关于金相组织的基本知识
金相组织必懂几个定义

金相组织必懂几个定义达编制定义:金相/金相组织晶体单晶体多晶体晶粒晶胞晶面晶界晶向金属键金相及金相组织定义所谓“相”就是合金中具有同一化学成分、同一结构和同一原子聚集状态的均匀部分。
不同相之间有明显的界面分开。
合金的性能一般都是由组成合金的各相本身的结构性能和各相的组合情况决定的。
合金中的相结构大致可分为固溶体和化合物两大基本类型。
所谓“金相”就是金属或合金的相结构。
金相是指金属或合金的内部结构,即金属或合金的化学成分以及各种成分在合金内部的物理状态和化学状态。
金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。
广义的金相组织是指两种或两种以上的物质在微观状态下的混合状态以及相互作用状况。
金属材料的显微组织直接影响到机械零件的性能和使用寿命,金相分析是控制机械零件内在质量的重要手段。
在新材料,新工艺,新产品的研究开发中,在提高金属制品内在质量的科研中,都离不开金相技术分析。
金相检验(或者说金相分析)是应用金相学方法检查金属材料的宏观和显微组织的工作。
金相学:狭义的金属学,也就是研究合金相图,用肉眼观察,在放大镜和显微镜的帮助下,研究金属和合金的组织和相变的学科。
金属学研究成分、组织结构及其变化,以及加工和热处理工艺等对金属、合金性能的影响和它们之间相互关系的学科。
狭义的金相图片是将金属试样进行切割、镶嵌、磨光、抛光、腐蚀处理后,使金属显露出它的晶粒、晶界、缺陷、夹杂等微观晶体结构,并在OM(光学显微镜)下进行显微摄像得到的图片。
它的放大倍数一般最高达到2000倍。
现在的很多金相也通过SEM(扫描电子显微镜)、TEM(透射电子显微镜)来直接获得。
他们主要用来观察材料的位错(能看到清晰的位错线),放大倍数一般为5000到30000倍。
更精密的仪器是STM(扫描隧道显微镜),它的放大倍数可以达到原子级别,也就是纳米级,主要用来计算材料的晶粒度。
(晶粒度即晶粒的平均尺寸。
)晶体晶体即是内部质点在三维空间呈周期性重复排列的固体。
关于金相组织的基本知识

关于金相组织的基本知识首先金相人员进行试样组织分析时候,必须了解铁碳相图Fe-C(Fe-Fe₃C)的意义和特点,以及点、线、区的之间意义;大家可以参考资料铁碳相图的原理和知识基础。
图中ABCD为液相线,AHJECF为固相线;相图中有五个单相区,它们是:ABCD以上--液相区(用L 符号表示);AHNA--固溶体区(用θ表示)NJESGN—奥氏体区(用A 或表示)GPQG—铁素体区(用F 表示)DFKZ—渗碳体区(用Fe3C或Cm表示)相图中有七个两相区,分别是:L+γ,L+δ,L+Fe3C,γ+δ,γ+α,γ+Fe3C,α+Fe3C鉄碳相图中的特性点;A点1538℃w(C)0% 纯铁的熔点;B点1495℃w(C)0.53% 包晶转变时液态合金的成分;C点1148℃w(C)0.43% 共晶点;D点1227℃w(C)6.69% 渗碳体的熔点;E点1148℃w(C) 2.11% 碳在γ-Fe中的最大溶解度;G点912℃w(C)0% α-Fe<=>γ-Fe 转变温度;H点1495℃w(C)0.09% 碳在γ-Fe中的最大溶解度;J点1495 w(C)包晶点;K点727 ℃w(C) 6.69% 渗碳体的成分;M点700 w(C)0%纯铁的磁性转变点;N点1394 ℃w(C)0% γ-Fe<=>δ-Fe的转变温度;P点727℃w(C)0.0218% 碳在α-Fe中的最大溶解度;S点727℃w(C)0.77% 共析点;Q 点600℃w(C)0.0057% 600℃时碳在α-Fe中的溶解度;相图中还有两条磁性转变线:MO线(770℃)为铁素体的磁性转变线;230℃虚线为渗碳体的磁性转变线。
Fe-Fe3C相图上有3条水平线,即HJB-包晶转变线;ECF-共晶转变线;PSK-共析转变线HJB-包晶线:在1495℃恒温下,碳的质量分数为0.53%的液相与碳的质量分数为0.09%的的δ铁素体发生包晶反应,形成碳的质量分数为0.17%的奥氏体,其反应式为:LB+δh<=>γj共晶转变线(ECF线):发生在1148℃的恒温中,由碳的质量分数为4.3%的液相转变为碳的质量分数2.11%的奥氏体和渗碳体[w(C)=6.69%]所组成的混合物,称为莱氏体,用Ld表示;反应式为:Ld<=>γE+Fe3C。
关于金相组织的基本知识

关于金相组织的基本知识首先金相人员进行试样组织分析时候,必须了解铁碳相图Fe-C(Fe-Fe₃C)的意义和特点,以及点、线、区的之间意义;大家可以参考资料铁碳相图的原理和知识基础。
图中ABCD为液相线,AHJECF为固相线;相图中有五个单相区,它们是:ABCD以上--液相区(用L符号表示);AHNA--固溶体区(用θ表示)NJESGN—奥氏体区(用A或表示)GPQG—铁素体区(用F表示)DFKZ—渗碳体区(用Fe3C或Cm表示)相图中有七个两相区,分别是:L+γ,L+δ,L+Fe3C,γ+δ,γ+α,γ+Fe3C,α+Fe3C鉄碳相图中的特性点;A点 1538℃w(C) 0% 纯铁的熔点; B点 1495℃w(C)0.53% 包晶转变时液态合金的成分;C点 1148℃w(C) 0.43% 共晶点; D点 1227℃w(C)6.69% 渗碳体的熔点;E点 1148℃w(C) 2.11% 碳在γ-Fe中的最大溶解度;G点912℃w(C) 0% α-Fe<=>γ-Fe 转变温度;H点 1495℃w(C) 0.09% 碳在γ-Fe中的最大溶解度;J点 1495 w(C)包晶点;K点 727 ℃w(C) 6.69% 渗碳体的成分; M点 700 w(C) 0%纯铁的磁性转变点;N点 1394 ℃w(C) 0% γ-Fe<=>δ-Fe的转变温度; P点 727℃w(C) 0.0218% 碳在α-Fe中的最大溶解度;S点 727℃w(C) 0.77% 共析点; Q点 600℃w(C) 0.0057% 600℃时碳在α-Fe中的溶解度;相图中还有两条磁性转变线:MO线(770℃)为铁素体的磁性转变线; 230℃虚线为渗碳体的磁性转变线。
Fe-Fe3C相图上有3条水平线,即HJB-包晶转变线;ECF-共晶转变线;PSK-共析转变线HJB-包晶线:在1495℃恒温下,碳的质量分数为0.53%的液相与碳的质量分数为0.09%的的δ铁素体发生包晶反应,形成碳的质量分数为0.17%的奥氏体,其反应式为:LB+δh<=>γj共晶转变线(ECF线):发生在1148℃的恒温中,由碳的质量分数为4.3%的液相转变为碳的质量分数2.11%的奥氏体和渗碳体[w(C)=6.69%]所组成的混合物,称为莱氏体,用Ld表示;反应式为:Ld<=>γE+Fe3C。
常见金相组织和性能

常见金相组织和性能1奥氏体A:碳在γ-Fe中的固溶体,在合金钢中是碳和合金元素溶解在γ-Fe中的固溶体。
塑性很高,硬度和屈服点较低,布氏硬度值一般为170-220HB,使钢中质量体积最小的组织。
在1147摄氏度时可溶碳2.11%,在727摄氏度时可溶碳0.77%。
2铁素体F:碳与合金元素溶解在α-Fe中的固溶体。
铁素体的性能接近纯铁,硬度低(约为80-100HB),塑性好。
固溶有合金元素的铁素体能提高钢的强度和硬度。
在727摄氏度时,碳在铁素体中的溶解为0.022%,在常温下含碳量为0.008%。
3渗碳体Fe3C:铁和碳的化合物,又称碳化铁。
常温下铁碳合金中碳大部分以渗碳体存在。
渗碳体在低温下有弱磁性,高于21 7摄氏度时消失。
渗碳体的熔化温度为1600摄氏度,含碳量为6.67%,硬度很高(约为>700HB),脆性很大,塑性近乎于零。
4、珠光体P:铁素体和渗碳体的混合物,是含碳量为0.77%的碳钢共析转变得产物,有铁素体和渗碳体相间排列的片层状组织。
珠光体的片间距取决于奥氏体分解时的过冷度,过冷度越大形成的珠光体片间距越小。
按片间距的大小,又分为珠光体、索氏体和屈氏体。
由于他们没有本质上的区别,故通称为珠光体。
粗片状珠光体,是奥氏体在650-700摄氏度高温分解的产物,硬度约为190-230HB。
索氏体S,是奥氏体在600-650摄氏度高温分解的产物,硬度约为240-320HB。
屈氏体T,是奥氏体在500-600摄氏度高温分解的产物,硬度为330-400HB。
5、马氏体M,是碳在α-Fe中的过饱和固溶物。
具有很高的硬度(约为640-760HB),很脆,冲韧性低,断面收缩率和延伸率几乎等于零。
由于过饱和的碳使晶格发生畸变,因此马氏体的质量体积较奥氏体大,钢中马氏体形成时产生很大相变应力。
含锰、铬、镍、钼的低合金高强度钢经调制处理后的金相组织为回火低碳马氏体,这种马氏体具有较高的强度和较好的韧性。
6、贝氏体B,过冷奥氏体在中温区间(约250-450摄氏度)相变产生的,过饱和的铁素体和渗碳体混合物。
金相的基础知识

金相的基础知识金相即金相学,就是研究金属或合金内部结构的科学。
不仅如此,它还研究当外界条件或内在因素改变时,对金属或合金内部结构的影响。
所谓外部条件就是指温度、加工变形、浇注情况等。
所谓内在因素主要指金属或合金的化学成分。
金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。
奥氏体1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。
晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处2.铁素体-碳与合金元素溶解在a-fe中的固溶体。
亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
3.渗碳体-碳与铁形成的一种化合物。
在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。
过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。
铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。
珠光体4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。
珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。
上贝氏体5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。
过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。
金属金相组织基础知识介绍

金属金相组织基础知识介绍现代材料可以分为四大类——金属、高分子、陶瓷和复合材料。
尽管目前高分子材料飞速发展,但金属材料中的钢铁仍是目前工程技术中使用最广泛、最重要的材料,那么到底是什么因素决定了钢铁材料的霸主地位呢。
钢铁由铁矿石提炼而成,来源丰富,价格低廉。
钢铁又称为铁碳合金,是铁(Fe)与碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)以及其他少量元素(Cr、V等)所组成的合金。
通过调节钢铁中各种元素的含量和热处理工艺(四把火:淬火、退火、回火、正火),可以获得各种各样的金相组织,从而使钢铁具有不同的物理性能。
将钢材取样,经过打磨、抛光,最后用特定的腐蚀剂腐蚀显示后,在金相显微镜下观察到的组织称为钢铁的金相组织。
钢铁材料的秘密便隐藏在这些组织结构中。
在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A 和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:1. 铁素体碳溶于α-Fe晶格间隙中形成的间隙固溶体称为铁素体,属bcc 结构,呈等轴多边形晶粒分布,用符号F表示。
其组织和性能与纯铁相似,具有良好的塑性和韧性,而强度与硬度较低(30-100 HB)。
在合金钢中,则是碳和合金元素在α-Fe中的固溶体。
碳在α-Fe 中的溶解量很低,在AC1温度,碳的最大溶解量为0.0218%,但随温度下降的溶解度则降至0.0084%,因而在缓冷条件下铁素体晶界处会出现三次渗碳体。
随钢铁中碳含量增加,铁素体量相对减少,珠光体量增加,此时铁素体则是网络状和月牙状。
2. 奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、 =40~50%。
金相基础知识培训

下贝氏体
4、奥氏体
在碳钢中,奥氏体是碳溶于Y-Fe中的固溶体。在合 金钢中,奥氏体则是碳和合金元素固溶于γ-Fe中的 固溶体。奥氏体具有面心立方结构。 从Fe-Fe3C平衡状态图可知,在碳素结构钢或一般 低合金结构钢中,奥氏体是一个高温相,在高温时 才稳定存在。在室温时奥氏体将转变成其他组织。 结构钢经淬火后会存在残留奥氏体,它分布在马氏 体针间隙中,或分布在下贝氏体针间隙中,不易受 侵蚀,在光学显微镜下呈白色。
奥氏体
5、马氏体
在碳钢中,马氏体是碳溶于α-Fe中的过饱和固溶体;在合金 钢中,马氏体是碳和合金元素溶于α-Fe中的过饱和固体。 当钢的奥氏体以极快速度冷却下来时,过冷奥氏体以极快的 速度转变成马氏体。这时铁和碳原子都来不及扩散,只是由 γ-Fe的面心立方晶格转变为α-Fe的体心正方,即由碳在γ-Fe 中的固溶体转变为碳在α-Fe中的固溶体,故马氏体转变是无 扩散的。由于碳在α-Fe中的溶解度极小,因此转变的产物是 碳在α-Fe中的过饱和固溶体,这种过饱和的固溶体称为马氏 体。根据马氏体的金相特征,可将马氏体分为低碳的板条状 马氏体和高碳的针状马氏体。
针状马氏体
片状马氏体
(3)回火马氏体
回火马氏体是淬火钢经低温回火后的产物。
回火马氏体的基本特征是:仍具有马氏体针状 特征,但经侵蚀后显示的颜色比淬火马氏体 要深。在光学显微镜下的形貌与下贝氏体相 似。马氏体内析出为ε-碳化物,呈无规则分 布。
回火马氏体
6、回火屈氏体
回火屈氏体是淬火钢经中温回火后的产物。
3、密排六方晶体结构
(二)、合金的晶体结构
合金是由两种或两种以上的金属或非金属经熔炼、烧结或其 他方法组合而成并具有金属特性的物质。碳钢就是由碳和铁 组成的合金。
钢中典型金相组织

钢中典型金相组织钢是一种重要的金属材料,具有优异的机械性能和耐腐蚀性能。
钢的组织和性能之间密切相关,钢中的金相组织是其性能形成的重要因素之一。
下面将详细介绍钢中典型的金相组织。
1. 贝氏体组织贝氏体组织是钢中典型的金相组织之一。
该组织由相似于鹿角的条状组织构成,因其形状类似于法国冶金学家贝尔纳德的鹿角而得名。
贝氏体组织的形成与钢的淬火工艺密切相关,通过快速冷却钢材可以使奥氏体转变为贝氏体。
贝氏体组织具有高强度、高硬度和较好的耐磨性,因此在制造强度要求高、耐磨性要求高的零件时常采用贝氏体钢。
马氏体组织是钢中另一个典型的金相组织。
与贝氏体不同,马氏体组织属于无定形组织,其结构不规则、复杂。
同时,马氏体组织具有较高的强度和硬度,且具有较好的抗拉强度和耐磨性,因此广泛应用于地质勘探、采矿、石油化工等领域。
在淬火工艺中,将钢材加热至温度较高后迅速冷却可制得马氏体组织。
珠光体组织是钢中一种较为典型的变形组织,属于半钢中生组织。
该组织由类似“珠子”形状的球体团进行构成,因其形态类似于珠子而得名。
珠光体组织是一种中等强度的钢结构,具有优秀的成形性和可加工性,在制造材料强度、变形性好的零件时常采用珠光体钢。
4. 混合组织混合组织是一种钢中常见的金相组织,其由两种或多种不同的金相组织混合而成。
例如,当沿晶腐蚀与导致钢中存在晶界和粗晶的杂质混合存在时,就会形成混合组织。
混合组织具有钢中两种或多种组织的优点,可以在不同的应用场合中具有更为广泛的适用性。
总之,钢中的金相组织是其性能形成的重要因素。
贝氏体组织、马氏体组织、珠光体组织和混合组织等是钢中典型的金相组织,采用不同的工艺可以得到不同种类的金相组织,从而满足不同的应用需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于金相组织的基本知识首先金相人员进行试样组织分析时候,必须了解铁碳相图Fe-C(Fe-Fe₃C)的意义和特点,以及点、线、区的之间意义;大家可以参考资料铁碳相图的原理和知识基础。
图中ABCD为液相线,AHJECF为固相线;相图中有五个单相区,它们是:ABCD以上--液相区(用L符号表示);AHNA--固溶体区(用θ表示)NJESGN—奥氏体区(用A或表示)GPQG—铁素体区(用F表示)DFKZ—渗碳体区(用Fe3C或Cm表示)相图中有七个两相区,分别是:L+γ,L+δ,L+Fe3C,γ+δ,γ+α,γ+Fe3C,α+Fe3C鉄碳相图中的特性点;A点 1538℃w(C) 0% 纯铁的熔点; B点 1495℃w(C)0.53% 包晶转变时液态合金的成分;C点 1148℃w(C) 0.43% 共晶点; D点 1227℃w(C)6.69% 渗碳体的熔点;E点 1148℃w(C) 2.11% 碳在γ-Fe中的最大溶解度;G点 912℃w(C) 0% α-Fe<=>γ-Fe 转变温度;H点 1495℃w(C) 0.09% 碳在γ-Fe中的最大溶解度;J点 1495 w(C)包晶点;K点 727 ℃w(C) 6.69% 渗碳体的成分; M点 700 w(C) 0%纯铁的磁性转变点;N点 1394 ℃w(C) 0% γ-Fe<=>δ-Fe的转变温度; P点 727℃w(C) 0.0218% 碳在α-Fe中的最大溶解度;S点 727℃w(C) 0.77% 共析点; Q点 600℃w(C) 0.0057% 600℃时碳在α-Fe中的溶解度;相图中还有两条磁性转变线:MO线(770℃)为铁素体的磁性转变线; 230℃虚线为渗碳体的磁性转变线。
Fe-Fe3C相图上有3条水平线,即HJB-包晶转变线;ECF-共晶转变线;PSK-共析转变线HJB-包晶线:在1495℃恒温下,碳的质量分数为0.53%的液相与碳的质量分数为0.09%的的δ铁素体发生包晶反应,形成碳的质量分数为0.17%的奥氏体,其反应式为:LB+δh<=>γj共晶转变线(ECF线):发生在1148℃的恒温中,由碳的质量分数为4.3%的液相转变为碳的质量分数2.11%的奥氏体和渗碳体[w(C)=6.69%]所组成的混合物,称为莱氏体,用Ld表示;反应式为:Ld<=>γE+Fe3C。
在莱氏体中,渗碳体是连续分布的相,而奥氏体则呈颗粒状分布的在其上,由于渗碳体很脆,所以莱氏体的塑性很差的,无实用价值。
共析转变线(PSK):发生在727℃恒温下,是由碳的质量分数为0.77%的奥氏体转变成碳的质量分数为0.0218%的铁素体和渗碳体所组成的混合物,称为珠光体,用P表示。
反应式为:γs<=>αp+Fe3C。
珠光体组织是片层状的,其中铁素体体积大约是渗碳体的8倍,所以在金相显微镜下观察,较厚的是铁素体,较薄的是渗碳体。
在铁碳相图中有三条重要的固态转变线;1,GS线:奥氏体中开始析出铁素体或铁素体全部溶入奥氏体的转变线,常称此温度为A3温度。
2,ES线:碳在奥氏体中的溶解度线,常称为Acm温度。
以低于此温度时候,奥氏体中仍将析出Fe3C,称为二次渗碳体,记作Fe3CⅡ,以区别从液体中经CD 线直接析出的一次渗碳体。
3,PQ线:碳在铁素体中的溶解度线,在727℃时,碳的质量分数在铁素体中的最大溶解度仅为0.0218%,随着温度的降低,铁素体中的溶碳量是逐渐减少的,在300℃下,溶碳量少于0.001%。
因此铁素体从727℃冷却下来,也会析出三次渗碳体。
记作Fe3CⅢ。
铁碳合金的平衡结晶过程以及组织,通常按有无共晶转变来区分碳钢和铸铁,含碳量低于2.11%的为碳钢,大于2.11%的为铸铁;含碳量质量分数小于0.0218%的为工业纯铁;按Fe-Fe₃C系结晶的为铸铁;碳以Fe₃C形式存在,断口白亮色,称为白口铸铁。
根据组织特征,铁碳合金按含碳量分为七种类型:工业纯铁C<0.0218%;其合金溶液向固体转变时候,按匀晶转变结晶出δ固溶体,δ固溶体继续冷却开始发生固溶体的同素异构转变δ→γ;奥氏体的晶核通常优先在δ相界上形成并长大,直到结束合金全部成单相奥氏体;如果继续冷却又发生同素异构转变γ→α则全部变成铁素体(析出)。
继续冷却时碳在铁素体中溶解度达到饱和。
最后将从铁素体中析出三次渗碳体。
共析钢C=0.77%;合金按匀晶转变结晶出奥氏体,逐步凝固完成后全部转变为奥氏体;冷却到727℃时,在恒温下发生共析转变γ0.77→α0.0218+Fe-Fe₃C,转变产物为珠光体;珠光体中渗碳体称为共析渗碳体,随后冷却过程中,从珠光体中的铁素体相中析出三次渗碳体,在缓冷条件下三次渗碳体从铁素体与渗碳体的相界面上形成,与共析渗碳体连接一起,在显微镜下难以分辨,数量很少对珠光体的组织和性能没有明显影响。
亚共析钢C=0.021~0.77%;合金碳的质量分数为0.4%在液体向固体转变按匀晶析出δ固溶体;冷却固体时发生包晶转变L B+δH→γJ形成奥氏体。
由于钢中碳的质量分数大于0.17%,所以包晶转变终了后,仍有液相存在,这些剩余液相转变结晶成奥氏体,降温到固体时合金全部有碳质量分数为0.4%的奥氏体所组成;单相奥氏体冷却过程在晶界上开始析出铁素体,随着温度下降铁素体含量增加,其含碳量沿GP线变化,而剩余奥氏体的含碳量则沿GS线变化。
当钢在室温下的组织有先共析铁素体和珠光体所组成;过共析钢C=0.77~2.11%;碳的质量分数为1.2%,按匀晶转变为单相奥氏体后,冷却到固体时,开始从奥氏体中析出二次渗碳体,形成渗碳体网,这种先共析的渗碳体多沿奥氏体晶界呈网状分布,数量较多时,还在晶内呈针状分布。
当温度到727℃时,奥氏体的含碳量降为0.77%,因而在恒温下发生共析转变。
最后得到的组织是网状二次渗碳体和珠光体。
共晶白口铁C=4.30%;亚共晶白口铁C=2.11~4.30%;过共晶白口铁C=4.30~6.69%1、碳钢和低合金钢基本组织碳素钢是指碳外,仅含有少量的Mn、Si、S、P、O、N等元素,由于矿石及冶炼等原因进入钢内,这些元素对钢的性能有一定影响。
一般以含碳量划分,小于等于0.25%称低碳钢;0.25~0.6%的称中碳钢;大于0.6%的称高碳钢。
低合金钢是在碳素钢基础上,加入一些合金元素来弥补碳钢性能的不足,目的是提高钢的强度、韧性、塑性、耐磨性等各方面的性能要求。
它们大部分属于亚共析钢,随着处理工艺不同,会出现多种不同的组织,如铁素体、渗碳体、珠光体、魏氏体组织、奥氏体、马氏体、回火马氏体、回火屈氏体、回火索氏体、贝氏体等。
1)铁素体,用F表示;(Ferrite)命名自拉丁文的铁(Ferrum);属体心立方结构,在碳钢中它是碳固溶于α-Fe中的固溶体,在合金钢中则是碳和合金元素固溶于α-Fe中的固溶体。
在光学显微镜下,其呈白亮色多边形,块状、月牙状和网络状等,强度和硬度低,塑性和韧性好。
一般硬度在100HB左右。
铁素体在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围。
此图铁素体形态2)奥氏体,用A表示;在碳钢中,其是碳溶与γ-Fe中的间隙固溶体。
合金钢中奥氏体则是碳和合金元素固溶于γ-Fe中的固溶体;具有面心立方结构。
晶界较为平直,而且常有孪晶存在。
奥氏体是个高温相,在高温时才稳定存在;在室温是奥氏体将转变成其它组织;结构钢经淬火后会存在残余奥氏体,分布在马氏体针间隙中,或分布在下贝氏体针间隙中,不易侵蚀,在光学显微镜下呈白色。
在锻造、轧制时常要加热到奥氏体区,以提高塑性,易于加工变形;对高锰钢和奥氏体不锈钢而言,由于加入较多扩大奥氏体区元素导致其常温凝固组织即单相奥氏体。
其硬度较低,塑性、韧碳素钢是指碳外,仅含有少量的Mn、Si、S、P、O、N等元素奥氏体无磁性,在生活中分辨奥氏体不锈钢(如18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。
这个是奥氏体组织形貌3)渗碳体,用Fe3C表示;其是一种化合物,在碳钢中,渗碳体由铁和碳化合而成,分子式为Fe3C碳的质量分数为6.69%;在合金钢中,形成合金渗碳体,结构式为(Fe,M)3C;其性硬而脆,硬度在800HV以上;用体积分数(4+96)硝酸酒精侵蚀能清晰显示渗碳体组织,形态呈白色的片状或针状、粒状、网络状、半网络状等;一次渗碳体为块状,角不尖锐;共晶渗碳体呈骨骼状;二次渗碳体呈网状;共析渗碳体呈片状;低碳钢缓慢冷却到Ar1以下时,由铁素体中析出三次渗碳体,可沿晶析出或在铁素体内呈点粒状析出。
渗碳体形貌网状渗碳体和珠光体形貌4)珠光体,用P表示;是铁素体和渗碳体的机械混合物;分布有片状和球状;珠光体的粗细主要受珠光体的形成温度及冷却速度影响,奥氏体的过冷度越大,形成的片状珠光体就越细,硬度和强度也越高;4%硝酸酒精腐蚀后铁素体和渗碳体的交界处受到电化学作用产生凹洼,故在直射光照射下变成黑色线条,呈现层状;球状珠光体是钢在球化退火处理后得到组织。
其渗碳体呈球粒状,分布在铁素体的基体上。
颗粒大小取决于球化退火工艺,特别是冷却速度。
这是光学显微镜片状珠光体形貌电镜下珠光体形貌珠光体的片距较大,在一般光学显微镜可以分辨片层状特征;片间距约为150~450nm5)贝氏体,用B表示;其是钢的奥氏体在珠光体转变区以下MS点(马氏体转变开始温度)以上的中温区转变产物;基本上也是铁素体和渗碳体两相组织的机械混合物。
大致分为羽毛状,针状和粒状。
上贝是过冷奥氏体在中温(约350~550摄氏度)的相变产物,特征是条状铁素体平行排列呈羽毛状,在铁素体调间存在短杆状渗碳体;下贝是过冷奥氏体在350度~Ms转变产物。
特征是呈针片状,有一定取向,比淬火马氏体容易腐蚀,类似回火马氏体,在下贝针内有渗碳体存在,于针的长轴呈55`60度。
粒贝特征是外形是相当于多边形的铁素体,在其内存在不规则的小岛状组织;无碳化物贝氏体,板条状铁素体单相组成的组织,也称铁素体贝氏体,形成温度在贝氏体转变温度区的最上部。
从图像角度看,金相组织中贝氏体最漂亮,因为贝氏体组织有一种水墨丹青的韵味羽毛状上贝上贝形貌6)马氏体,用M表示;(Martensite),其是碳溶于αFe中的过饱和固溶体。
是过冷奥氏体作快速冷却,在Ms(马氏体转变开始)与Mf(马氏体转变终止)点之间以切变方式发生转变的产物;其分为板条马氏体和针状马氏体。
马氏体组织的硬度是钢组织中最高的,马氏体强化是钢的主要强化手段,淬火后的组织就是以马氏体为主。
板条马氏体定向排列,组成马氏体束,在束之间存在一定的位向,一颗原始的奥氏体晶粒内可以形成几个不同取向的马氏体束。