具有整点报时功能的可校时数字钟
简易数字钟设计(已仿真)

简易数字钟设计摘 要 本文针对简易数字钟的设计要求,提出了两种整体设计方案,在比较两个方案的优缺点后,选择了其中较优的一个方案,进行由上而下层次化的设计,先定义和规定各个模块的结构,再对模块内部进行详细设计。
详细设计的时候又根据可采用的芯片,分析各芯片是否适合本次设计,选择较合适的芯片进行设计,最后将设计好的模块组合调试,并最终在EWB 下仿真通过。
关键词 数字钟,EWB ,74LS160,总线,三态门,子电路一、引言:所谓数字钟,是指利用电子电路构成的计时器。
相对机械钟而言,数字钟能达到准确计时,并显示小时、分、秒,同时能对该钟进行调整。
在此基础上,还能够实现整点报时,定时报闹等功能。
设计过程采用系统设计的方法,先分析任务,得到系统要求,然后进行总体设计,划分子系统,然后进行详细设计,决定各个功能子系统中的内部电路,最后进行测试。
二、任务分析:能按时钟功能进行小时、分钟、秒计时,并显示时间及调整时间,能整点报时,定点报时,使用4个数码管,能切换显示。
总体设计本阶段的任务是根据任务要求进行模块划分,提出方案,并进行比较分析,最终找到较优的方案。
方案一、采用异步电路,数据选择器将时钟信号输给秒模块,秒模块的进位输给分模块,分模块进位输入给时模块,切换的时候使用2选1数据选择器进行切换,电路框图如下:该方案的优点是模块内部简单,基本不需要额外的电路,但缺点也很明显,该方案结构不清晰,模块间关系混乱,模块外还需使用较多门电路,不利于功能扩充,且使用了异步电路,计数在59的时候,高一级马上进位,故本次设计不采用此方案。
方案二、采用同步电路,总线结构时钟信号分别加到各个模块,各个模块功能相对独立,框图如下: 显示 切换秒钟分钟 小时 控制1Hz 脉冲信号闹钟该方案用总线结构,主要功能集中在模块内部,模块功能较为独立,模块间连线简单,易于扩展,本次设计采用此方案。
综上所述,本次设计采用方案二。
秒计数和分计数为60进制,时计数为24进制,为了简化设计,秒和分计数采用同一单元。
整点报时数字钟

数字电路课程设计报告书课题名称 电子秒表电路设计姓 名 学 号院、系、部 物理与电信工程学院 专 业 电子信息工程指导教师2012年 6 月 1日※※※※※※※※※ ※※ ※※ ※※ ※※※※※※※※※2010级学生数字电路 课程设计自动电子钟的设计1 设计目的(1)熟练电路仿真软件Multisim 10.0的使用。
(2)巩固所学的理论知识与实践技能。
(3)提高电路布局、布线和检查以及排除故障的能力。
(4)初步学习工程设计的基本技能。
(5)培养学生查阅技术资料的能力以及综合运用所学理论知识和实践知识独立完成课题的工作能力。
2 设计思路(1)设计秒信号产生电路。
(2)设计计时显示电路。
(3)设计校时电路。
(4)设计清零电路。
(5)设计整点报时电路。
3 设计过程3.1方案论证如图 3.1所示,秒信号产生电路可用振荡器和分频器共同产生,由于在Multisim10.0软件中,“时间”要比实际的时间慢得多,所以在仿真电路里,为了更加清楚地看到实验现象,就用电压时钟脉冲产生器代替秒信号发生器。
3.2电路设计(1)秒脉冲信号发生器的设计秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质量。
由振荡器与分频器组合产生秒脉冲信号。
振荡器: 通常用555定时器与RC构成的多谐振荡器,经过调整输出1000Hz脉冲。
分频器: 分频器功能主要有两个,一是产生标准秒脉冲信号,二是提扩展电路所需要的信号,选用三片74LS90进行级联,因为每片为1/10分频器,三联好获得1Hz标准秒脉冲。
其电路图如下:图3.2 秒信号发生电路(2)秒、分、时计时器电路设计秒、分计数器为60进制计数器,小时计数器为24进制计数器。
实现这两种模数的计数器采用中规模集成计数器74LS90构成。
60进制计数器:由74LS90构成的60进制计数器,将一片74LS90设计成10进制加法计数器,另一片设置6进制加法计数器。
两片74LS90按反馈清零法串接而成。
数电设计数字钟基于QUARTUS

大连理工大学本科实验报告题目:数电课设——多功能数字钟课程名称:数字电路课程设计学院(系):电信学部专业:电子与通信工程班级:学生姓名: ***************学号:***************完成日期:成绩:2010 年 12 月 17 日题目:多功能数字时钟一.设计要求1)具有‘时’、‘分’、‘秒’的十进制数字显示(小时从00~23)2)具有手动校时校分功能3)具有整点报时功能,从59分50秒起,每隔2秒钟提示一次4)具有秒表显示、计时功能(精确至百分之一秒),可一键清零5)具有手动定时,及闹钟功能,LED灯持续提醒一分钟6)具有倒计时功能,可手动设定倒计时范围,倒计时停止时有灯光提示,可一键清零二.设计分析及系统方案设计1. 数字钟的基本功能部分,包括时、分、秒的显示,手动调时,以及整点报时部分。
基本模块是由振荡器、分频器、计数器、译码器、显示器等几部分组成。
利用DE2硬件中提供的50MHZ晶振,经过分频得到周期为1s的时钟脉冲。
将该信号送入计数器进行计算,并把累加结果以“时”“分”“秒”的形式通过译码器由数码管显示出来。
进入手动调时功能时,通过按键改变控制计数器的时钟周期,使用的时钟脉冲进行调时计数(KEY1调秒,LOAD2调分,LOAD3调时),并通过译码器由七位数码管显示。
从59分50秒开始,数字钟进入整点报时功能。
每隔两秒提示一次。
(本设计中以两个LED灯代替蜂鸣器,进行报时)2. 多功能数字钟的秒表功能部分,计时范围从00分秒至59分秒。
可由输入信号(RST1)异步清零,并由按键(EN1)控制计时开始与停止。
将DE2硬件中的50MHZ晶振经过分频获得周期为秒的时钟脉冲,将信号送入计数器进行计算,并把累计结果通过译码器由七位数码管显示。
3.多功能数字钟的闹钟功能部分,通过按键(KEY1,KEY2,KEY3)设定闹钟时间,当时钟进入闹钟设定的时间(判断时钟的时信号qq6,qq5与分信号qq4,qq3分别与闹钟设定的时信号r6,r5与分信号r4,43是否相等),则以LED灯连续提示一分钟。
整点报时数字钟学习资料

整点报时数字钟数字钟一、设计任务本任务为:数字钟。
设计任务具体内容如下:1.1 基本设计任务依据命题题意,本设计采用89C51进行24小时计时并显示。
要求其显示时间范围是00:00:00~23:59:59,具备有时分秒校准功能。
数字钟上面要带有闹钟,闹钟与时钟之间能随时切换,闹钟具备时分秒设置功能。
1.2 控制设计任务由于本设计采用手动校准时钟与手动设置闹钟方案,所以要求用较少的按键来达到切换闹钟与时钟、时钟时分秒校准、闹钟时分秒设置等功能。
1.3 软件设计任务数字钟的所有计时都要由软件控制实现。
用软件对几个按键所得信号进行相应改变,以控制时钟与闹钟的显示。
通过软件对闹钟与时钟进行比较,当时钟所显示时间与闹钟一样时,要启动报时模块。
三、总体设计经过对各个方案分析比较,最终确定总方案如图3-1所示。
该系统所有模块都由主单片机控制。
其中,设计各个模块,包括单片机、显示模块、电机驱动、光电探测由四节AA电池供电。
电机驱动采用L298驱动芯片控制。
用光电传感器对边线的探测来控制距离。
通过单片机的机器周期计算时间计数周期,以达到计时目的。
图3-1 系统方案图3.1 系统硬件电路设计3.1.1 显示及控制模块图3-4 语音报时模块3.2 系统软件设计3.2.1 软件计时的分析与计算单片机内部定时器有4种工作模式,方式0是13位计数器,由于计时时间过短,中断频率高,所以不选用此模式;方式2是自动重装式计数器,是8位计数器,同样中断频率过高;方式3也是8位计数器;方式1是16位计数器,综合考虑,选用方式1做精确计时。
由于51单片机是12分频,因此机器周期=晶振频率/12。
在该设计中,选用频率为12MHz的晶振,因此机器周期=1μs。
定时1s需要1000000个机器周期,因此通过20次定时器中断完成1s的定时,每次完成50000个周期的定时,因此每次给定时器的初值应该是TH0=B0H,TL0=3CH。
3.2.2 系统软件设计设计两套存储方案,一套存储时钟,一套存储闹钟,两者互不干涉,只有当两者相等时才会调用闹钟播放子程序,而当每次整点时则会调用整点报时子程序。
数字钟的设计与制作过程

数字钟的设计与制作一、设计指标1. 显示时、分、秒。
2. 可以24小时制或12小时制。
3. 具有校时功能,可以对小时和分单独校时,对分校时的时候,停止分向小时进位。
校时时钟源可以手动输入或借用电路中的时钟。
4. 具有正点报时功能,正点前10秒开始,蜂鸣器1秒响1秒停地响5次。
(选做)5. 为了保证计时准确、稳定,由晶体振荡器提供标准时间的基准信号。
二、设计要求1. 画出总体设计框图,以说明数字钟由哪些相对独立的功能模块组成,标出各个模块之间互相联系,时钟信号传输路径、方向和频率变化,并以文字对原理作辅助说明。
2. 设计各个功能模块的电路图,加上原理说明。
3. 选择合适的元器件,并选择合适的输入信号和输出方式,在面包板上接线验证、调试各个功能模块的电路。
在确保电路正确性的同时,输入信号和输出方式要便于电路的测试和故障排除。
(也可选用Mutisim仿真)4. 在验证各个功能模块基础上,对整个电路的元器件和布线,进行合理布局,进行整个数字钟电路的接线调试。
三、制作要求自行在面包板上装配和调试电路,能根据原理、现象和测量的数据检查和发现问题,并加以解决。
四、设计报告要求1. 格式要求(见附录1)2. 内容要求①设计指标。
②画出设计的原理框图,并要求说明该框图的工作过程及每个模块的功能。
③列出元器件清单,并画出管脚分配图和芯片引脚图。
④画出各功能模块的电路图,加上原理说明(如2、5进制到10进制转换,10进制到6进制转换的原理,个位到十位的进位信号选择和变换等)。
⑥画出总布局接线图(集成块按实际布局位置画,关键的连接应单独画出,计数器到译码器的数据线、译码器到数码管的数据线可以简化画法,但集成块的引脚须按实际位置画,并注明名称)。
⑦数字钟的运行结果和使用说明。
提出建议。
五、仪器与工具1. 直流电源1台。
2. 四连面包板1块。
3. 数字示波器(每两人1台)4. 万用表(每班2只)。
5. 镊子1把。
6. 线剥钳1把。
多功能数字电子钟设计

数字逻辑课程设计-多功能数字电子钟多功能数字钟的设计与仿真一.设计任务与要求设计任务:设计一个多功能数字钟。
要求:1.有“时”、“分”、“秒”(23小时59分59秒)显示且有校时功能。
(设计秒脉冲发生器)2.有整点报时功能。
(选:上下午、日期、闹钟等)3. 用中规模、小规模集成电路及模拟器件实现。
4. 供电方式: 5V直流电源二.设计目的、方案及原理1.设计目的(1)熟悉集成电路的引脚安排。
(2)掌握各芯片的逻辑功能及使用方法。
(3)了解面包板结构及其接线方法。
(4)了解多功能数字钟的组成及工作原理。
(5)熟悉多功能数字钟的设计与制作2.设计思路(1)设计数字钟的时、分、秒电路。
(2)设计可预置时间的校时电路。
(3)设计整点报时电路。
3.设计过程3.1.总体设计方案及其工作原理为:数字钟原理框图入图1所示,电路一般包括一下几个部分:振荡器、星期、小时、分钟、秒计数器、校时电路、报时电路。
数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。
由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。
通常使用石英晶体振荡器电路构成数字钟,但也可以用555定时器构成。
图1 系统框图数字钟计时的标准信号应该是频率相当稳定的1HZ秒脉冲,所以要设置标准时间源。
数字钟计时周期是24小时,因此必须设置24计数器,秒、分、时由数码管显示。
ﻫ为使数字钟走时与标准时间一致,校时电路是必不可少的。
设计中采用开关控制校时电路“时”“分”“秒”计数器进行校时操作。
3.2.各独立功能部件的设计(1)分、秒计时器(60进制),时计数器(24进制),星期计数器(7进制)如下图,图中蓝色线为高电平+5v,绿色为接地线,红色线为时钟脉冲。
获得秒脉冲信号后,可根据60秒为一分,60分为一小时,24时为一个计数周期的计数规则,分别确定秒、分、时的计数器。
由于秒和分的显示都为60进制,因此他们可有两级十进制计数器组成,其中秒和分的个位为十进数器,十位为六进制计数器,可利用两片74160集成电路来实现。
数字钟设计说明书

电子课程设计说明书题目:数字钟学生姓名专业学号指导教师日期摘要本说明书介绍了带有校时和整点报时功能的数字钟的实现方案。
包括制作数字钟所需要的各种芯片及具体连接思路和方法,设计过程出现的一些问题和解决方法以及心得体会。
关键词:计数器,触发器分频,555脉冲产生电路,数据选择mul tisim一、完成课题的工作基础和实验条件1.工作基础(1)了解同步十进制计数器CC4518二输入与非门CC4011 四输入与非门CC4012 D触发器CC1013 和非门CC4049的功能和引脚图。
(2)设计电路图,并在进行仿真(采用Multisim进行仿真)。
(3)熟悉面包板、示波器的使用2.实验条件(1)同步时进制计数器CC4518 3个(2)四输入与非门CC4012 1个(3)二输入与非门CC4011 5个(4)非门CC4049 2个(5)D触发器CC4013 1个(6)555定时器2个(7)10kΩ电阻2个(8)100kΩ电阻2个(9)47μF电容1个(11)0.01μF电容4个(12)示波器1台(13)面包板实验台(14)导线若干二、设计任务和要求数字钟设计指标:1、基本指标:(1)时间计数电路采用24进制,从00开始到23后再回到00;各用2位数码管显示时、分、秒;(2)具有校时、校分功能,可以分别对时及分进行单独校时,使其校正到标准时间;(3)计时过程具有报时功能,当时间到达整点前10秒开始,蜂鸣器1秒响1秒停地响5次,前四次蜂鸣器声响频率为500Hz,最后一次,即59分59秒时,蜂鸣器声响频率为1000Hz;(4)为了保证计时的稳定及准确,须由555定时器提供时间基准信号。
2、提高指标:(1)星期计数。
因为只有六个数码显示器,分别显示时、分、秒的个十位,故在基本指达到后,拆除一个数码显示器来显示星期。
星期计数从1~6表示星期一到星期六,星期天由8表示。
(2)暂停功能。
暂停秒钟可辅助校时。
三、电路基本原理1、总体设计框架图2、各部分详细电路图(1)脉冲产生电路由555定时器产生脉冲,具体电路如下(a)1Hz 脉冲产生(b)1kHz脉冲产生其中5nF电容由两个0.01μF电容串联而成(2)分频电路采用CC4013 D触发器进行分频,1kHz脉冲从端口3(CP)中输入,在端口2(~Q)即输出500Hz脉冲。
数字电子钟--数电(带闹钟调节时间和整点报时)

物理与电子工程学院课程设计题目:数字电子钟专业电子信息工程班级12级电信三班学号学生姓名李长炳指导教师张小英张艳完成日期:2013 年7月数字电子钟前言:数字钟是一个将“时”、“分”、“秒’’显示于人的视觉器官的计时装置。
它的计时周期为24小时,显示满刻度为23时59分59秒,另外应有校时功能和报时闹铃等功能。
一、基本原理主体电路1.1 振荡电路晶体振荡器的作用是产生时间标准信号。
我采用由门电路或555定时器构成的多谐振荡器作为时间标准信号源。
本系统中的振荡电路选用555定时器构成的多谐振荡器,见图1。
多谐振荡器的振荡频率可由式估算。
2图11.2 时、分、秒显示电路模块设计①秒的产生采用74LS160产生60进制的加法计数器,输出端Q0,Q1,Q2,Q3分别接到七段数码管的相应的各端,由上图的555产生的秒脉冲链接秒的两个160的cp,第一片的进位来控制第二片的EP,ET来构成秒。
如下图所示图2注意:两个CP都是连接到555的输出。
4②分的产生采用74LS160产生60进制的加法计数器,输出端Q0,Q1,Q2,Q3分别接到七段数码管的相应的各端,由上图的秒产生的进位连接秒的两个160的cp,第一片的进位来控制第二片的EP,ET来构成秒。
如下图所示图3注意:两个CP都是连接的秒的进位的输出。
③小时的产生采用74LS160产生24进制的加法计数器,输出端Q0,Q1,Q2,Q3分别接到七段数码管的相应的各端,由上图的分产生的进位连接秒的两个160的cp,第一片的进位来控制第二片的EP,ET来构成秒。
如下图所示图4注意:两个CP都是连接的秒的进位的输出。
61.3闹钟我设置的闹钟是00:03响的。
会响一分钟,采用与非门和或门组成的电路。
可以得出以下的电路图当达到00:03时就开始响,当不是00:03是就停止了,喇叭一端节地。
仿真图如下所示。
图51.4整点报时整点报时就是当达到了整点的时候就开始响,我设计的是响10秒钟的报时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章数字钟的工作原理第一节介绍20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力的推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品跟新换代的节奏也越来越快。
数字钟已成为人们日常生活中必不可少的必需品,广泛用于个人家庭以及车站、码头、剧场、办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。
由于数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,节省了电能。
因此在许多电子设备中被广泛使用。
数字钟是一种典型的数字电路,包括了组合逻辑电路和时序电路。
通过设计加深对刚刚学习了的数字电子技术的认识。
本次设计以数字电子为主,分别对一秒信号源、秒计时显示、分计时显示、小时计时显示、整点报时及校时电路进行设计,然后将它们组合来完成时、分、秒的显示并且具有整点报时和走时校时的功能。
并通过本场设计加深对数字电子技术的理解以及更熟练是有计数器、触发起和各种逻辑门电路的能力。
电路主要使用集成计数器,例如74LS160、CD4518、译码集成电路,例如CD4511、LED数码管及各种门电路和基本的触发器等,电路使用5号电池供电,很合适在日常生活中使用。
第二节设计方案论证方案一:采用小规模集成电路实现采用集成逻辑电路设计具有能实现,时分秒计时功能和多点定时功能,计时数据的更新每秒自动进行一次,不需程序干预。
方案二:EDA技术实现采用EDA作为主控制外围电路进行电压,时钟控制键盘和LED控制,此方案逻辑电路复杂,且灵活性较低,不利于各种功能的扩展,在对电路进行检测比较困难。
方案三:单片机编程实现在按键较少的情况下,采用独立式4个按键,经软件设计指定的I/O 口,送出逻辑电平,控制数码管显示,根据数字电子钟的设计要求与原理以及特性,本系统采用单片机AT89C52串口输出的形式来设计电路,使功能及效果更完美。
比较以上三种方案的优缺点,方案一简洁灵活可扩展性好,能完全达到设计要求,同时符合本次课程设计的要求,故采用第一种方案。
第三节数字钟的组成和基本工作原理数字钟实际上是一个对标准频率进行计数的计数电路。
它的计时周期是12小时,由于计数器的起始时间不可能与标准时间(如北京时间)一致所以采用校准功能和报时功能。
图1-1 数字钟组成框图数字中电路主要由译码显示器、校准电路、报时电路、时计数器、分计数器、秒计数器,振荡电路和单次脉冲产生电路组成。
其中电路系统由秒信号发生器,“时”、“分”、“秒”计数器、译码器及显示器、校准电路、整点报时电路组成。
秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现,奖标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用60进制计数器,每累计60分钟,发出一个时脉冲信号,该信号将被送到时计数器。
时计数器采用12进制计数器,可实现对12小时的计时,译码显示电路将“时”、“分”、“秒”计数器的输出状态通过显示驱动电路,七段显示译码器,在经过六位LED七段显示器显示出来。
整点报时电路时根据计时系统的输出状态产生一个脉冲信号,然后去触发一音频发生器实现低、高音报时。
校准电路时用来对“时”、“分”、“秒”显示数字进行校对调整的,如上图1-1所示多功能数字钟的组成框图。
第二章数字钟的显示部分数字钟的显示部分主要由计数电路和译码显示电路组成,电路通过计数器实现数字钟的计时,并通过译码器将计时器的计数译码并传给数码管显示出来,从而实现数字钟的计时显示,使人们直观的看到现在的时间。
第一节计数器秒脉冲信号经过级计数器分别得到“秒”个位、十位,“分”个位、十位以及“时”个位、十位的计时。
“秒”“分”计数器为60秒为1分,60分为1小时、时计数器采用12小时计位,分别组成两个六十进制(分、秒)一个十二进制计数器。
将这些计数器适当的连接,就可以构成秒、分、时的计数,实现计时的功能进制计数器,它们都可以用两个十进制计数器来实现,六十进制计数器和十二进制计数器均可由BCD加法计数器74LS160组成,因为两片74LS160就可以构成六十进制和十二进制计数器了。
2.1.1 74LS160功能介绍74LS160为十进制计数器,直接清零。
74LS160为可预置的十进制计数器,共有54/74160 和54/74LS160 两种线路结构型式。
其电特性典型值如下表2-1。
74LS160 是一个具有异步清零、同步置数、可以保持状态不变的十进制上升沿计数器, 功能管脚图如下图2-1。
图2-1 74LS160功能管脚图引出端符号:TC 进位输出端CEP 计数控制端Q0-Q3 输出端CET 计数控制端CP 时钟输入端(上升沿有效)/MR 异步清除输入端(低电平有效)/PE 同步并行输入置数端(低电平有效)异步清零端/MR1 为低电平时,不管时钟端CP信号状态如何,都可以完成清零功能。
74LS160的预置是同步的。
当置入控制器/PE为低电平时,在CP上升沿作用下,输出端Q0-Q3与数据输入端P0-P3一致。
对于54/74160,当CP由低至高跳变或跳变前,如果计数器控制端CEP、CET为高电平,则/PE应避免由低至高电平的跳变,而54/74LS160无此种限制。
74LS160的计数是同步的,靠CP同时加在四个触发器上而实现的。
其内部接线图如下图2-2图2-2 74LS160内部电路图表2-2 74LS160动态特性:当CEP、CET均为高电平时,在CP上升沿作用下Q0-Q3同时变化,从而消除了异步计数器中出现的计数尖峰。
对于54/74LS160的CEP、CET跳变与CP无关。
74LS160有超前进位功能。
当计数溢出时,进位输出端(TC)输出一个高电平脉冲,其宽度为Q0的高电平部分。
在不外加门电路的情况下,可级联成N位同步计数器。
对于54/74LS160,在CP出现前,即使CEP、CET、/MR发生变化,电路的功能也不受影响。
Fmax-最大时钟频率tPLH-输出由低到高电平传输延迟时间tPHL-输出由高到低电平传输延迟时间表2-3 推荐工作条件:54/74160 和54/74LS160的工作电压都是7V,他们输入的电压分别是:54/74160的是5.5V;54/74LS160的是7V。
CET与CET间的电压54/74160是5.5V。
工作环境54系列的是-55~125℃,74系列的是0~70℃。
他们的储存温度都是-65~150℃。
他们的工作条件如上表2-3所示。
2.1.2 六十进制计数器时钟的“分”、“秒”计数器采用六十进制计数,如下图2-1-3所示,个位为十进制,故EN=1,Cr=0,计数到9以后自动清零,向高位进位,信号采用Q4Q3Q2Q1=1001,将Q4Q1送入与非门,与非门的输出可以做进位信号。
因为当Q4Q1不同时为1,Y为1,当QQ同时为1时,Y为0,同时计数器到9后自动清零,这时Y又变为1,即出现了一个上升沿。
如下图2-3六十进制接线图。
图2-3 六十进制连接图十位接成六进制,利用Q4Q3Q2Q1=0110的信号清零,同时结合高位进位。
2.1.3 十二进制计数器时钟的“时”计数器采用十二进制计数器计数,个位为十进制计数器,当计数器计数到12时,即十位为0001个位为0010时,同时清零,达到了十二进制计数器的目的,即高位的Q1好低位的Q2送入与非门做清零信号,完成“时”计数器的计数,从而完成一个周期的计时。
如下图2-4十二进制接线图。
图2-4 十二进制连接图第二节译码显示电路译码显示电路是将数字钟的计时状态直观清晰的反应出来,被人们的视觉器官所接受,是人们最直接看到时钟的部分,是人们用时钟的主要部分,而我们研究的是对译码显示电路的组成、功能的分析。
显示器件选用LED七段数码管,在译码显示电路输出信号的驱动下,显示出清晰直观的数字符号。
本设计所选用的是半导体数码管,是用发光二极管(简称LED)组成的字形来显示数字,七个条形发光二极管排列成七段组合字形,便构成了半导体数码管,半导体数码管有共阳极和共阴极两种类型。
共阳极数码管的七个发光二极管的阳极连在一起,而七个阴极则是独立的。
共阴极数码管与共阳极数码管相反,七个发光二极管的阴极接在一起,而阳极是独立的。
当阳极数码管的某一阴极接低电平时,相应的二极管发光,可根据字形使某几段二极管发光,所以共阳极数码管需要输出低电平有效的译码器去驱动。
共阴极数码管则需要输出高电平有效的译码器去驱动。
当数字钟的计数器在CP脉冲的作用下,按60秒为1分、60分为1小时,12小时为半天的技术规律计数时,就应将其状态显示成清晰的数字符号。
这就需要将计数器的状态进行译码并将其显示出来。
我们选用的计数器全部是二-十进制集成片,“秒”“分”“时”的个位和十位的状态分别由集成片中的四个触发器的输出状态来反映的。
因此,译码显示电路选用BCD-7段所存译码/驱动器CD4511。
2.2.1 数码管数码管采用LG3611AH型数码管,它是共阴极数码管,需要输入高电平有效。
图2-5 数码管结构图2.2.2 CD4511的基本原理时钟的计数通过译码电路经过译码然后传给LED显示,本次设计译码器采用CD4511型译码器。
CD4511是一个用于驱动共阴极LED (数码管)显示器的BCD 码—七段码译码器,特点如下具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流,可直接驱动LED显示器。
其引脚如图2-6。
图2-6 CD4511的引脚图其功能介绍如下:BI:当BI=0 时,不管其它输入端状态如何,七段数码管均处于熄灭状态,不显示数字。
LT:当BI=1,LT=0 时,不管输入 DCBA 状态如何,七段均发亮,显示“8”。
它主要用来检测数码管是否损坏。
LE:使能控制端,当LE=0时,允许译码输出。
DCBA:为8421BCD码输入端。
abcdefg:为译码输出,输出为高电平。
CD4511的EI、LI端接高电平,LE端接低电平,输入端D、C、B、A接74LS161的输出端QA、QB、QC、QD。
,其输出端a~f接数码管。
当数字钟的计数器在CP脉冲韵作用下,按60秒为1分、60分为1小时,‘24小时为1天的计数规律计数时,就应将其状态显示成清晰的数字符号。
这就需要将计数器的状态进行译码并将其显示出来。
我们选用的计数器全部是十进制集成片.输出的计数状态都按 BCD代码以高低电平来表现。
因此,需经译码电路将计数器输出的BCD代码变成能驱动七段数码显示器的工作信号。
原理如图2-7所示:图2-7 原理图下表2-4的解释:1、锁存功能:译码器的锁存电路由传输门和反相器组成,传输门的导通或截止由控制端LE的电平状态。