光的衍射习题(附答案)

合集下载

光的衍射习题(附答案)1

光的衍射习题(附答案)1

光的衍射(附答案)一.填空题1.波长λ=500nm(1nm=109m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d=12mm,则凸透镜的焦距f为3m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1≈589nm)中央明纹宽度为4.0mm,则λ2≈442nm(1nm=109m)的蓝紫色光的中央明纹宽度为3.0mm.3.8mm,则4.时,衍射光谱中第±4,±8,…5.6.f7.8.9.λ210.X11.λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1)这两种波长之间有何关系?(2)在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合?解:(1)由单缝衍射暗纹公式得a sinθ1=1λ1a sinθ2=2λ2=θ2,sinθ1=sinθ2由题意可知θ1代入上式可得λ1=2λ2(2)a sinθ1=k1λ1=2k1λ2(k1=1,2,…)sinθ1=2k1λ2/aa sinθ2=k2λ2(k2=1,2,…)sinθ2=2k2λ2/a=2k1,则θ1=θ2,即λ1的任一k1级极小都有λ2的2k1级极小与之重合.若k212.在单缝的夫琅禾费衍射中,缝宽a=0.100mm,平行光垂直如射在单缝上,波长λ=500nm,会聚透镜的焦距f=1.00m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1=λ13.9m).已(1)(2)所以x1=fλ1/ax2=fλ2/a则两个第一级明纹之间距为Δx=x2?x1=fΔλ/a=0.27cm1(2)由光栅衍射主极大的公式d sinφ1=kλ1=1λ1d sinφ2=kλ2=1λ2且有sinφ=tanφ=x/f=x2?x1=fΔλ/a=1.8cm所以Δx114.一双缝缝距d=0.40mm,两缝宽度都是a=0.080mm,用波长为λ=480nm(1nm=109m)的平行光垂直照射双缝,在双缝后放一焦距f=2.0m的透镜.求:(1)在透镜焦平面的屏上,双缝干涉条纹的间距l;(2)在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹15.(1)(2)λ'=510.3nm(2)a+b=3λ/sinφ=2041.4nmφ'=arcsin(2×400/2041.4)nm(λ=400nm)2φ''=arcsin(2×760/2041.4)nm(λ=760nm)2''?φ2'=25°白光第二级光谱的张角Δφ=φ216.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1=440nm,λ2=660nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ=60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ=kλ11d sinφ2=kλ2===当两谱线重合时有φ1=φ2即====两谱线第二次重合即是=,k1=6,k2=4由光栅公式可知d sin60°=6λ1∴d==3.05×103mm17.将一束波长λ=589nm(1nm=109m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射(1)(2)18.30°,且第三级是缺级.(1)光栅常数(a+b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3)在选定了上述(a+b)和a之后,求在衍射角–<φ<范围内可能观察到的全部主极大的级次.解:(1)由光栅衍射的主极大公式得a+b==2.4×104cm(2)若第三级不缺级,则由光栅公式得(a+b)sinφ'=3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'=λa==8.0×103cm(3)(a+b)sinφ=kλ(主极大)a sinφ=k'λ(单缝衍射极小)(k'=1,2,3,…)因此k=3,6,9,…缺级;又∵k max==4,∴实际呈现出的是k=0,±1,±2级明纹(k=±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ=480nm(1nm=109m),试问:(1)人眼最小分辨角是多大?(2)在教室的黑板上,画的等号两横线相距2mm,坐在距黑板10m处的同学能否看清?(要有计算过程)20.θ的两条谱λ2当k'=2时,a=d=×2.4μm=1.6μm21.某单色X射线以30°角掠射晶体表面时,在反射方向出现第一级极大;而另一单色X射线,波长为0.097nm,它在与晶体表面掠射角为60°时,出现第三级极大.试求第一束X射线的波长.解:设晶面间距为d,第一束X射线波长为λ1,掠射角θ1=30°,级次k1=1;另一束射线波长为λ2=0.097nm,掠射角θ2=60°,级次k2=3.根据布拉格公式:第一束2d sinθ1=k1λ1第二束2d sinθ2=k2λ2两式相除得λ==0.168nm.1。

光的衍射习题答案

光的衍射习题答案

思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住 答:只有当障碍物的大小比波长大得不多时,衍射现象才显着。

对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显着。

2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样为什么答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。

由此可知,这时人眼看到的是夫琅和费衍射图样。

3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。

答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。

离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。

4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。

(B)光强之和。

(C)振动振幅之和的平方。

(D)振动的相干叠加。

答:衍射光强是所有子波相干叠加的结果。

选(D)。

5波长为?的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30o,则缝宽的大小( )(A) a =?。

(B) a =?。

(C)a =2?。

(D)a =3?。

答:[ C ]6波长为?的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30?,则缝宽a 等于( )(A) a =? 。

(B) a =2?。

(C) a =23?。

(D) a =3?。

答:[ D ]7在单缝夫琅和费衍射实验中波长为?的单色光垂直入射到单缝上,对应于衍射角为30?的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) ? 。

(B) ?。

(C) 2?。

(D) 3?。

答:[ D ]8在单缝夫琅和费衍射实验中,波长为?的单色光垂直入射到宽度a=4?的单缝上,对应于衍射角为30?的方向,单缝处波面可分成的半波带数目为( ) (A)2个。

光的衍射习题答案

光的衍射习题答案

思 考 题1 为什么隔着山可以听到中波段的电台广播,而电视广播却很容易被高大建筑物挡住 答:只有当障碍物的大小比波长大得不多时,衍射现象才显着。

对一座山来说,电视广播的波长很短,衍射很小;而中波段的电台广播波长较长,衍射现象比较显着。

2 用眼睛通过一单狭缝直接观察远处与缝平行的光源,看到的衍射图样是菲涅耳衍射图样还是夫琅和费衍射图样为什么答:远处光源发出的光可认为是平行光,视网膜在眼睛(相当于凸透镜)的焦平面上,所以观察到的是平行光的衍射。

由此可知,这时人眼看到的是夫琅和费衍射图样。

3 在单缝衍射图样中,离中央明纹越远的明纹亮度越小,试用半波带法说明。

答:在单缝衍射图样中,未相消的一个半波带决定着明纹的亮度。

离中央明纹越远处,衍射角越大,单缝处波阵面分的半波带越多,未相消的一个半波带的面积越小,故离中央明纹越远的明纹亮度越小。

4 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( )(A)振动振幅之和。

(B)光强之和。

(C)振动振幅之和的平方。

(D)振动的相干叠加。

答:衍射光强是所有子波相干叠加的结果。

选(D)。

5波长为的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为30o ,则缝宽的大小( )(A) a =。

(B) a =。

(C)a =2。

(D)a =3。

答:[ C ]6波长为的单色光垂直入射到单缝上,若第一级明纹对应的衍射角为30,则缝宽a 等于( )(A) a = 。

(B) a =2。

(C) a =23。

(D) a =3。

答:[ D ]7在单缝夫琅和费衍射实验中波长为的单色光垂直入射到单缝上,对应于衍射角为30的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A) 。

(B) 。

(C) 2。

(D) 3。

答:[ D ]8在单缝夫琅和费衍射实验中,波长为的单色光垂直入射到宽度a=4的单缝上,对应于衍射角为30的方向,单缝处波面可分成的半波带数目为( ) (A)2个。

光 的 衍 射

光 的 衍 射

第二章光的衍射试题与解答(3)一、选择题1.根据惠更斯—菲涅耳原理,若已知在某时刻的波阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波各自传到P点的[ ](A) 振动振幅之和(B) 光强之和(C) 振动振幅之和的平方(D) 振动的相干叠加2.在如图所示的单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小,若使单缝宽度a变为原来的3/2,同时使入射的单色光的波长λ变为原来的3/4,则屏幕上单缝衍射条纹中央明纹的宽度△X变为原来的[ ](A) 3/4 倍(B) 2/3 倍(C) 9/8 倍(D) 1/2倍3.当单色平行光垂直入射时,观察单缝的夫琅和费衍射图样。

设I0表示中央极大(主极大)的光强,θ1表示中央亮条纹的半角宽度。

若只是把单缝的宽度增大为原来的3倍,其他条件不变,则[ ](A) I0增大为原来的9倍,sinθ1 减小为原来的1/3(B) I0增大为原来的3倍,sinθ1 减小为原来的1/3(C) I0增大为原来的3倍,sinθ1 减小为原来的3(D) I0不变,sinθ1 减小为原来的1/34.波长为λ的单色光垂直入射到光栅常数为d、总缝数为N的衍射光栅上。

则第k级谱线的半角宽度△θ[ ](A) 与该谱线的衍射角θ无关(B) 与光栅总缝数N成反比(C) 与光栅常数d成正比(D) 与入射光波长λ成反比5.一平面衍射的光栅具有N条光缝,则中央零级干涉明条纹和一侧第一级干涉明纹之间将出现的暗条纹为[ ](A) N(B) N2(C) N –1(D) N - 2二、填空题1.一物体作余弦振动,振扶为15×10-2 m,圆频率为6 π s-1,初相位为0.5π,则振动方程为x =__________.2.在单缝夫琅和费衍射示意图中,所画出的各条正入射光线间距相等,那么光线1与3在幕上P点相遇时的位相差为________,P点应为_________点3.波长为λ=4800Å的平行光垂直照射到宽度为的a=0.40 mm单缝上,单缝后透镜的焦距为f = 60 cm,当单缝两边缘点A、B射向P点的两条光线在点的位相差为π时,点离透镜焦点O的距离等于_________。

《大学物理学》光的衍射练习题(马解答)

《大学物理学》光的衍射练习题(马解答)

《大学物理学》光的衍射自主学习材料(解答)一、选择题:11-4.在单缝夫琅和费衍射中,波长为λ的单色光垂直入射在宽度为3λ的单缝上,对应于衍射角30°方向,单缝处波阵面可分成的半波带数目为( B )(A ) 2个; (B ) 3个; (C ) 4个; (D ) 6个。

【提示:根据公式sin /2b k θλ=,可判断k =3】2.在单缝衍射实验中,缝宽b =0.2mm ,透镜焦距f =0.4m ,入射光波长λ=500nm ,则在距离中央亮纹中心位置2mm 处是亮纹还是暗纹?从这个位置看上去可以把波阵面分为几个半波带?( D )(A) 亮纹,3个半波带; (B) 亮纹,4个半波带;(C) 暗纹,3个半波带; (D) 暗纹,4个半波带。

【提示:根据公式sin /2b k θλ=⇒2x b k f λ=,可判断k =4,偶数,暗纹】 3.在夫琅和费单缝衍射实验中,对于给定的入射单色光,当缝宽度变宽,同时使单缝沿垂直于透镜光轴稍微向上平移时,则屏上中央亮纹将: ( C )(A)变窄,同时向上移动; (B) 变宽,不移动;(C)变窄,不移动; (D) 变宽,同时向上移动。

【缝宽度变宽,衍射效果减弱;单缝位置上下偏移,衍射图样不变化】4.在夫琅和费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹 ( B )(A) 对应的衍射角变小; (B) 对应的衍射角变大;(C) 对应的衍射角也不变; (D) 光强也不变。

【见上题提示】5.在如图所示的夫琅和费单缝衍射实验装置中,S 为单缝,L 为凸透镜,C 为放在的焦平面处的屏。

当把单缝垂直于凸透镜光轴稍微向上平移时,屏幕上的衍射图样 ( C )(A) 向上平移; (B) 向下平移;(C) 不动;(D) 条纹间距变大。

【单缝位置上下偏移,衍射图样不变化】 6.波长为500nm 的单色光垂直入射到宽为0.25 mm 的单缝上,单缝后面放置一凸透镜,凸透镜的焦平面上放置一光屏,用以观测衍射条纹,今测得中央明条纹一侧第三个暗条纹与另一侧第三个暗条纹之间的距离为12mm ,则凸透镜的焦距f 为: ( B )(A) 2m ; (B) 1m ; (C) 0.5m ; (D) 0.2m 。

(完整版)18光的衍射习题解答汇总

(完整版)18光的衍射习题解答汇总

第十八章 光的衍射一 选择题1.平行单色光垂直入射到单缝上,观察夫朗和费衍射。

若屏上P 点处为第2级暗纹,则单缝处波面相应地可划分为几个半波带 ( )A. 一个B. 两个C. 三个D. 四个解:暗纹条件:....3,2,1),22(sin =±=k ka λθ,k =2,所以2k =4。

故本题答案为D 。

2.波长为λ的单色光垂直入射到狭缝上,若第1级暗纹的位置对应的衍射角为θ =±π/6,则缝宽的大小为 ( )A. λ/2B. λC. 2λD. 3λ解:....3,2,1),22(sin =±=k k a λθ6,1πθ±==k ,所以λλπ2,22)6sin(=∴⨯±=±a a 。

故本题答案为C 。

3.一宇航员在160km 高空,恰好能分辨地面上两个发射波长为550nm 的点光源,假定宇航员的瞳孔直径为5.0mm ,如此两点光源的间距为 ( )A. 21.5mB. 10.5mC. 31.0mD. 42.0m解:m 5.2122.1,22.11==∆∴∆==h Dx h x D λλθ。

本题答案为A 。

4.波长λ=550nm 的单色光垂直入射于光栅常数d =2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 ( )A. 2B. 3C. 4D. 5解:k d k k d 。

,64.3sin sin ===λθλθ的可能最大值对应1sin =θ,所以[]3=k 。

故本题答案为B 。

5.一束单色光垂直入射在平面光栅上,衍射光谱中共出现了5条明纹。

若已知此光栅缝宽度与不透明宽度相等,那么在中央明纹一侧的第二条明纹是第几级?( )A. 1级B. 2级C. 3级D. 4级解:,2,sin =+±=ab a k d λθ因此...6,4,2±±±等级缺级。

衍射光谱中共出现了5条明纹,所以0,1,3±±=k ,那么在中央明纹一侧的第二条明纹是第3级。

光的衍射习题及答案

光的衍射习题及答案

光的衍射习题及答案第二章 光的衍射1. 单色平面光照射到一小圆孔上,将其波面分成半波带。

求第к个带的半径。

若极点到观察点的距离r 0为1m ,单色光波长为450nm ,求此时第一半波带的半径。

解:2022rrk k+=ρ 而20λkr r k +=20λk r r k =-20202λρk r r k =-+将上式两边平方,得422020202λλρk kr r r k++=+略去22λk 项,则 λρ0kr k=将 cm104500cm,100,1-80⨯===λr k 带入上式,得cm 067.0=ρ2. 平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小。

问:(1)小孔半径满足什么条件时,才能使得此小孔右侧轴线上距小空孔中心4m 的P 点的光强分别得到极大值和极小值;(2)P 点最亮时,小孔直径应为多大?设此时的波长为500nm 。

解:(1)根据上题结论 ρρ0kr k=将cm105cm,400-50⨯==λr 代入,得cm 1414.01054005k k k =⨯⨯=-ρ 当k 为奇数时,P 点为极大值; k 为偶数时,P 点为极小值。

(2)P 点最亮时,小孔的直径为 cm2828.02201==λρr3.波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强度I 0之比。

解:根据题意 m 1=R 500nmmm 1R mm 5.0R m 121hk hk 0====λr有光阑时,由公式⎪⎪⎭⎫ ⎝⎛+=+=R r R R r r R R k h h 11)(02002λλ得11000110001105005.011620211=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ4100011000110500111620222=⎪⎭⎫ ⎝⎛+⨯=⎪⎪⎭⎫ ⎝⎛+=-R r R k hk λ 按圆孔里面套一个小圆屏幕()13221312121212121a a a a a a a a p =+=⎥⎦⎤⎢⎣⎡+-+=没有光阑时210a a =所以4.波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏。

光的衍射习题、答案与解法(2010.11.1)

光的衍射习题、答案与解法(2010.11.1)

光衍射习题、答案与解法一、填空题1.根据惠更斯—菲涅耳原理,若已知光在某时间的波阵面为S ,则S 的前方某点P 的光强取决于波阵面S 上所有面积元发出的子波各自传到P 点( D )(A )振动振幅之和 (B )光强之和 (C )振动振幅之和的平方 (D )振动的相干叠加 2.在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变大时,除中央明纹的中心位置不变外,各级衍射条纹 ( A ) (A )对应的衍射角变小 (B )对应的衍射角变大(C )对应的衍射角也不变 (D )光强也不变 参考答案:λϕk a =sin ⎪⎭⎫⎝⎛=-a k λϕ1sin 3.在单缝夫琅禾费单缝衍射实验中,波长λ为的单色光垂直入射到单缝上,对应于衍射角为030的方向上,若单缝处波面可分为6个半波带,则缝宽度a 等于( B )(A )λ (B )λ6 (C )λ2 (D )λ4 参考答案:2sin λϕka = λλλϕλ6212630sin 26sin 20=⨯=⨯==ka4.一束波长为λ的平行单色光垂直入射到一单色AB 上,装置如图1所示,在屏幕P 上形成衍射图样,如果Q 是中央PQCλfALB亮纹一侧第二个暗纹的中心所在位置,则BC 得长度为 ( D )(A )2/λ (B )λ (C )2/3λ (D )λ2 参考答案:λϕk a =sin λλϕ2sin ==k a5. 波长为nm 600=λ)m 10nm 1(9-=的单色光垂直照射到宽mm 3.0=a 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一个屏幕,用以观测衍射条纹,今测得屏幕中央明条纹一侧第一个暗条纹和另一侧第一个暗条纹之间的距离为mm 4=∆x ,则凸透镜的焦距f 为 ( C )(A )m 2 (B ) m 1.0 (C )m 1 (D )m 5.0参考答案:⎪⎪⎩⎪⎪⎨⎧==-=∆=-12k x x x x k a f x k k k k λ ()m 1106002103.01042933=⨯⨯⨯⨯⨯=∆=---a x f λ6.一束平行单色光垂直入射在光栅上,当光栅常数()b a +,为下列哪种情况时(a 代表每条缝的宽度),k=3、6、9等级次的明纹均不出现 ( B )(A )a b a 2=+ (B )a b a 3=+(C )a b a 4=+(D )a b a 6=+参考答案:()⎪⎪⎪⎩⎪⎪⎪⎨⎧==='==+963sin sin k k k k a k b a λϕλϕ ===='=+392613k k a b a 7.一束白光垂直照射在一光栅上,在形成的同一级光栅谱中,离中央明纹最近的是 ( A )(A )紫光 (B )绿光 (C )黄光 (D )红光参考答案:()λϕk b a =+sin⎪⎭⎫ ⎝⎛+=-b a k λϕ1sin 红λλ〈3 8.若用衍射光栅准确测定一单色光可见光的波长,在下列各种光栅中选用那一种最为合适?( D )(A )mm 5.0(B ) mm 1(C )mm 01.0(D )mm 100.13-⨯参考答案:()⎪⎪⎩⎪⎪⎨⎧===+21sin πϕλϕk k b a()()mm 107nm 7001107001sin 49--⨯==⨯⨯==+ϕλk b a9.波长为λ的单色光垂直入射于光栅常数为d 、缝宽为a 、总缝数为N 的光栅上,取⋅⋅⋅⋅±±=2,1,0k ,则决定出现明纹的衍射角θ的公式可写成( C )(A )λθk Na =sin (B )λθk a =sin (C )λθk d =sin (D )λθk Nd =sin 参考答案:()λϕk b a =+sin λϕk d =sin10.提高光仪器分辨率本领的方法是:( B ) ( A )增大透光孔径,增大入射光的波长 ( B )增大透光孔径,减小入射光的波长 ( C ) 减小透光孔径,增大入射光的波长 ( D ) 减小透光孔径,减小入射光的波长 参考答案:λ22.1D R = Dλθ22.1= 二、填空题1.在单缝夫琅禾费衍射实验中,波长nm 400=λ的平行光垂直入射单缝,所用凸透镜焦距m 5.1=f ,第三级暗纹离中央明纹中心m 100.33-⨯,另一波长为0λ的光的第二级暗纹在屏的同一位置上,则单缝的缝宽m 103.5-4⨯=a ,波长nm 0060=λ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光的衍射(附答案)一.填空题1.波长λ = 500 nm(1 nm = 109 m)的单色光垂直照射到宽度a = mm的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹.今测得屏幕上中央明条纹之间的距离为d = 12 mm,则凸透镜的焦距f 为3 m.2.在单缝夫琅禾费衍射实验中,设第一级暗纹的衍射角很小,若钠黄光(λ1 ≈589 nm)中央明纹宽度为mm,则λ2 ≈ 442 nm(1 nm = 109 m)的蓝紫色光的中央明纹宽度为mm.3.平行单色光垂直入射在缝宽为a = mm的单缝上,缝后有焦距为f = 400 mm的凸透镜,在其焦平面上放置观察屏幕.现测得屏幕上中央明纹两侧的两个第三级暗纹之间的距离为8 mm,则入射光的波长为500 nm(或5×104mm).4.当一衍射光栅的不透光部分的宽度b与透光缝宽度a满足关系b = 3a 时,衍射光谱中第±4, ±8, …级谱线缺级.5.一毫米内有500条刻痕的平面透射光栅,用平行钠光束与光栅平面法线成30°角入射,在屏幕上最多能看到第5级光谱.6.用波长为λ的单色平行红光垂直照射在光栅常数d = 2 μm(1 μm = 106 m)的光栅上,用焦距f= m的透镜将光聚在屏上,测得第一级谱线与透镜主焦点的距离l = m,则可知该入射的红光波长λ=或633nm.7.一会聚透镜,直径为3 cm,焦距为20 cm.照射光波长550nm.为了可以分辨,两个远处的点状物体对透镜中心的张角必须不小于×105rad.这时在透镜焦平面上两个衍射图样中心间的距离不小于μm.8.钠黄光双线的两个波长分别是nm和nm(1 nm = 109 m),若平面衍射光栅能够在第二级光谱中分辨这两条谱线,光栅的缝数至少是500.9.用平行的白光垂直入射在平面透射光栅上,波长为λ1 = 440 nm的第3级光谱线将与波长为λ2 =660 nm的第2级光谱线重叠(1 nm = 109 m).10.X射线入射到晶格常数为d的晶体中,可能发生布拉格衍射的最大波长为2d.二.计算题11.在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第二级衍射极小相重合,试问:(1) 这两种波长之间有何关系(2) 在这两种波长的光所形成的衍射图样中,是否还有其它极小相重合解:(1) 由单缝衍射暗纹公式得a sinθ1= 1 λ1 a sinθ2= 2 λ2由题意可知θ1= θ2, sinθ1= sinθ2代入上式可得λ1 = 2 λ2(2) a sinθ1= k1λ1=2 k1λ2(k1=1, 2, …)sinθ1= 2 k1λ2/ aa sinθ2= k2λ2(k2=1, 2, …)sinθ2= 2 k2λ2/ a若k2= 2 k1,则θ1= θ2,即λ1的任一k1级极小都有λ2的2 k1级极小与之重合.12.在单缝的夫琅禾费衍射中,缝宽a = mm,平行光垂直如射在单缝上,波长λ= 500 nm,会聚透镜的焦距f= m.求中央亮纹旁的第一个亮纹的宽度Δx.解:单缝衍射第1个暗纹条件和位置坐标x1为a sinθ1= λx1 = f tanθ1≈ f sinθ1≈ f λ / a (∵θ1很小)单缝衍射第2个暗纹条件和位置坐标x2为a sinθ2 = 2 λx2 = f tanθ2≈ f sinθ2≈ 2 f λ / a (∵θ2很小)单缝衍射中央亮纹旁第一个亮纹的宽度Δx1 = x2x1≈ f (2 λ / a λ / a)= f λ / a=××107/×104) m=.13.在单缝夫琅禾费衍射中,垂直入射的光有两种波长,λ1 = 400 nm,λ2 = 760nm(1 nm = 109 m).已知单缝宽度a = ×102 cm,透镜焦距f = 50 cm.(1)求两种光第一级衍射明纹中心间的距离.(2)若用光栅常数a= ×10-3cm的光栅替换单缝,其它条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知a sinφ1= 12(2 k + 1)λ1 =12λ1(取k = 1)a sinφ2= 12(2 k + 1)λ2=32λ2tanφ1= x1/ f,tanφ2= x1/ f由于sinφ1≈ tanφ1,sinφ2≈ tanφ2所以x1= 32f λ1 /ax2= 32f λ2 /a则两个第一级明纹之间距为Δx1= x2x1= 32f Δλ/a = cm(2) 由光栅衍射主极大的公式d sinφ1= k λ1 = 1λ1d sinφ2= k λ2 = 1λ2且有sinφ = tanφ = x / f所以Δx1= x2x1 = fΔλ/a = cm14.一双缝缝距d = mm,两缝宽度都是a = mm,用波长为λ = 480 nm(1 nm =109 m)的平行光垂直照射双缝,在双缝后放一焦距f= m的透镜.求:(1) 在透镜焦平面的屏上,双缝干涉条纹的间距l;(2) 在单缝衍射中央亮纹范围内的双缝干涉数目N和相应的级数.解:双缝干涉条纹(1) 第k级亮纹条件:d sinθ = kλ第k级亮条纹位置:x1= f tanθ1≈ f sinθ1≈ k f λ / d相邻两亮纹的间距:Δx= x k +1x k = (k + 1) fλ / d k λ / d= f λ / d = ×103 m = mm(2) 单缝衍射第一暗纹:a sinθ1= λ单缝衍射中央亮纹半宽度:Δx= f tanθ1≈ f sinθ1≈ k f λ / d = 12 mm Δx0/ Δx = 5∴双缝干涉第±5级主极大缺级.∴在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为k = 0, ±1, ±2, ±3, ±4级亮纹或根据d /a= 5指出双缝干涉缺第±5 级主极大,同样可得出结论。

15.用钠光(λ = nm)垂直照射到某光栅上,测得第三级光谱的衍射角为60°.(1)若换用另一光源测得其第二级光谱的衍射角为30°,求后一光源发光的波长.(2)若以白光(400 nm ~ 760n m)照射在该光栅上,求其第二级光谱的张角.解:(1) (a+b)sinφ=3λa+b = 3λ / sinφ,φ= 60°a+b = 2λ' / sinφ',φ'= 30°3λ / sinφ = 2λ' / sinφ'λ' = nm(2) a+b = 3λ / sinφ= nmφ2' = arcsin (2×400 / nm (λ = 400nm)φ2'' = arcsin (2×760 / nm (λ = 760nm)白光第二级光谱的张角Δφ = φ2'' φ2' = 25°16.一束平行光垂直入射到某个光栅上,该光栅有两种波长的光,λ1 = 440 nm,λ2 = 660 nm.实验发现,两种波长的谱线(不计中央明纹)第二次重合于衍射角φ = 60°的方向上,求此光栅的光栅常数d.解:由光栅衍射主极大公式得d sinφ1= k λ1d sinφ2= k λ2sinφ1 sinφ2= k1λ1k2λ2=440 k1660 k2=2 k13 k2当两谱线重合时有φ1= φ2即k1k2=32=64=96=两谱线第二次重合即是k1k2=64,k1 = 6,k2 = 4由光栅公式可知d sin60°= 6λ1∴d =6λ1sin60°= ×103 mm17.将一束波长λ = 589 nm(1 nm = 109 m)的平行钠光垂直入射在1厘米内有5000条刻痕的平面衍射光栅上,光栅的透光缝宽度a与其间距b相等,求:(1)光线垂直入射时,能看到几条谱线是哪几级(2)若光线以与光栅平面法线的夹角θ = 60°的方向入射时,能看到几条谱线是哪几条解:(1) (a+b)sin= k λ当= π/2时,k = (a+b) /λ = ,k max = 3又∵a = b,(a+b)sin= 2a sin=k λ有谱线a sin=k λ / 2但当k = ±2, ±4, ±6, …时缺级.∴能看到5条谱线,为0, ±1, ±3级.(2) (a+b)(sinθ + sin)= k λ,θ = 30°,= ±90°= π2,k = (a+b)(sin30°+ sin90°) / λ = .取k max = 5= π2,k = (a+b)(sin30°sin90°) / λ = .取k'm ax = 1∵a = b∴第2, 4, … 级缺级.∴能看到5条谱线,为+5, +3, +1, 0, 1级.18.波长λ = 600 nm(1 nm = 109 m)的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1)光栅常数(a + b) 等于多少(2)透光缝可能的最小宽度a等于多少(3)在选定了上述(a + b) 和a之后,求在衍射角–π2< φ <π2范围内可能观察到的全部主极大的级次.解:(1) 由光栅衍射的主极大公式得a + b =k λsinφ= ×104 cm(2) 若第三级不缺级,则由光栅公式得(a+b)sinφ'= 3λ由于第三级缺级,则对应于最小可能的a,φ'方向应是单缝衍射第一级暗纹:两式比较,得a sinφ'= λa = a + b3= ×105 cm(3) (a+b)sinφ= k λ(主极大)a sinφ= k' λ(单缝衍射极小)(k' = 1, 2, 3, …)因此k = 3, 6, 9, …缺级;又∵k max = a + bλ= 4,∴实际呈现出的是k = 0, ±1, ±2级明纹(k = ±4在π/2处不可见).19.在通常亮度下,人眼瞳孔直径约为,若视觉感受最灵敏的光波长为λ = 550nm(1 nm = 109 m),试问:(1)人眼最小分辨角是多大(2) 在教室的黑板上,画的等号两横线相距2 mm ,坐在距黑板10 m 处的同学能否看清(要有计算过程)解:(1) 已知得d = 3 mm ,λ= 550 nm ,人眼的最小分辨角为:θ = λ / d = ×104 rad(2) 设等号两横线相距Δx = 2 mm 时,人距黑板刚好看清,则l = Δx / θ = m所以距黑板10m 处的同学看不清楚.20. 一平面透射多缝光栅,当用波长λ1 = 600 nm (1 nm = 109 m )的单色平行光垂直入射时,在衍射角θ = 30° 的方向上可以看到第2级主极大,并且在该处恰能分辨波长差Δλ = 5×103 nm 的两条谱线.当用波长λ2 = 400 nm 的单色平行光垂直入射时,在衍射角θ = 30°的方向上却看不到本应出现的第3级主极大.求光栅常数d 和总缝数N ,再求可能的缝宽a .解:根据光栅公式d sin θ = k λ1得d =1sin k λθ= 2×600sin30° = ×103 nm = μm 据光栅分辨本领公式R = λ1 /Δλ = kN得N = λ1k Δλ = 60000在θ = 30° 的方向上,波长λ2 = 400 nm 的第3级主极大缺级,因而此处一定恰好是波长为λ2入射光单缝衍射的一个极小出现的位置。

相关文档
最新文档