属材料的金相组织进行观察和分析,可以了解材料的性质、组织特征以及可能的缺陷和损伤。

金相组织判定依据是指根据金相组织的特征和变化来判断材料的性质和质量。

本文将从不同角度介绍金相组织判定依据,包括晶粒尺寸、晶体形貌、晶界特征、相组成和显微硬度等方面。

1. 晶粒尺寸晶粒尺寸是金相组织中最基本的特征之一。

晶粒尺寸的大小和分布对材料的性能有着重要影响。

通过显微镜观察金相组织中晶粒的尺寸和分布情况,可以判断材料的晶粒长大程度、晶粒形貌和晶粒界面的特征。

一般来说,晶粒尺寸较大且均匀分布的材料具有较好的力学性能和导热性能。

2. 晶体形貌晶体形貌是金相组织中晶粒的外部形态特征。

不同材料的晶体形貌各不相同,常见的晶体形貌有等轴晶、柱状晶、板状晶等。

晶体形貌的不同反映了材料的凝固过程和热处理过程中的晶粒生长方式。

通过金相组织观察,可以判断材料的晶体形貌,进而推测材料的制备工艺和性能。

3. 晶界特征晶界是相邻晶粒之间的界面,是金相组织中的重要组成部分。

晶界的形状、取向和分布对材料的性能和行为有着重要影响。

通过金相显微镜观察晶界的特征,可以判断晶界的密度、取向和形状,从而推测材料的晶界强度、晶界迁移和晶界蠕变等性能。

4. 相组成相是指材料中具有相同化学组成和结构特征的区域。

金相组织中的相分布和相组成对材料的性能和用途有着重要影响。

通过金相组织观察和分析,可以判断材料中的相类型、相含量和相分布情况,进而推测材料的相变行为、相变温度和相变速率等性质。

5. 显微硬度显微硬度是指材料在显微尺度下的硬度性能。

金相组织中不同晶粒和相之间的硬度差异可以通过显微硬度测试来评估。

显微硬度测试可以通过显微镜观察硬度印痕的形貌和尺寸,从而判断材料的显微硬度分布和显微硬度差异。

显微硬度的差异反映了材料的组织均匀性和力学性能。

金相组织判定依据包括晶粒尺寸、晶体形貌、晶界特征、相组成和显微硬度等方面。

金相基础,带您辨识各种体

金相基础,带您辨识各种体

金相基础,带您辨识各种体1.奥氏体碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处.2.铁素体碳与合金元素溶解在a-Fe中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

5.上贝氏体过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。

过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。

若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。

金相判定标准

金相判定标准

1概念和意义
金相指金属或合金的化学成分以及各种成分在合金内部的物理状态和化学状态;
金相试验(检验)的意义:合金的成分、加工工艺直接影响金属材料的内部组织、结构的变化,从而使机件的机械性能发生变化。

2我司常用的金相检验及其它的检验标准
1.原材料检验合格标准如下:
1)显微组织标准评级图进行比较,评级图谱来自GB/T13299-91,合格判定标准:小于等于3级为合格。

常见显微组织如下:
2)晶粒度标准评级图进行比较,评级图谱来自GB 6394-2002,合格判定标准:大于等于5级为合格。

评级图谱如下:
2.焊接金相检验
焊接工艺评定的金相检验合格标准如下:
1)形状缺陷:咬边(焊接接头不良)、焊瘤、熔穿。

2)孔穴(气孔和缩孔);裂纹。

3)没有淬硬的马氏体组织及高合金钢网状析出物和网状组织
参考图片如下:
淬硬的马氏体组织网状析出物和网状组织编制审核批准/日期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贝氏体、马氏体和针状铁素体在显微镜下怎么区分?
金相组织
金相组织,用金相方法观察到的金属及合金的内部组织.可以分为:1.宏观组织.2.显微组织.
金相即金相学,就是研究金属或合金内部结构的科学。

不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。

所谓外部条件就是指温度、加工变形、浇注情况等。

所谓内在因素主要指金属或合金的化学成分。

金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。

1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。

晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处
2.铁素体-碳与合金元素溶解在a-fe中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

3.渗碳体-碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。

过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。

铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。

过冷度越大,所形成的珠光体片间距离越小。

在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。

在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。

在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的
片层称为屈氏体。

5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。

过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。

若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。

转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。

6.下贝氏体-同上,但渗碳体在铁素体针内。

过冷奥氏体在350℃~ms的转变产物。

其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。

与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。

高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。

7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。

过冷奥氏体在贝氏体转变温度区的最上部的转变产物。

刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为m-a组织。

8.无碳化物贝氏体-板条状铁素体单相组成的组织,也称为铁素体贝氏体。

形成温度在贝氏体转变温度区的最上部。

板条铁素体之间为富碳奥氏体,富碳奥氏体在随后的冷却过程中也有类似上面的转变。

无碳化物贝氏体一般出现在低碳钢中,在硅、铝含量高的钢中也容
易形成。

9.马氏体-碳在a-fe中的过饱和固溶体。

板条马氏体:在低、中碳钢及不锈钢中形成,由许多相互平行的板条组成一个板条束,一个奥氏体晶粒可转变成几个板条束(通常3到5个)。

片状马氏体(针状马氏体):常见于高、中碳钢及高ni的fe-ni合金中,针叶中有一条缝线将马氏体分为两半,由于方位不同可呈针状或块状,针与针呈120o角排列,高碳马氏体的针叶晶界清楚,细针状马氏体呈布纹状,称为隐晶马氏体。

10.回火马氏体-马氏体分解得到极细的过渡型碳化物与过饱和(含碳较低)的a-相混
合组织它由马氏体在150~250℃时回火形成。

这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。

11.回火屈氏体-碳化物和a-相的混合物。

它由马氏体在350~500℃时中温回火形成。

其组织特征是铁素体基体内分布着极细小的
粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大。

12.回火索氏体-以铁素体为基体,基体上分布着均匀碳化物颗粒。

它由马氏体在500~650℃时高温回火形成。

其组织特征是由等轴状铁素体和细粒状碳化物构成的复相组织,马氏体片的痕迹已消失,渗碳体的外形已较清晰,但在光镜下也难分辨,
在电镜下可看到的渗碳体颗粒较大。

13.莱氏体-奥氏体与渗碳体的共晶混合物。

呈树枝状的奥氏体分布在渗碳体的基体
上。

14.粒状珠光体-由铁素体和粒状碳化物组成。

它是经球化退火或马氏体在650℃~a1温度范围内回火形成。

其特征是碳化物成颗粒状
分布在铁素体上。

15.魏氏组织-如果奥氏体晶粒比较粗大,冷却速度又比较适宜,先共析相有可能呈针状(片状)形态与片状珠光体混合存在,称为魏氏组织 .亚共析钢中魏氏组织的铁素体的形态有片状、羽毛状或三角形,粗大铁素体呈平行或三角形分布。

它出现在奥氏体晶界,同时向晶内生长。

过共析钢中魏氏组织渗碳体的形态有针状或杆状,它出现在奥氏体晶粒的内部。

针状铁素体(AF)是划在贝氏体种类之间的它的机体是WF,一般出现在超低碳钢,一般其他B类的机体是BF。

一般的超低碳钢的贝氏体是保持了原始奥氏体晶体的形貌,但AF就看不见,但是他和粒B就恐怕借助电镜来区别。

无论是B还是M还是AF,它们随着合金成分形、
成温度的差异形貌和显微硬度有很大的区别,所以我感觉问题还是要具体一点,上面那些都只能说对于一般情况。

马氏体定义1: (有高碳的400系列)。

这些等级不锈钢中铬作为添加唯一主要的合金成分范围从11% 到17% 。

与铁素钢的等级一样。

然而,含碳量从0.10 %被增加到0.65%,剧烈地改变马氏体合金的行为。

高碳材料通过热处理硬化.
定义2: 作为时间温度转化曲线被人熟悉。

如果一小钢片迟缓地被加热转变成奥氏体然后放入盐浴中浸泡保持恒温到一定长的时间接着快速的淬火,通过检查判断奥氏体的转化程度和范围。

用同样的方法测试同样的钢的许多样本,但是改变保持的温度和时间来研究钢的转换行为。

时间的信息被获得- 温度转化曲线在热处理实践是很好用的,特别是针对马
氏体回火和奥氏体回火 .
珠光体(淬透性)定义: 当钢加热到一个给定的温度然后淬火决定钢硬化深度和分布的性能(更加精确地它被定义作为严格冷却条件的一个相反措施在连续冷却必要生产一个马氏体的结构在早先奥氏体化钢中,也就是避免在珠光体和贝氏体的范围变化) 。

更低冷却速度可以避免这些变化, 加强钢的淬硬性。

钢的临界冷却速度主要由钢成分决定。

一般含碳量越高,淬硬性越好,对一个指定计量断面熔合的元素譬如镍, 铬, 锰和钼可以增加硬化的深度.
贝氏体(分级淬火)定义: 热处理通过分段淬火来奥氏体化,以足够快到一个温度避免铁素体,珠光体或贝氏体的构成。

均热必须足够长以避免贝氏体的产生。

分级淬火的优点是与正常的淬火的相比,热压力降低了许多。

这防止裂裂缝和微小扭曲.
中国热加工行业论坛欢迎您:/?fromuid=66。

相关文档
最新文档