小升初组合图形面积计算(1)
专题17:《平面几何的面积(一)》小升初数学专题讲练 (思维导图+知识点精讲+例题分析+变式训练

2019-2020学年通用版数学小升初总复习专题汇编讲练专题17 平面几何的面积(一)1、三角形⑴特征:由三条线段围成的图形;内角和是180度;三角形具有稳定性;从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,一个三角形有三条高。
⑵计算公式:s=ah/2⑶分类①按角分A、锐角三角形:三个角都是锐角。
B、直角三角形:有一个角是直角。
等腰三角形的两个锐角各为45度,它有一条对称轴。
C、钝角三角形:有一个角是钝角。
②按边分A、不等边三角形:三条边长度不相等。
B、等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。
C、等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。
2、四边形⑴特征:①四边形是由四条线段围成的图形。
②任意四边形的内角和是360度。
③只有一组对边平行的四边形叫梯形。
④两组对边分别平行的四边形叫平行四边形,它简洁变形。
长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。
⑵分类①长方形A、特征:对边相等,4个角都是直角的四边形。
有两条对称轴。
B、计算公式:c=2(a+b) s=ab②正方形A、特征:四条边都相等,四个角都是直角的四边形。
有4条对称轴。
B、计算公式:c=4a s=a²③平行四边形A、特征:两组对边分别平行的四边形;相对的边平行且相等;对角相等;相邻的两个角的度数之和为180度;平行四边形简洁变形。
B、计算公式:s=ah④梯形A、特征:只有一组对边平行的四边形;中位线等于上下底和的一半;等腰梯形有一条对称轴。
B、计算公式:s=(a+b)h/2=mh3、圆⑴圆的生疏圆是平面上的一种曲线图形。
圆中心的一点叫做圆心。
一般用字母o表示。
半径:连接圆心和圆上任意一点的线段叫做半径。
一般用r表示。
在同一个圆里,有很多条半径,每条半径的长度都相等。
通过圆心并且两端都在圆上的线段叫做直径。
一般用d表示。
同一个圆里有很多条直径,全部的直径都相等。
【新版】小升初组合图形面积计算

组合图形1、求下列组合图形阴影部分的面积。
2、①求它的周长和面积。
(单位:厘米)②圆的周长是18.84cm,求阴影部分面积。
③长方形的面积和圆的面积相等,已知圆④求直角三角形中阴影部分的面积。
的半径是3cm,求阴影部分的周长和面积。
(单位:分米)⑤下图中长方形长6cm,宽4cm,已知阴影⑥图中阴影①比阴影②面积小48平方厘米,①比阴影②面积少3cm2,求EC的长。
⑦平行四边形的面积是30cm2,⑧一个圆的半径是4cm,求阴影部分面积。
求阴影部分的面积。
⑨已知AB=8cm,AD=12cm,三角形ABE和三角形ADF的面积,各占长方形ABCD的1/3,求三角形AEF的面积。
⑩梯形上底8cm,下底16cm,阴影⑾求阴影部分面积。
(单位:cm)部分面积64cm2,求梯形面积。
⑿梯形面积是48平方厘米,阴影部分比空白 ⒀阴影部分比空白部分大6cm 2,求S 阴。
部分少12平方厘米,求阴影部分面积。
一、求出阴影部分面积:(6分)。
4、下图中大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积(10分)16、下图中阴影部分的面积是( )平方厘米。
8 4m 48m25、如图(3),有两个边长是2厘米的正方形,其中一个正方形的一个顶点在另一个的中心2、右图中阴影部分的面积为(单位:厘米)。
如图,等腰直角三角形ABC 的面积是8平方厘米。
求阴影部分的面积。
(8分)图(3)5 5 4 422. 求阴影部分的面积。
(单位:厘米)1、求右图中阴影部分面积(单位:厘米)。
1. 下图是由正方形和半圆形组成的图形,其中P 点为半圆周的中点,Q 点为正方形一边的中点,求阴影部分面积。
(单位:厘米)631、下图中三角形的面积等于梯形的面积,求五边形的面积。
(单位:厘米)16、下图中阴影部分的面积是()平方厘米。
666 611、如图:阴影三角形的面积是 。
12、用一块面积为36平方厘米的圆形铝板下料,如图,裁出7个同样大小的圆铝板,则余下的边角料的总面积是 平方厘米。
数学(小升初) 组合图形周长、面积的计算

第2讲组合图形面积的计算一、计算公式例1、如图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.例2、下图,求阴影部分的面积。
其他常用的基本方法有:一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例如:求下图整个图形的面积二、相减法这方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
例如:下图,求阴影部分的面积。
一句话:正方形面积减去圆的面积即可。
三、直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积。
例如:下图,求阴影部分的面积。
一句话:通过分析发现阴影部分就是一个底是2、高是4的三角形。
四、重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可。
例如:下图,求阴影部分的面积。
一句话:拆开图形,使阴影部分分布在正方形的4个角处,如下图。
五、辅助线法这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可例如:下图,若求阴影部分的面积。
六、割补法法这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决。
例如:求阴影部分的面积.七、平移法这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。
例如:下图,求阴影部分的面积。
一句话:可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积。
例如图(1),求阴影部分的面积。
一句话:左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半。
小升初数学每日一练:组合图形面积的巧算练习题及答案_2020年压轴题版

小升初数学每日一练:组合图形面积的巧算练习题及答案_2020年压轴题版答案答案答案答案2020年小升初数学:空间与图形_四边形及多边形_组合图形面积的巧算练习题
~~第1题~~(2017
东莞.小升初真题) 三角形ABC 中,三角形ABC 的面积为36平方厘米,CF=4AF,BD=DF,求阴影部分的面积。
考点: 组合图形面积的巧算;~~第
2题~~
(2017杭州.小升初模拟) 正方形ABCD 的边长为1cm ,图中4个弓形面积之和是多少?
考点: 组合图形面积的巧算;~~第3题~~
(2015潍坊.小升初真题) 如图,在半径为
R 的圆形钢板上,冲去半径为r 的四个圆,请列出阴影部分面积S 的计算式子,并利用因式分解计算当R=6.5,r=3.2时S 的值(π≈3.14结果保留两个有效数字).
考点: 组合图形面积的巧算;~~第
4题~~
(2019.小升初模拟) 如图,有8个半径为1厘米的小圆,用他们的圆周的一部分连成一个花瓣,图中的黑点是这些圆的圆心.如果圆周π率取3.1416,那么花瓣图形的面积是多少平方厘米?
考点: 组合图形面积的巧算;~~第5题~~
(2018浙江.小升初模拟) 下面两题任意选做一题。
(1) 如图,长方形的长是8厘米,宽6厘米。
阴影部分甲比乙大多少平方厘米?
答案(
2) 如图,长方形的长是6厘米,宽是4厘米,阴影部分三角形的面积是9平方厘米,求BD 的长度。
考点: 组合图形面积的巧算;
2020年小升初数学:空间与图形_
四边形及多边形_组合图形面积的巧算练习题答案1.
答案:
2.答案:
3.答案:
4.答案:
5.答案:。
小升初专题之组合图形面积

一、几种常用求组合图形面积的方法: 1、旋转的思想方法。
将所给图形中的某一部分绕一个固定点旋转一定(或适当)的角度,变为较明显的简单而又直观的图形。
2.移动的思想方法。
A .点的移动:将图中的某一点看作一个“动点”沿直线移动,使原来分着的空白部分合并在一起变成一个简单明了的图形。
B .面的移动:将所给图形中的某个图形沿直线上下左右移动,把复杂的图形转化成简单的图形,使原来面积不等变成相等。
3.翻折的思想方法。
将所给图形的某一部分以某一直线为对称轴翻折,使原来复杂的图形变为直观图形。
【例题讲解】例1、如图,长方形的长是8厘米、宽是6厘米、A 和B 是宽的中点,求长方形内阴影部分的面积。
例2、下面的长方形是一块草坪,中间有两条宽1米的走道。
求植草的面积。
BB例3、下图是一块长方形草地。
长方形长16米、宽10米,中间有两条宽2米的道路,两条都是平行四边形。
求有草部分的面积。
【知识反馈】1、求图中阴影部分的面积。
(单位:厘米)2、梯形草坪(如下图),有一平形四边形人行道,求人行道的面积是多少平方米?80米50米16102203、一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道红条,如下图阴影所示部分,红条宽都是2厘米。
问:这条手帕白色部分的面积是多少?7、下图是一块长方形草地。
长方形长30米、宽15米,中间有两条宽3米的道路,一条是长方形,另一条是平行四边形。
求有草部分的面积。
8、如图,ABCD 是直角梯形,AD=4cm,BC=6cm,AB=3cm 求阴影部分的面积和。
(单位:厘米)3033DA 439、下图中,边长为10和15的两个正方形并放在一起,求三角形ABC (阴影部分)的面积。
(小升初培优讲义)专题27 组合图形的面积计算-六年级一轮复习(知识点精讲+达标检测)(教师版)

专题27 组合图形的面积计算知识梳理1.平面图形的周长与面积公式。
[提示]有的平面图形的公式不是唯一的,有时要结合不同的已加条件灵活运用,比如圆的周长公式,当已知半径时,选用C=2πr;已知直径时,可选用C=πd。
除了熟练掌握平面图形的周长与面积公式外,还要理解每个公式是怎么推导出来的,如圆的面积公式推导进程是把一个圆平均分成若干个小扇形,可以拼成一个近似的长方形,长方形的长等于圆周长的一半,宽等于圆的半径。
2.组合图形的面积。
对于组合图形面积的计算问题,一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。
(1)直接求面积。
这种方法是根据已知条件,从整体出发直接求出组合图形面积。
(2)相加、相减求面积。
这种方法是将组合图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加或相减求出该图形的面积。
(3)等量代换求面积。
一个图形可以用与它相等的另一个图形替换,如果甲、乙大小相等,那么求出乙的大小,就知道甲的大小;两个图形同时增加或减少相同的面积,它们的差不变。
(4)借助辅助线求面积。
这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法求面积。
【例1】计算右面图形的面积。
(单位:厘米)【点拨分析】 求梯形的面积,必须知道上底、下底和高这三个条件。
从圆中可以看出,此梯形的高是6厘米,那么解题的关键就是求出上底和下底的长或求出它们的长度和。
在左边的直角三角形中,一个内角是45°,可知它是等腰直角三角形,所以高的左边部分与下底相等。
同样,右边的三角形也是一个等腰直角三角形,所以梯形的上底和高的右边部分相等。
这样就可推和梯形上、下底的长度和就是梯形高的长度6厘米。
【答 案】 6×6÷2=18(平方厘米)例题精讲1.计算下面图形的面积。
(单位:厘米)2.如图,长方形的面积是45平方米,求阴影部分的面积。
小升初组合图形面积计算(1)

权威小升初之-—-阴影部分面积计算【知识精讲】1。
常用公式长方形面积= 正方形面积= 平行四边形面积=三角形面积= 梯形面积=长方形周长= 正方形周长=2。
等积代换最常用的等积变换是三角形,要熟记下面的结论:①等底等高的两个三角形面积相等;②两条平行线间的距离处处相等;③底在同一条直线上并且相等,两底分别所对的两个三角形的两个角的顶点是同一个点或在与底平行的直线上,则这两个三角形面积相等;④若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形的几倍。
一、扇形、环形的面积计算1、(2010成外一)甲乙两人分别绕右图的内圆(半径为30米)和外圆(半径为50米)跑步.①两人各跑一圈相差多少米?(π≈3)②求图中阴影部分的面积?(π≈3)2、右图所示是人行道的转弯处,已知弧AA’和BB'都是45°圆心角所对的弧,AA1的半径为8米,人行道宽为2米,求ABB’A'的面积。
. 3、求下图中阴影部分的面积。
(单位:米)4、(2012成外)圆的半径是4cm,阴影部分的面积是14πcm2,求图中三角形的面积.二、割补法1、(2010成外一)图中阴影部分的面积是()平方厘米.2、(2012成都西川中学)如图所示,正方形ABCD的边长为10cm,以CD为直径作半圆,E为半圆周上的中点,F为BC的中点,求阴影部分的面积。
3、(2009成都西川中学)求下列图形中阴影部分的面积.4、(2009成都西川中学)图中正方形ABCD的边长为3厘米,正方形CEFG的边长为4 厘米。
5、(2012成都七中嘉祥)如图是边长6的正方形和梯形拼成的“火炬",梯形的上底长9m,A为上底的中点,B为下底的中点,线段AB恰好是梯形的高且长为3m,CD长为2m。
那么,图中阴影部分的面积是多少㎡?6、(2010成都七中嘉祥)如图,若长方形APHM、BNHP、CQHN的面积分别为7、4、6,则阴影部分的面积是多少?7、(2010成都实外一)如图,是大小两个正方形组成的图形,大正方形边长是8厘米,小正方形边长为6厘米,求阴影部分的面积。
小升初数学专题2:图形与几何(1)图形的认识及计算-附答案

A. 圆的周长
B. 圆的直径
C. 圆的半径
D. 圆的面积
12. ( 2 分 ) 小圆与大圆的半径之比是 1:3,小圆与大圆的面积之比是( )。
A. 1:3
B. 1:6
C. 1:9
D. 1:9.42
13. ( 6 分 ) 在一个大正方形上挖去一个棱长是 1cm 的小正方体,大正方体的表面积发生怎样的变化?
【解析】【解答】甲的面积=2×2× =2;
乙的面积=2×1=2; 甲的面积=乙的面积. 故答案为:C.
【分析】甲图是一个三角形,底是 2,高是 2,根据面积公式:三角形的面积=底×高× , 可以求出这个
三角形的面积;
乙图是一个平行四边形,底是 2,高是 1,根据面积公式:平行四边形的面积=底×高,可以求出这个平行
50. ( 5 分 ) 画一个直径是 12 厘米的圆,并在圆中画一个圆心角是 100°的扇形。求这个扇形的面积。
51. ( 5 分 ) 计算阴影部分的面积
52. ( 10 分 ) 安居小区门前的水池长 9m,长是宽的 1.5 倍,深 1.2m。 (1)这个水池的占地面积是多少平方米? (2)如果把水池四周和底面贴上瓷砖,贴瓷砖的面积是多少平方米? 53. ( 5 分 ) 一根铁丝可以围成一个直径是 6cm 的圆,如果用它围成一个等边三角形,每边的长是多少厘米? 54. ( 5 分 ) 长青桥小学有一块面积是 490 平方米的长方形苗圃,苗圃长 35 米,宽是多少米?周长是多少 米? 55. ( 5 分 ) 有一块平行四边形麦田,底是 200 米,高是 45 米,平均每公顷收获小麦 7.05 吨,这块地共收 获小麦多少吨? 56. ( 5 分 ) 李爷爷把牛栓在草原的木桩上,木桩到牛鼻的绳子长 6 米,牛能吃到草的面积有多大? 57. ( 5 分 ) 压路机的滚筒是一个圆柱体,它的底面直径是 1 米,长 2 米。每滚动一周能压多大面积的路面? 58. ( 5 分 ) 有一个近似圆锥形的小麦堆,测得麦堆底面直径 4 米,高 1.5 米,如果每立方米小麦重 740 千 克,这堆小麦大约重多少千克?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
权威小升初之---阴影部分面积计算
【知识精讲】
1.常用公式
长方形面积= 正方形面积= 平行四边形面积=
三角形面积= 梯形面积=
长方形周长= 正方形周长=
2.等积代换
最常用的等积变换是三角形,要熟记下面的结论:
①等底等高的两个三角形面积相等;
②两条平行线间的距离处处相等;
③底在同一条直线上并且相等,两底分别所对的两个三角形的两个角的顶点是同一个点或在与底平行的
直线上,则这两个三角形面积相等;
④若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三
角形的面积也是另一个三角形的几倍。
一、扇形、环形的面积计算
1、(2010成外一)甲乙两人分别绕右图的内圆(半径为30米)和外圆(半径为50米)跑步.
①两人各跑一圈相差多少米?(π≈3)
②求图中阴影部分的面积?(π≈3)
2、右图所示是人行道的转弯处,已知弧AA’和BB’都是45°圆心角所对的弧,AA1的半径为8米,人行道宽为2米,求ABB’A’的面积。
. 3、求下图中阴影部分的面积。
(单位:米)
4、(2012成外)圆的半径是4cm,阴影部分的面积是14πcm2,求图中三角形的面积.
二、割补法
1、(2010成外一)图中阴影部分的面积是()平方厘米。
2、(2012成都西川中学)如图所示,正方形ABCD的边长为10cm,以CD为直径作半圆,E为半圆周上的中点,F为BC的中点,求阴影部分的面积。
3、(2009成都西川中学)求下列图形中阴影部分的面积。
4、(2009成都西川中学)图中正方形ABCD的边长为3厘米,正方形CEFG的边长为4 厘米。
5、(2012成都七中嘉祥)如图是边长6的正方形和梯形拼成的“火炬”,梯形的上底长9m,A为上
底的中点,B为下底的中点,线段AB恰好是梯形的高且长为3m,CD长为2m。
那么,图中阴影部分的面积是多少㎡?
6、(2010成都七中嘉祥)如图,若长方形APHM、BNHP、CQHN的面积分别为
7、4、6,则阴影部分的
面积是多少?
7、(2010成都实外一)如图,是大小两个正方形组成的图形,大正方形边长是8厘米,小正方形边长
为6厘米,求阴影部分的面积。
8、(2009七中嘉祥)如图,由正方形和半圆形组成的图形。
正方形的边长为10,其中P点为半圆周的中点,Q为正方形一边的中点。
那么阴影部分的面积是多少?(圆周率=3.14)
9、(2009七中嘉祥)计算图形的面积:如图两个正方形的边长分别是4厘米、6厘米,
求阴影部分的面积是多少平方厘米?
10、(2011实外西区)求阴影部分的面积(单位:厘米)
11、(2010实外西区)求出周长和面积。
12、(2012师大一中)求图中阴影部分的面积。
(单位:厘米)
13、(2011七中实验)图中的阴影部分面积等于多少。
14、(2011七中实验)如图,求阴影部分的面积。
(单位:厘米)(π取3.14)
15、(2013成华区)如图,已知圆的周长是25.12厘米,圆的面积与长方形的面积相等,则阴影部分面积为多少平方厘米?
16、(2010成都实外二)求图中阴影部分的面积。
(图中的三角形是等腰直角三角形,π=3.14)
17、下图中,大圆半径为6,则其阴影部分的面积为多少?
18、求下图中阴影部分的面积。
(单位:米)
19、(2011太原市四十八中分班卷)如右图,阴影部分的面积是()平方厘米。
(π取3.14,单位:
厘米)
20、如下图,四边形ABCD的面积是()平方厘米。
(单位:厘米)
三、等积变形、蝴蝶原理
(1)等积变形
1、如右图,在平行四边形ADFG中,AB=BC=CD,DE=EF,则甲、乙两个三角形面积的比是()。
.2、下图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米,则四边形ABDE的面积是多少平方厘米?
3、如右图,图中数据表示该长方形各块的面积,求阴影面积。
4、(2013师大一中)如图,点EF,分别是平行四边形ABCD边AB,BC的中点,若阴影部分的面积为6,求平行四边形ABCD的面积。
5、(2012师大一中)如图,AF=3FB,FD=3EF,直角三角形ABC的面积是48平方厘米。
求平行四边形EBCD和三角形AFD的面积。
8、(2011成都实外二)如图,长方形ABCD的面积为2平方厘米,EG=2DE,F是DG的中点,则阴影部分的面积是多少?
9、(2009成都实外)如图,△ABC中,AB=3AD,AC=3CG,BE=EF=FC,且△FCG的面积为1平方厘米,求阴影部分的面积。
10、(2012成外)在正方体ABCD中,E,F分别是所在边的中点,求四边形AGCD的面积占正方形面积的几分之几?
11、如右图,ABCD为任意四边形,其中AE=2
3
AB,BF=
2
3
BC,CG=
2
3
CD,DH=
2
3
DA,连接E、F、G、H,求四边形
EFGH的面积与四边形ABCD的面积之比。
12、如图,在直角三角形ABC中,∠BAC=90°, AC= 6cm, BA= 8cm,点E在边BC上,四边形ADEF是正方形,求正方形ADEF的边长。
13、ABCD为直角梯形,AD=6,DC=10,三角形BEC面积为6,求ABCD的面积?
14、如图,在角MON的两边上分别有A C E及B D F六个点,并且△OAB△ABC,△BCD,△CDE,△DEF的面积都等于1,则△DCF的面积等于多少?
(2)蝴蝶原理
1、(2010成外一)如图,BD、CF将长方形ABCD分成4块,△DEF的面积是4cm2,△CED的面积是6cm2,
则四边形ABEF的面积是()平方厘米.
2、(2010成外二)如右图所示,长方形ABCD中,△ABP的面积为20平方厘米,△CDQ的面积为35平方
厘米,求阴影四边形的面积。
3、(2010成都七中嘉祥)如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG
的面积是3平方厘米,阴影部分的面积是多少平方厘米?
四、同加同减
1、求下列图形中两阴影部分的面积之差。
2.如下图,正方形ABCD的面积比三角形ABF的面积小6平方厘米,线段AB长8厘米,CF长()厘米。
3、如右图,三角形ABC是直角三角形,AC长4厘米,BC长2厘米,以AC、BC分别为直径画圆,两个半圆的交点D在AB上,求阴影部分的面积。
4、如图是两个同样大的圆,半径为1厘米,而且两个阴影部分的面积相等,那么,连接两个圆心的的线段O1O2的长是多少厘米?
五、特殊题型
1.(2013成外)将如图所示的三角形沿虚线折叠,得到到如图所示的多边形,这个多边形的面积是原三角形
面积的5
7
,已知图中阴影部分的面积为6平方厘米,求原三角形的面积。
2、一个等腰直角三角形,它的斜边长20厘米,它的面积是多少平方厘米?
3、(2013成都实外)如图,在梯形ABCD内有两个三角形的面积分别是10与12,已知梯形的上底AB
的长是下底DC的长的2
3,那么余下的阴影部分的面积是多少?
4、正方形ABCD边长是8厘米,长方形DEFG的长DG=10厘米,求他的宽DE长多少厘米?。