数据挖掘原理与算法

合集下载

数据挖掘中的关联规则算法使用方法教程

数据挖掘中的关联规则算法使用方法教程

数据挖掘中的关联规则算法使用方法教程数据挖掘是一门通过从大量数据中发现隐藏模式、关系和信息的技术。

关联规则算法是数据挖掘中的重要工具,用于发现数据集中的关联关系和规律。

本教程将介绍关联规则算法的基本概念、使用方法和常见问题。

一、关联规则算法概述关联规则算法主要用于发现数据集中的关联关系和规律,它可以帮助我们了解事物之间的相互关系,并通过这些关系进行预测和推断。

常见的应用场景包括购物篮分析、市场篮子分析、推荐系统等。

关联规则算法通过分析频繁项集和支持度,找到频繁项集之间的关联规则。

频繁项集是指在数据集中频繁出现的组合项集,支持度是指某个项集在数据集中出现的频率。

通过计算支持度和置信度,可以找到具有较高置信度的关联规则。

常用的关联规则算法包括Apriori算法、FP-Growth算法和Eclat算法。

接下来将逐一介绍这些算法的使用方法。

二、Apriori算法1. Apriori算法基本原理Apriori算法是关联规则算法中最常用的一种算法。

它通过迭代的方式逐步生成频繁项集,然后根据频繁项集生成关联规则。

Apriori算法的基本原理如下:- 生成频繁1项集;- 循环生成候选k项集,并计算支持度;- 剪枝:删除支持度低于阈值的项集,得到k频繁项集;- 生成关联规则,并计算置信度。

2. Apriori算法使用步骤使用Apriori算法进行关联规则挖掘的步骤如下:- 输入数据集:准备一份包含项集的数据集;- 设置支持度和置信度的阈值;- 生成频繁1项集;- 根据频繁1项集生成2频繁项集;- 通过剪枝操作得到k频繁项集;- 根据频繁项集生成关联规则,并计算置信度;- 输出频繁项集和关联规则。

三、FP-Growth算法1. FP-Growth算法基本原理FP-Growth算法是一种高效的关联规则挖掘算法,它通过构建频繁模式树来快速发现频繁项集和关联规则。

FP-Growth算法的基本原理如下:- 构建FP树:将数据集构造成FP树,每个节点表示一个项,每个路径表示一条事务;- 构建条件模式基:从FP树中抽取频繁1项集,并构建条件模式基;- 通过条件模式基递归构建FP树;- 根据FP树生成关联规则。

数据挖掘的基本原理和算法

数据挖掘的基本原理和算法

数据挖掘的基本原理和算法随着互联网的快速发展和大数据时代的到来,数据挖掘成为一门重要的技术。

它是通过发现数据中的模式、关系和规律,从而为商业、科学和决策提供有价值的信息和洞察力。

本文将介绍数据挖掘的基本原理和算法。

一、数据挖掘的基本原理1. 数据采集:首先需要收集相关的数据集。

数据可以来源于多种渠道,例如企业内部的数据库、社交媒体平台、网页等。

2. 数据清洗:经过数据采集后,需要对数据进行清洗和预处理。

这包括去除噪声数据、处理缺失值、处理异常值等步骤。

3. 数据转换:对于不同类型的数据,需要进行适当的转换,以便能够应用各种数据挖掘算法。

常见的数据转换包括标准化、归一化、离散化等。

4. 数据集划分:将数据集划分为训练集和测试集。

训练集用于构建模型,测试集用于评估模型的性能。

5. 模型构建:选择适当的算法来构建数据挖掘模型。

常见的算法包括分类算法、聚类算法、关联规则挖掘算法等。

6. 模型评估:通过评估指标,如准确率、精确率、召回率等来评估模型的性能。

7. 模型优化:如果模型的性能不理想,可以进行参数调优、特征选择等操作,以提升模型的准确度和泛化能力。

二、数据挖掘的常见算法1. 分类算法:分类算法用于将数据划分为不同的类别。

常见的分类算法有决策树、朴素贝叶斯、支持向量机等。

2. 聚类算法:聚类算法用于将数据分组为相似的类别。

常见的聚类算法有K均值、层次聚类、DBSCAN等。

3. 关联规则挖掘算法:关联规则挖掘算法用于发现数据集中的关联关系。

常见的关联规则挖掘算法有Apriori、FP-growth等。

4. 异常检测算法:异常检测算法用于识别数据中的异常点或异常行为。

常见的异常检测算法有基于统计的方法、基于聚类的方法等。

5. 预测算法:预测算法用于根据历史数据来预测未来的趋势或结果。

常见的预测算法有回归分析、时间序列分析等。

三、数据挖掘的应用领域1. 金融领域:数据挖掘可以应用于金融风险评估、信用评分、投资策略等方面。

数据挖掘原理、算法及应用章 (8)

数据挖掘原理、算法及应用章 (8)

第8章 复杂类型数据挖掘 1) 以Arc/info基于矢量数据模型的系统为例, 为了将空间
数据存入计算机, 首先, 从逻辑上将空间数据抽象为不同的 专题或层, 如土地利用、 地形、 道路、 居民区、 土壤单 元、 森林分布等, 一个专题层包含区域内地理要素的位置和 属性数据。 其次, 将一个专题层的地理要素或实体分解为点、 线、 面目标, 每个目标的数据由空间数据、 属性数据和拓 扑数据组成。
第8章 复杂类型数据挖掘 2. 空间数据具体描述地理实体的空间特征、 属性特征。 空
间特征是指地理实体的空间位置及其相互关系; 属性特征表 示地理实体的名称、 类型和数量等。 空间对象表示方法目前 采用主题图方法, 即将空间对象抽象为点、 线、 面三类, 根据这些几何对象的不同属性, 以层(Layer)为概念组织、 存储、 修改和显示它们, 数据表达分为矢量数据模型和栅格 数据模型两种。
第8章 复杂类型数据挖掘图Fra bibliotek-5 综合图层
第8章 复杂类型数据挖掘
图8-4 栅格数据模型
第8章 复杂类型数据挖掘
3. 虽然空间数据查询和空间挖掘是有区别的, 但是像其他数 据挖掘技术一样, 查询是挖掘的基础和前提, 因此了解空间 查询及其操作有助于掌握空间挖掘技术。
由于空间数据的特殊性, 空间操作相对于非空间数据要 复杂。 传统的访问非空间数据的选择查询使用的是标准的比 较操作符: “>”、 “<”、 “≤ ”、 “≥ ”、 “≠ ”。 而空间选择是一种在空间数据上的选择查询, 要用到空间操 作符.包括接近、 东、 西、 南、 北、 包含、 重叠或相交 等。
不同的实体之间进行空间性操作的时候, 经常需要在属性之 间进行一些转换。 如果非空间属性存储在关系型数据库中, 那么一种可行的存储策略是利用非空间元组的属性存放指向相 应空间数据结构的指针。 这种关系中的每个元组代表的是一 个空间实体。

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用数据挖掘是指从大量的数据中发现关联规则、分类模型、聚类模型等有用的信息的过程。

以下是数据挖掘领域的十大经典算法原理及应用:1. 决策树算法(Decision Tree)决策树是一种基于树形结构的分类模型,它通过构建树来将输入数据集划分为不同的类别。

决策树算法在金融风险评估、医疗诊断等领域有广泛应用。

2. 支持向量机算法(Support Vector Machine,SVM)支持向量机是一种二分类模型,其目标是在高维空间中找到一个最优的超平面,将不同类别的样本分离开来。

SVM在图像识别、文本分类等领域有广泛应用。

3. 神经网络算法(Neural Network)神经网络模拟人脑的工作原理,通过连接众多的神经元来完成学习和预测任务。

神经网络在图像处理、自然语言处理等领域有广泛应用。

4. 朴素贝叶斯算法(Naive Bayes)朴素贝叶斯算法是一种基于贝叶斯定理的统计分类方法,它假设所有特征之间相互独立,并通过计算后验概率来进行分类。

朴素贝叶斯在垃圾邮件过滤、文本分类等领域有广泛应用。

5. K均值聚类算法(K-means Clustering)K均值聚类是一种无监督学习算法,它通过将样本分成K个簇来实现数据的聚类。

K均值聚类在市场细分、客户群体分析等领域有广泛应用。

6. Apriori算法Apriori算法是一种频繁项集挖掘算法,它可以找出数据集中项之间的关联关系。

Apriori算法在购物篮分析、推荐系统等领域有广泛应用。

7. PageRank算法PageRank算法是一种用于网页排序的算法,它通过计算网页之间的链接关系来确定网页的重要性。

PageRank算法在引擎领域有广泛应用。

8. 随机森林算法(Random Forest)随机森林是一种集成学习算法,它通过构建多个决策树,并通过投票方式来进行分类或回归。

随机森林在金融风险评估、信用评分等领域有广泛应用。

9. AdaBoost算法AdaBoost是一种迭代的强学习算法,它通过调整样本权重来训练多个弱分类器,并通过加权投票方式来进行分类。

数据挖掘原理 算法及应用第3章 关联规则挖掘

数据挖掘原理 算法及应用第3章 关联规则挖掘

第3章
关联规则挖掘
图3-1 搜索候选项集和频繁项集过iori算法和它的相关过程的伪代码。
算法3.1
Apriori (发现频繁项目集)
输入: 数据集D、最小支持数minsup_count。 输出: 频繁项目集L。 (1) L1={large 1-itemsets}; //所有支持数不小于 minsup_count 的1
第3章
关联规则挖掘
(1) 发现频繁项目集:通过用户给定的最小支持度, 寻找所有频繁项目集,即满足支持度Support不小于 Minsupport的所有项目子集。发现所有的频繁项目集是形 成关联规则的基础。 (2) 生成关联规则:通过用户给定的最小可信度, 在 每个最大频繁项目集中,寻找置信度不小于Minconfidence 的关联规则。
l2 是可连接的,即l1[1]=l2[1]∧l1[2]=l2[2]
∧…∧l1[k-1]<l2[k-1]。条件l1[k-1]<l2[k-1]可以
保证不产生重复,而按照L1,L2, …,Lk-1,Lk, …,Ln
次序寻找频繁项集可以避免对事务数据库中不可能发生的
项集所进行的搜索和统计的工作。连接l1、l2的结果项集是l1 [1]、l1[2]、 …、 l1[k-1]、l2[k-1]。
第3章
关联规则挖掘
第 3章
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10
关联规则挖掘
基本概念 关联规则挖掘算法 Apriori改进算法 不候选产生挖掘频繁项集 使用垂直数据格式挖掘频繁项集 挖掘闭频繁项集 挖掘各种类型的关联规则 相关分析 基于约束的关联规则 矢量空间数据库中关联规则的挖掘
第3章
关联规则挖掘

数据挖掘算法的原理与实现

数据挖掘算法的原理与实现

数据挖掘算法的原理与实现数据挖掘算法是指通过分析、挖掘数据中隐藏的规律和属性,从中发现有用的信息的方法。

它在各个领域都有广泛的应用,例如商业、金融、医疗、社交媒体等。

数据挖掘算法的原理和实现需要了解其基本流程、常用算法和应用场景。

一、基本流程数据挖掘算法的基本流程包括数据预处理、特征选择、建模和评估。

数据预处理是对原始数据进行清洗、转换和筛选,使其适合后续处理。

特征选择是根据数据的重要性和相关性,选择最具代表性的特征。

建模是通过数据挖掘算法来建立模型,提取数据中的规律和关系。

评估是通过一定的指标和方法,对模型的成效进行评估和优化。

二、常用算法1.分类算法分类算法是将数据分成多个类别的算法。

其中,决策树是一种简单而强大的分类算法,通过对数据的分裂和判断,形成一棵树状结构,每个叶子节点代表一个分类。

SVM(支持向量机)是一种有监督学习的分类算法,通过寻找最优分割超平面来区分不同类别。

朴素贝叶斯分类器是一种基于贝叶斯定理的分类算法,通过计算先验概率和条件概率来进行分类。

2.聚类算法聚类算法是将数据划分成多个组或类的算法。

其中,K均值算法是一种常用的聚类算法,它通过不断调整质心位置,使同一类别的数据点距离质心最近,不同类别的数据点距离质心最远。

层次聚类算法是一种将数据点不断合并的算法,它通过距离矩阵和聚类树来表示不同数据点之间的距离和聚类关系。

DBSCAN算法是一种密度聚类算法,通过密度和距离的概念来寻找类别,并可发现任意形状的类别。

3.关联规则挖掘算法关联规则挖掘算法是一种用来发现数据中不同属性之间关系的算法。

其中,Apriori算法是一种常用的关联规则挖掘算法,它通过搜索频繁项集和关联规则,来发现数据中的相关性,如购物篮中的商品关系。

三、应用场景数据挖掘算法广泛应用于各种领域,如商业、金融、医疗、社交媒体等。

在商业领域中,数据挖掘算法可以用于推荐系统、市场分析和预测等方面。

在金融领域中,数据挖掘算法可以用于欺诈检测、风险控制和交易分析等方面。

数据挖掘原理、 算法及应用第5章 聚类方法

数据挖掘原理、 算法及应用第5章 聚类方法
第5章 聚类方法
第5章 聚类方法
5.1 概述 5.2 划分聚类方法 5.3 层次聚类方法 5.4 密度聚类方法 5.5 基于网格聚类方法 5.6 神经网络聚类方法:SOM 5.7 异常检测
第5章 聚类方法
5.1 概 述
聚类分析源于许多研究领域,包括数据挖掘、统计学、 机器学习、模式识别等。它是数据挖掘中的一个功能,但也 能作为一个独立的工具来获得数据分布的情况,概括出每个 簇的特点,或者集中注意力对特定的某些簇作进一步的分析。 此外,聚类分析也可以作为其他分析算法 (如关联规则、分 类等)的预处理步骤,这些算法在生成的簇上进行处理。
凝聚的方法也称为自底向上的方法,一开始就将每个对 象作为单独的一个簇,然后相继地合并相近的对象或簇,直 到所有的簇合并为一个,或者达到终止条件。如AGNES算法 属于此类。
第5章 聚类方法
(3) 基于密度的算法(Density based Methods)。 基于密度的算法与其他方法的一个根本区别是: 它不是 用各式各样的距离作为分类统计量,而是看数据对象是否属 于相连的密度域,属于相连密度域的数据对象归为一类。如 DBSCAN (4) 基于网格的算法(Grid based Methods)。 基于网格的算法首先将数据空间划分成为有限个单元 (Cell)的网格结构,所有的处理都是以单个单元为对象的。这 样处理的一个突出优点是处理速度快,通常与目标数据库中 记录的个数无关,只与划分数据空间的单元数有关。但此算 法处理方法较粗放,往往影响聚类质量。代表算法有STING、 CLIQUE、WaveCluster、DBCLASD、OptiGrid算法。
(3) 许多数据挖掘算法试图使孤立点影响最小化,或者排除 它们。然而孤立点本身可能是非常有用的,如在欺诈探测中, 孤立点可能预示着欺诈行为的存在。

数据挖掘原理与算法02精品PPT课件

数据挖掘原理与算法02精品PPT课件

2020/10/8
8
数据的选择与整理
没有高质量的数据就不可能有高质量的挖掘结果。为了得 到一个高质量的适合挖掘的数据子集,一方面需要通过数 据清洗来消除干扰性数据,另一方面也需要针对挖掘目标 进行数据选择。数据选择的目的是辨别出需要分析的数据 集合,缩小处理范围,提高数据采掘的质量。数据选择可 以使后面的数据挖掘工作聚焦到和挖掘任务相关的数据子 集中。不仅提高了挖掘效率,而且也保证了挖掘的准确性。
2020/10/8
3
1.问题定义阶段的功能
KDD是为了在大量数据中发现有用的令人感兴趣 的信息,因此发现何种知识就成为整个过程中第 一个也是最重要的一个阶段。
在问题定义过程中,数据挖掘人员必须和领域专 家以及最终用户紧密协作
一方面了解相关领域的有关情况,熟悉背景知识,弄清 用户要求,确定挖掘的目标等要求;
本章也对KDD系统项目的过程化管理、交互式数据挖掘过 程以及通用的KDD原型系统进行讨论,使读者从软件项目 管理角度来更好地理解KDD过程。最后对数据挖掘语言的 类型和特点进行介绍。

2020/10/8
2
知识发现是一个系统化的工作
从源数据中发现有用知识是一个系统化的工作。 首先必须对可以利用的源数据进行分析,确定合 适的挖掘目标。然后才能着手系统的设计和开发。
2020/10/8
7
数据清洗与预处理
在开始一个知识发现项目之前必须清晰地定义挖掘目标。虽然挖掘的 最后结果是不可预测的,但是要解决或探索的问题应该是可预见的。 盲目性地挖掘是没有任何意义的。如果所集成的数据不正确,数据挖 掘算法输出的结果也必然不正确,这样形成的决策支持是不可靠的。 因此,要提高挖掘结果的准确率,数据预处理是不可忽视的一步。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年4月7日星期二
DMKD Sides By MAO
11
数据挖掘研究聚焦点
数据挖掘在如下几个方面需要重点开展工作:
数据挖掘技术与特定商业逻辑的平滑集成问题:数据挖掘需要代表性的应 用实例来证明(像“啤酒与尿布” )。
数据挖掘技术与特定数据存储类型的适应问题:不同的数据存储方式会影 响数据挖掘的具体实现机制、目标定位、技术有效性等。
2020年4月7日星期二
DMKD Sides By MAO
7
统计学的深入应用
强大有效的数理统计方法和工具,已成为信息咨 询业的基础 。
统计分析技术是基于严格的数学理论和高超的应 用技巧的 。
数据挖掘技术是数理统计分析应用的延伸和发展 。 和数据库技术的结合性研究
2020年4月7日星期二
DMKD Sides By MAO
大型数据的选择与规格化问题: 数据的噪音、信息丢失等问题的处理; 针对特定挖掘方法进行数据规格化等问题。
数据挖掘系统的构架与交互式挖掘技术: 在具体的实现机制、技术路线以及各阶段的功能定位等方面仍需细化 和深入研究。 良好的交互式挖掘(Interaction Mining)也是数据挖掘系统成功的 前提。
随着KDD在学术界和工业界的影响越来越大,数 据挖掘的研究向着更深入和实用技术方向发展:
大学等研究机构的大多数基础性研究集中在数据挖掘理论、挖掘 算法等的探讨上。
公司的研究更注重和实际商业问题结合。
数据挖掘的经济价值已经显现出来:Gartner报告 中列举重要影响的五项关键技术,其中KDD和人 工智能排名第一。
5
数据挖掘是一个多学科交叉技术
Database Technology
Statistics
AI /Machine
Learning
Data Mining
Visualization
Information Science
Other Disciplines
2020年4月7日星期二
DMK智能学家Feigenbaum估计, 一般人拥有的常识存入计算机大约有100万条事实和抽象经验法则,
离开常识的专家系统有时会比傻子还傻。
数据挖掘继承了专家系统的高度实用性特点,并 且以数据为基本出发点,客观地挖掘知识。
机器学习得到了充分的研究和发展:理论和算法。
数据挖掘研究在继承已有的人工智能相关领域, 特别是机器学习的研究成果的基础上,成为新的 研究分支。
8
人工智能技术的研究和应用
人工智能是计算机科学研究中争议最多而又仍始 终保持强大生命的研究领域。
专家系统曾经是人工智能研究工作者的骄傲,但
是诸多难题限制了专家系统的应用:
知识获取成为专家系统研究中公认的瓶颈问题。
知识表示成为一大难题:知识工程师在整理表达从领域专家那里 获得的知识时勉强抽象出来的规则有很强的工艺色彩。
knowledge
2020年4月7日星期二
DMKD Sides By MAO
4
数据挖掘产生的技术背景
数据挖掘是相关学科充分发展的基础上被提出和 发展的。
主要的相关技术:
数据库等信息技术的发展 统计学深入应用 人工智能技术的研究和应用
2020年4月7日星期二
DMKD Sides By MAO
6
数据库系统的发展
60年代:简单文件处理系统向数据库系统变革 。 70年代:层次、网络和关系型数据库普及。 80年代:RDBS及其相关工具、数据索引及数据组
织技术被广泛采用;中期开始,分布式数据库广 发讨论,关系数据库技术和新型技术的结合。 90年代:数据库领域中的新内容、新应用、新技 术层出不穷,形成了庞大的数据库家族;人们期 望分析预测、决策支持等高级应用, Data mining and data warehousing等出现。 本世纪开始: Data mining 得到理论/技术深化。
随着信息技术的高速发展,人们希望能够提供更 高层次的数据处理功能。新的需求推动新的技术 的诞生。
数据(Data)、信息(Information)和知识 (Knowledge)是广义数据表现的不同形式。
2020年4月7日星期二
DMKD Sides By MAO
3
数据、信息和知识
data
information
《数据挖掘原理与算法》
By 毛国君,段立娟,王石,石云
Pub. 清华大学出版社,2004
使用说明: 本书是一本全面介绍数据挖掘和知识发现技术的
专业书籍,可作为计算机专业研究生或高年级本科生 教材。共分8章,各章相对独立成篇,以利于读者选 择性学习。本课件供全书讲解之用,为了取得好的教 学效果,教师应该根据学生层次、教学大纲或课时安 排进行必要裁减。
2020年4月7日星期二
DMKD Sides By MAO
2
数据挖掘技术的商业需求分析
随着信息技术的高速发展,数据库应用的规模、 范围和深度不断扩大,网络环境成为主流等等。 产生“数据丰富而信息贫乏(Data Rich & Information Poor)”现象。
在强大的商业需求的驱动下,商家们开始注意到 有效地解决大容量数据的利用问题具有巨大的商 机;学者们开始思考如何从大容量数据集中获取 有用信息和知识的方法。
2020年4月7日星期二
DMKD Sides By MAO
1
第一章 绪论
数据挖掘技术的产生与发展 数据挖掘研究的发展趋势 数据挖掘概念 数据挖掘技术的分类问题 数据挖掘常用的知识表示模式与方法 不同数据存储形式下的数据挖掘问题 粗糙集方法及其在数据挖掘中的应用 数据挖掘的应用分析
内容提要
2020年4月7日星期二
DMKD Sides By MAO
10
数据挖掘处于研究和应用探索阶段
经过十几年的研究和实践,数据挖掘技术已经吸 收了许多学科的最新研究成果而形成独具特色的 研究分支。
大部分学者认为数据挖掘的研究仍然处于广泛研 究和探索阶段:
一方面,数据挖掘的概念已经被广泛接受。 另一方面,数据挖掘的大面积应用还有待时日。
2020年4月7日星期二
DMKD Sides By MAO
9
第一章 绪论
数据挖掘技术的产生与发展 数据挖掘研究的发展趋势 数据挖掘概念 数据挖掘技术的分类问题 数据挖掘常用的知识表示模式与方法 不同数据存储形式下的数据挖掘问题 粗糙集方法及其在数据挖掘中的应用 数据挖掘的应用分析
内容提要
相关文档
最新文档