Mathematica使用方法
mathematica如何数值解微分方程

mathematica如何数值解微分方程(实用版)目录一、引言二、微分方程数值解的方法1.常微分方程的数值解法2.偏微分方程的数值解法三、Mathematica 在微分方程数值解中的应用1.数值解微分方程的 Mathematica 函数2.Mathematica 解微分方程的实例四、结论正文一、引言微分方程是数学领域中的一个重要研究对象,它在物理、工程、生物等多个学科中都有广泛的应用。
然而,许多微分方程无法求得解析解,这时就需要通过数值方法来求解。
数值解微分方程是将微分方程转化为数值问题,通过计算机进行求解的方法。
Mathematica 作为一款强大的数学软件,可以很好地用于数值解微分方程。
二、微分方程数值解的方法1.常微分方程的数值解法常微分方程是指关于未知数 x 的导数为常数的微分方程。
数值解常微分方程的方法有多种,如欧拉法、改进欧拉法、龙格 - 库塔法等。
这些方法在 Mathematica 中都有相应的实现。
例如,使用 Mathematica 解一阶常微分方程 y" = ky:```mathematicaeq = y"[x] == k*y[x];sol = DSolve[eq, y[x], x];y[x] // FullSimplify```2.偏微分方程的数值解法偏微分方程是指关于未知函数 y 的导数包含 x 的偏导数的微分方程。
数值解偏微分方程的方法同样有多种,如分离变量法、有限差分法等。
这些方法在 Mathematica 中同样有相应的实现。
例如,使用 Mathematica 解二维热传导方程:```mathematicaeq = T[x, y] == k*y"[x, y];bc = {T[0, y] == 0, T[x, 0] == 0};sol = NDSolve[eq, T[x, y], {x, 0, 1}, {y, 0, 1}, bc];T[x, y] // FullSimplify```三、Mathematica 在微分方程数值解中的应用1.数值解微分方程的 Mathematica 函数Mathematica 中提供了许多用于数值解微分方程的函数,如 DSolve、NDSolve 等。
mathematica 特征向量

mathematica 特征向量摘要:一、引言- 介绍Mathematica 软件- 介绍特征向量的概念二、Mathematica 求解特征向量的方法- 使用Mathematica 软件的优势- 详细步骤讲解1.定义矩阵2.计算特征值和特征向量3.结果展示三、特征向量在实际问题中的应用- 举例说明特征向量在工程和物理领域的应用- 特征向量在图像处理和数据分析中的重要性四、结论- 总结Mathematica 求解特征向量的方法- 强调特征向量在各个领域的应用价值正文:一、引言Mathematica 是一款功能强大的数学软件,广泛应用于各个领域。
在数学中,特征向量是一个重要的概念,它可以帮助我们更好地理解和分析线性变换。
本文将介绍如何使用Mathematica 软件求解特征向量,并探讨特征向量在实际问题中的应用。
二、Mathematica 求解特征向量的方法使用Mathematica 软件求解特征向量具有很多优势,例如操作简便、结果精确等。
下面将详细介绍使用Mathematica 求解特征向量的步骤:1.定义矩阵:首先,我们需要定义一个矩阵,可以使用以下命令:```A = {{1, 2}, {3, 4}};```2.计算特征值和特征向量:使用`Eigensystem`函数可以同时计算出矩阵的特征值和特征向量。
例如:```Eigensystem[A]```3.结果展示:在计算完成后,Mathematica 会自动显示出特征值和特征向量。
例如:```{{1, 1}, {0, 1}}```二、特征向量在实际问题中的应用特征向量在工程、物理、图像处理和数据分析等领域具有广泛的应用。
例如,在结构动力学中,特征向量可以用来分析结构的振动模式;在量子力学中,特征向量可以表示波函数;在图像处理中,特征向量可以用于提取图像的主要特征等。
三、结论本文介绍了如何使用Mathematica 软件求解特征向量,并通过实际例子展示了特征向量在各个领域的应用价值。
Mathematica函数及使用方法

Mathematica函数及使用方法(来源:北峰数模)--------------------------------------------------------------------- 注:为了对Mathematica有一定了解的同学系统掌握Mathematica的强大功能,我们把它的一些资料性的东西整理了一下,希望能对大家有所帮助。
---------------------------------------------------------------------一、运算符及特殊符号Line1; 执行Line,不显示结果Line1,line2 顺次执行Line1,2,并显示结果?name 关于系统变量name的信息??name 关于系统变量name的全部信息!command 执行Dos命令n! N的阶乘!!filename 显示文件内容< Expr>> filename 打开文件写Expr>>>filename 打开文件从文件末写() 结合率[] 函数{} 一个表<*Math Fun*> 在c语言中使用math的函数(*Note*) 程序的注释#n 第n个参数## 所有参数rule& 把rule作用于后面的式子% 前一次的输出%% 倒数第二次的输出%n 第n个输出var::note 变量var的注释"Astring " 字符串Context ` 上下文a+b 加a-b 减a*b或a b 乘a/b 除a^b 乘方base^^num 以base为进位的数lhs&&rhs 且lhs||rhs 或!lha 非++,-- 自加1,自减1+=,-=,*=,/= 同C语言>,<,>=,<=,==,!= 逻辑判断(同c)lhs=rhs 立即赋值lhs:=rhs 建立动态赋值lhs:>rhs 建立替换规则lhs->rhs 建立替换规则expr//funname 相当于filename[expr]expr/.rule 将规则rule应用于exprexpr//.rule 将规则rule不断应用于expr知道不变为止param_ 名为param的一个任意表达式(形式变量)param__ 名为param的任意多个任意表达式(形式变量)—————————————————————————————————————二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180角度弧度换算I 复数单位Infinity 无穷大-Infinity 负无穷大ComplexInfinity 复无穷大Indeterminate 不定式—————————————————————————————————————三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进行化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因子FactorTerms[poly, x] 提出与x无关的数字因子FactorTerms[poly, {x1,x2...}] 提出与xi无关的数字因子Coefficient[expr, form] 多项式expr中form的系数Coefficient[expr, form, n] 多项式expr中form^n的系数Exponent[expr, form] 表达式expr中form的最高指数Numerator[expr] 表达式expr的分子Denominator[expr] 表达式expr的分母ExpandNumerator[expr] 展开expr的分子部分ExpandDenominator[expr] 展开expr的分母部分TrigExpand[expr] 展开表达式中的三角函数TrigFactor[expr] 给出表达式中的三角函数因子TrigFactorList[expr] 给出表达式中的三角函数因子的表TrigReduce[expr] 对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr] 指数到三角的转化RootReduce[expr]ToRadicals[expr] —————————————————————————————————————四、解方程Solve[eqns, vars] 从方程组eqns中解出varsSolve[eqns, vars, elims] 从方程组eqns中削去变量elims,解出varsDSolve[eqn, y, x] 解微分方程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}] 解偏微分方程Eliminate[eqns, vars] 把方程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式方程的所有根—————————————————————————————————————五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中ai为系数O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^n —————————————————————————————————————八、数值函数N[expr] 表达式的机器精度近似值N[expr, n] 表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var] 求方程数值解NSolve[eqn, var, n] 求方程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分方程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]微分方程组数值解FindRoot[lhs==rhs, {x,x0}] 以x0为初值,寻找方程数值解FindRoot[lhs==rhs, {x, xstart, xmin, xmax}]NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}] 以x0为初值,寻找函数最小值FindMinimum[f, {x, xstart, xmin, xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f为x,y..之线性函数,得到最小值及此时的x,y..取值ConstrainedMax[f, {inequ}, {x, y,..}]同上LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0约束下的最小值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}] 向量组vi的极小无关组数据处理:Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进行差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}]FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进行插值Fourier[list] 对复数数据进行付氏变换InverseFourier[list] 对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p] 将表中元素按p[e1,e2]为True的顺序比较list的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..] 表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集—————————————————————————————————————九、虚数函数Re[expr] 复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr] 复数表达式的辐角Conjugate[expr] 复数表达式的共轭—————————————————————————————————————十、数的头及模式及其他操作Integer _Integer 整数Real _Real 实数Complex _Complex 复数Rational_Rational 有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*)IntegerDigits[n,b,len] 数字n以b近制的前len个码元RealDigits[x,b,len] 类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差小于dxChop[expr, delta] 将expr中小于delta的部分去掉,dx默认为10^-10Accuracy[x] 给出x小数部分位数,对于Pi,E等为无限大Precision[x] 给出x有效数字位数,对于Pi,E等为无限大SetAccuracy[expr, n] 设置expr显示时的小数部分位数SetPrecision[expr, n] 设置expr显示时的有效数字位数—————————————————————————————————————十一、区间函数Interval[{min, max}] 区间[min, max](* Solve[3 x+2==Interval[{-2,5}],x]*) IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2] 区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...] 区间的交—————————————————————————————————————十二、矩阵操作a.b.c 或Dot[a, b, c] 矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list] 矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k行与第nk列交换Det[m] 矩阵的行列式Eigenvalues[m] 特征值Eigenvectors[m] 特征向量Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性方程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是)MatrixPower[mat, n] 阵mat自乘n次Outer[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩阵Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的广义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解—————————————————————————————————————十三、表函数(*“表”,我认为是Mathematica中最灵活的一种数据类型*)(*实际上表就是表达式,表达式也就是表,所以下面list==expr *)(*一个表中元素的位置可以用于一个表来表示*)表的生成{e1,e2,...} 一个表,元素可以为任意表达式,无穷嵌套Table[expr,{imax}] 生成一个表,共imax个元素Table[expr,{i, imax}] 生成一个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..] 多维表Range[imax] 简单数表{1,2,..,imax}Range[imin, imax, di] 以di为步长的数表Array[f, n] 一维表,元素为f[i] (i从1到n)Array[f,{n1,n2..}] 多维表,元素为f[i,j..] (各自从1到ni)IdentityMatrix[n] n阶单位阵DiagonalMatrix[list] 对角阵元素操作Part[expr, i]或expr[[i]]第i个元expr[[-i]] 倒数第i个元expr[[i,j,..]] 多维表的元expr[[{i1,i2,..}] 返回由第i(n)的元素组成的子表First[expr] 第一个元Last[expr] 最后一个元Head[expr] 函数头,等于expr[[0]]Extract[expr, list] 取出由表list制定位置上expr的元素值Take[list, n] 取出表list前n个元组成的表Take[list,{m,n}] 取出表list从m到n的元素组成的表Drop[list, n] 去掉表list前n个元剩下的表,其他参数同上Rest[expr] 去掉表list第一个元剩下的表Select[list, crit] 把crit作用到每一个list的元上,为True的所有元组成的表表的属性Length[expr] expr第一曾元素的个数Dimensions[expr] 表的维数返回{n1,n2..},expr为一个n1*n2...的阵TensorRank[expr] 秩Depth[expr] expr最大深度Level[expr,n] 给出expr中第n层子表达式的列表Count[list, pattern] 满足模式的list中元的个数MemberQ[list, form] list中是否有匹配form的元FreeQ[expr, form] MemberQ的反函数Position[expr, pattern] 表中匹配模式pattern的元素的位置列表Cases[{e1,e2...},pattern]匹配模式pattern的所有元素ei的表表的操作Append[expr, elem] 返回在表expr的最后追加elem元后的表Prepend[expr, elem] 返回在表expr的最前添加elem元后的表Insert[list, elem, n] 在第n元前插入elemInsert[expr,elem,{i,j,..}]在元素expr[[{i,j,..}]]前插入elemDelete[expr, {i, j,..}] 删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern]删除匹配pattern的所有元后剩下的表ReplacePart[expr,new,n] 将expr的第n元替换为newSort[list] 返回list按顺序排列的表Reverse[expr] 把表expr倒过来RotateLeft[expr, n] 把表expr循环左移n次RotateRight[expr, n] 把表expr循环右移n次Partition[list, n] 把list按每n各元为一个子表分割后再组成的大表Flatten[list] 抹平所有子表后得到的一维大表Flatten[list,n] 抹平到第n层Split[list] 把相同的元组成一个子表,再合成的大表FlattenAt[list, n] 把list[[n]]处的子表抹平Permutations[list] 由list的元素组成的所有全排列的列表Order[expr1,expr2] 如果expr1在expr2之前返回1,如果expr1在expr2之后返回-1,如果expr1与expr2全等返回0Signature[list] 把list通过两两交换得到标准顺序所需的交换次数(排列数)以上函数均为仅返回所需表而不改变原表AppendTo[list,elem] 相当于list=Append[list,elem];PrependTo[list,elem] 相当于list=Prepend[list,elem];--—————————————————————————————————————十四、绘图函数二维作图Plot[f,{x,xmin,xmax}] 一维函数f[x]在区间[xmin,xmax]上的函数曲线Plot[{f1,f2..},{x,xmin,xmax}] 在一张图上画几条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}] 由参数方程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在一张图上画多条参数曲线选项:PlotRange->{0,1} 作图显示的值域范围AspectRatio->1/GoldenRatio生成图形的纵横比PlotLabel ->label 标题文字Axes ->{False,True} 分别制定是否画x,y轴AxesLabel->{xlabel,ylabel}x,y轴上的说明文字Ticks->None,Automatic,fun用什么方式画轴的刻度AxesOrigin ->{x,y} 坐标轴原点位置AxesStyle->{{xstyle}, {ystyle}}设置轴线的线性颜色等属性Frame ->True,False 是否画边框FrameLabel ->{xmlabel,ymlabel,xplabel,yplabel}边框四边上的文字FrameTicks同Ticks 边框上是否画刻度GridLines 同Ticks 图上是否画栅格线FrameStyle ->{{xmstyle},{ymstyle}设置边框线的线性颜色等属性ListPlot[data,PlotJoined->True] 把离散点按顺序连线PlotSytle->{{style1},{style2},..}曲线的线性颜色等属性PlotPoints->15 曲线取样点,越大越细致三维作图Plot3D[f,{x,xmin,xmax}, {y,ymin,ymax}]二维函数f[x,y]的空间曲面Plot3D[{f,s}, {x,xmin,xmax}, {y,ymin,ymax}]同上,曲面的染色由s[x,y]值决定ListPlot3D[array] 二维数据阵array的立体高度图ListPlot3D[array,shades]同上,曲面的染色由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]二元数方程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmin,tmax}]多条空间参数曲线选项:ViewPoint ->{x,y,z} 三维视点,默认为{1.3,-2.4,2}Boxed -> True,False 是否画三维长方体边框BoxRatios->{sx,sy,sz} 三轴比例BoxStyle 三维长方体边框线性颜色等属性Lighting ->True 是否染色LightSources->{s1,s2..} si为某一个光源si={{dx,dy,dz},color}color为灯色,向dx,dy,dz方向照射AmbientLight->颜色函数慢散射光的光源Mesh->True,False 是否画曲面上与x,y轴平行的截面的截线MeshStyle 截线线性颜色等属性MeshRange->{{xmin,xmax}, {ymin,ymax}}网格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜色Shading ->False,True 是否染色HiddenSurface->True,False 略去被遮住不显示部分的信息等高线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的等高线图ListContourPlot[array] 根据二维数组array数值画等高线选项:Contours->n 画n条等高线Contours->{z1,z2,..} 在zi处画等高线ContourShading -> False 是否用深浅染色ContourLines -> True 是否画等高线ContourStyle -> {{style1},{style2},..}等高线线性颜色等属性FrameTicks 同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的密度图ListDensityPlot[array] 同上图形显示Show[graphics,options] 显示一组图形对象,options为选项设置Show[g1,g2...] 在一个图上叠加显示一组图形对象GraphicsArray[{g1,g2,...}]在一个图上分块显示一组图形对象SelectionAnimate[notebook,t]把选中的notebook中的图画循环放映选项:(此处选项适用于全部图形函数)Background->颜色函数指定绘图的背景颜色RotateLabel -> True 竖着写文字TextStyle 此后输出文字的字体,颜色大小等ColorFunction->Hue等把其作用于某点的函数值上决定某点的颜色RenderAll->False 是否对遮挡部分也染色MaxBend 曲线、曲面最大弯曲度绘图函数(续)图元函数Graphics[prim, options]prim为下面各种函数组成的表,表示一个二维图形对象Graphics3D[prim, options]prim为下面各种函数组成的表,表示一个三维图形对象SurfaceGraphics[array, shades]表示一个由array和shade决定的曲面对象ContourGraphics[array]表示一个由array决定的等高线图对象DensityGraphics[array]表示一个由array决定的密度图对象以上定义图形对象,可以进行对变量赋值,合并显示等操作,也可以存盘Point[p] p={x,y}或{x,y,z},在指定位置画点Line[{p1,p2,..}]经由pi点连线Rectangle[{xmin, ymin}, {xmax, ymax}] 画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}]由对角线指定的长方体Polygon[{p1,p2,..}] 封闭多边形Circle[{x,y},r] 画圆Circle[{x,y},{rx,ry}] 画椭圆,rx,ry为半长短轴Circle[{x,y},r,{a1,a2}] 从角度a1~a2的圆弧Disk[{x, y}, r] 填充的园、椭圆、圆弧等参数同上Raster[array,ColorFunction->f] 颜色栅格Text[expr,coords] 在坐标coords上输出表达式PostScript["string"] 直接用PostScript图元语言写Scaled[{x,y,..}] 返回点的坐标,且均大于0小于1颜色函数(指定其后绘图的颜色)GrayLevel[level] 灰度level为0~1间的实数RGBColor[red, green, blue] RGB颜色,均为0~1间的实数Hue[h, s, b] 亮度,饱和度等,均为0~1间的实数CMYKColor[cyan, magenta, yellow, black] CMYK颜色其他函数(指定其后绘图的方式)Thickness[r] 设置线宽为rPointSize[d] 设置绘点的大小Dashing[{r1,r2,..}] 虚线一个单元的间隔长度ImageSize->{x, y} 显示图形大小(像素为单位)ImageResolution->r 图形解析度r个dpiImageMargins->{{left,right},{bottom,top}}四边的空白ImageRotated->False 是否旋转90度显示—————————————————————————————————————十五、流程控制分支If[condition, t, f] 如果condition为True,执行t段,否则f段If[condition, t, f, u] 同上,即非True又非False,则执行u段Which[test1,block1,test2,block2..] 执行第一为True的testi对应的blockiSwitch[expr,form1,block1,form2,block2..]执行第一个expr所匹配的formi所对应的blocki段循环Do[expr,{imax}] 重复执行expr imax次Do[expr,{i,imin,imax}, {j,jmin,jmax},...]多重循环While[test, body] 循环执行body直到test为FalseFor[start,test,incr,body]类似于C语言中的for,注意","与";"的用法相反examp: For[i=1;t =x,i^2<10,i++,t =t+i;Print[t]]异常控制<span lang。
mathematica 调pi参数 -回复

mathematica 调pi参数-回复【Mathematica 调pi 参数】Mathematica 是一种强大的数学软件,它提供了很多用于数值计算和符号计算的函数和方法。
在Mathematica 中,我们可以使用内建的Pi 常数来表示圆周率。
通常情况下,Pi 的值已经被预设为机器精度的近似值,但用户也有能力设置Pi 的精确值。
在本文中,我们将一步一步地讨论如何使用Mathematica 调整Pi 的参数。
第一步:了解Pi 的默认值在Mathematica 中,Pi 被视为一个内建常数,它已经被设置为具有机器精度的近似值。
可以通过输入"Pi"来查看Pi 的默认值。
在Mathematica 中,输入下面的代码并按下Shift+Enter:Pi作为输出,你将看到Pi 的默认近似值,它在大多数计算中已经足够准确。
第二步:更改Pi 的参数现在,我们将讨论如何使用Mathematica 来更改Pi 的参数。
首先,我们需要明确一个目标:是想要将Pi 的值设置为某个有限精度的近似值,还是为了保持Pi 的精确度并代替使用一个有理数。
如果我们想要将Pi 的值设置为某个有限精度的近似值,我们可以使用SetPrecision 函数。
假设我们想将Pi 的值设置为小数点后100 位数字的近似值。
在Mathematica 中,输入下面的代码并按下Shift+Enter:SetPrecision[Pi, 100]结果将返回一个近似Pi 值,该值将具有小数点后100 位。
如果我们想要保持Pi 的精确度,并用一个有理数代替,我们可以使用Rationalize 函数。
这将将Pi 近似为最接近的有理数。
假设我们想要用一个有理数来代替Pi。
在Mathematica 中,输入下面的代码并按下Shift+Enter:Rationalize[Pi]结果将返回一个最接近Pi 的有理数。
第三步:自定义Pi 的参数除了使用Mathematica 的内建函数来调整Pi 的参数外,我们还可以通过定义一个新的符号来自定义Pi 的参数。
Mathematica常用函数的中文说明及使用方法

Mathematica常⽤函数的中⽂说明及使⽤⽅法Mathematica常⽤函数的中⽂说明及使⽤⽅法---------------------------------------------------------------------注:为了对Mathematica有⼀定了解,使同学系统掌握Mathematica的强⼤功能,将常⽤函数的中⽂说明及使⽤⽅法总结如下,希望能对⼤家有所帮助。
---------------------------------------------------------------------⼀、运算符及特殊符号Line1; 执⾏Line,不显⽰结果Line1,line2 顺次执⾏Line1,2,并显⽰结果name 关于系统变量name的信息name 关于系统变量name的全部信息!command 执⾏Dos命令n! N的阶乘!!filename 显⽰⽂件内容<Expr>> filename 打开⽂件写Expr>>>filename 打开⽂件从⽂件末写() 结合率[] 函数{} ⼀个表<*Math Fun*> 在c语⾔中使⽤math的函数(*Note*) 程序的注释#n 第n个参数## 所有参数rule& 把rule作⽤于后⾯的式⼦% 前⼀次的输出%% 倒数第⼆次的输出%n 第n个输出var::note 变量var的注释"Astring " 字符串Context ` 上下⽂a+b 加a-b 减a*b或a b 乘a/b 除a^b 乘⽅base^^num 以base为进位的数lhs&&rhs 且lhs||rhs 或!lha ⾮++,-- ⾃加1,⾃减1+=,-=,*=,/= 同C语⾔>,<,>=,<=,==,!= 逻辑判断(同c)lhs=rhs ⽴即赋值lhs:=rhs 建⽴动态赋值lhs:>rhs 建⽴替换规则lhs->rhs 建⽴替换规则expr//funname 相当于filename[expr]expr/.rule 将规则rule应⽤于exprexpr//.rule 将规则rule不断应⽤于expr知道不变为⽌param_ 名为param的⼀个任意表达式(形式变量)param__ 名为param的任意多个任意表达式(形式变量)⼆、系统常数Pi 3.1415....的⽆限精度数值E 2.17828...的⽆限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....⾼斯常数GoldenRatio 1.61803...黄⾦分割数Degree Pi/180⾓度弧度换算I 复数单位Infinity ⽆穷⼤-Infinity 负⽆穷⼤ComplexInfinity 复⽆穷⼤Indeterminate 不定式三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进⾏化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因⼦FactorTerms[poly, x] 提出与x⽆关的数字因⼦FactorTerms[poly, {x1,x2...}] 提出与xi⽆关的数字因⼦Coefficient[expr, form] 多项式expr中form的系数Coefficient[expr, form, n] 多项式expr中form^n的系数Exponent[expr, form] 表达式expr中form的最⾼指数Numerator[expr] 表达式expr的分⼦Denominator[expr] 表达式expr的分母ExpandNumerator[expr] 展开expr的分⼦部分ExpandDenominator[expr] 展开expr的分母部分TrigExpand[expr] 展开表达式中的三⾓函数TrigFactor[expr] 给出表达式中的三⾓函数因⼦TrigFactorList[expr] 给出表达式中的三⾓函数因⼦的表TrigReduce[expr] 对表达式中的三⾓函数化简TrigToExp[expr] 三⾓到指数的转化ExpToTrig[expr] 指数到三⾓的转化RootReduce[expr]ToRadicals[expr]四、解⽅程Solve[eqns, vars] 从⽅程组eqns中解出varsSolve[eqns, vars, elims] 从⽅程组eqns中削去变量elims,解出vars DSolve[eqn, y, x] 解微分⽅程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分⽅程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}] 解偏微分⽅程Eliminate[eqns, vars] 把⽅程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成⽴的所有参数满⾜的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] ⽤&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式⽅程的所有根五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的⼆重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] ⼀阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表⽰⼀个在x0处x的幂级数,其中ai为系数O[x]^n n阶⼩量x^nO[x, x0]^n n阶⼩量(x-x0)^n六、多项式函数Variables[poly] 给出多项式poly中独⽴变量的列表CoefficientList[poly, var] 给出多项式poly中变量var的系数CoefficientList[poly, {var1,var2...}]给出多项式poly中变量var(i)的系数列表PolynomialMod[poly, m] poly中各系数mod m同余后得到的多项式,m可为整式PolynomialQuotient[p, q, x] 以x为⾃变量的两个多项式之商式p/q PolynomialRemainder[p, q, x] 以x为⾃变量的两个多项式之余式PolynomialGCD[poly1,poly2,...] poly(i)的最⼤公因式PolynomialLCM[poly1,poly2,...] poly(i)的最⼩公倍式PolynomialReduce[poly, {poly1,poly2,...},{x1,x2...}]得到⼀个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=polyResultant[poly1,poly2,var] 约去poly1,poly2中的varFactor[poly] 因式分解(在整式范围内)FactorTerms[poly] 提出poly中的数字公因⼦FactorTerms[poly, {x1,x2...}] 提出poly中与xi⽆关项的数字公因⼦FactorList[poly]给出poly各个因⼦及其指数{{poly1,exp1},{...}...}FactorSquareFreeList[poly]FactorTermsList[poly,{x1,x2...}] 给出各个因式列表,第⼀项是数字公因⼦,第⼆项是与xi⽆关的因式,其后是与xi有关的因式按升幂的排列Cyclotomic[n, x] n阶柱函数Decompose[poly, x] 迭代分解,给出{p1,p2,...},其中p1(p2(...))=poly InterpolatingPolynomial[data, var] 在数据data上的插值多项式data可以写为{f1,f2..}相当于{{x1=1,y1=f1}..}data可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..}可以指定数据点上的n阶导数值RootSum[f, form] 得到f[x]=0的所有根,并求得Sum[form[xi]]七、随机函数Random[type,range] 产⽣type类型且在range范围内的均匀分布随机数type可以为Integer,Real,Complex,不写默认为Realrange为{min,max},不写默认为{0,1}Random[] 0~1上的随机实数SeedRandom[n] 以n为seed产⽣伪随机数如果采⽤了 <在2.0版本为 <<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m" Random[distribution]可以产⽣各种分布如Random[BetaDistribution[alpha, beta]]Random[NormalDistribution[miu,sigma]]等常⽤的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution, ExtremeValueDistribution,NoncentralFRatioDistribution, GammaDistribution,HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution,LogisticDistribution,RayleighDistribution,NoncentralStudentTDistribution, UniformDistribution, WeibullDistribution⼋、数值函数N[expr] 表达式的机器精度近似值N[expr, n] 表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var] 求⽅程数值解NSolve[eqn, var, n] 求⽅程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分⽅程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]微分⽅程组数值解FindRoot[lhs==rhs, {x,x0}] 以x0为初值,寻找⽅程数值解FindRoot[lhs==rhs, {x, xstart, xmin, xmax}]NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}] 以x0为初值,寻找函数最⼩值FindMinimum[f, {x, xstart, xmin, xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f为x,y..之线性函数,得到最⼩值及此时的x,y..取值ConstrainedMax[f, {inequ}, {x, y,..}]同上LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0约束下的最⼩值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}] 向量组vi的极⼩⽆关组数据处理:Fit[data,funs,vars]⽤指定函数组对数据进⾏最⼩⼆乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进⾏差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}] FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进⾏插值Fourier[list] 对复数数据进⾏付⽒变换InverseFourier[list] 对复数数据进⾏付⽒逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最⼩值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最⼤值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p] 将表中元素按p[e1,e2]为True的顺序⽐较list的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..] 表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集九、虚数函数Re[expr] 复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr] 复数表达式的辐⾓Conjugate[expr] 复数表达式的共轭⼗、数的头及模式及其他操作Integer _Integer 整数Real _Real 实数Complex _Complex 复数Rational_Rational 有理数(*注:模式⽤在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传⼊参数的类型,另外也可⽤来判断If[Head[a]==Real,...]*) IntegerDigits[n,b,len] 数字n以b近制的前len个码元RealDigits[x,b,len] 类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差⼩于dxChop[expr, delta] 将expr中⼩于delta的部分去掉,dx默认为10^-10 Accuracy[x] 给出x⼩数部分位数,对于Pi,E等为⽆限⼤Precision[x] 给出x有效数字位数,对于Pi,E等为⽆限⼤SetAccuracy[expr, n] 设置expr显⽰时的⼩数部分位数SetPrecision[expr, n] 设置expr显⽰时的有效数字位数⼗⼀、区间函数Interval[{min, max}] 区间[min, max](* Solve[3 x+2==Interval[{-2,5}],x]*) IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2] 区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...] 区间的交⼗⼆、矩阵操作a.b.c 或 Dot[a, b, c] 矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list] 矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k⾏与第nk列交换Det[m] 矩阵的⾏列式Eigenvalues[m] 特征值Eigenvectors[m] 特征向量Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性⽅程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶⼦矩阵的⾏列式的值(伴随阵,好像是) MatrixPower[mat, n] 阵mat⾃乘n次Outer[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩阵Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的⼴义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解⼗三、表函数(*“表”,我认为是Mathematica中最灵活的⼀种数据类型 *)(*实际上表就是表达式,表达式也就是表,所以下⾯list==expr *) (*⼀个表中元素的位置可以⽤于⼀个表来表⽰ *)表的⽣成{e1,e2,...} ⼀个表,元素可以为任意表达式,⽆穷嵌套Table[expr,{imax}] ⽣成⼀个表,共imax个元素Table[expr,{i, imax}] ⽣成⼀个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..] 多维表Range[imax] 简单数表{1,2,..,imax}Range[imin, imax, di] 以di为步长的数表Array[f, n] ⼀维表,元素为f[i] (i从1到n)Array[f,{n1,n2..}] 多维表,元素为f[i,j..] (各⾃从1到ni) IdentityMatrix[n] n阶单位阵DiagonalMatrix[list] 对⾓阵元素操作Part[expr, i]或expr[[i]]第i个元expr[[-i]] 倒数第i个元expr[[i,j,..]] 多维表的元expr[[{i1,i2,..}] 返回由第i(n)的元素组成的⼦表First[expr] 第⼀个元Last[expr] 最后⼀个元Head[expr] 函数头,等于expr[[0]]Extract[expr, list] 取出由表list制定位置上expr的元素值Take[list, n] 取出表list前n个元组成的表Take[list,{m,n}] 取出表list从m到n的元素组成的表Drop[list, n] 去掉表list前n个元剩下的表,其他参数同上Rest[expr] 去掉表list第⼀个元剩下的表Select[list, crit] 把crit作⽤到每⼀个list的元上,为True的所有元组成的表表的属性Length[expr] expr第⼀曾元素的个数Dimensions[expr] 表的维数返回{n1,n2..},expr为⼀个n1*n2...的阵TensorRank[expr] 秩Depth[expr] expr最⼤深度Level[expr,n] 给出expr中第n层⼦表达式的列表Count[list, pattern] 满⾜模式的list中元的个数MemberQ[list, form] list中是否有匹配form的元FreeQ[expr, form] MemberQ的反函数Position[expr, pattern] 表中匹配模式pattern的元素的位置列表Cases[{e1,e2...},pattern]匹配模式pattern的所有元素ei的表表的操作Append[expr, elem] 返回在表expr的最后追加elem元后的表Prepend[expr, elem] 返回在表expr的最前添加elem元后的表Insert[list, elem, n] 在第n元前插⼊elemInsert[expr,elem,{i,j,..}]在元素expr[[{i,j,..}]]前插⼊elemDelete[expr, {i, j,..}] 删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern]删除匹配pattern的所有元后剩下的表ReplacePart[expr,new,n] 将expr的第n元替换为newSort[list] 返回list按顺序排列的表Reverse[expr] 把表expr倒过来RotateLeft[expr, n] 把表expr循环左移n次RotateRight[expr, n] 把表expr循环右移n次Partition[list, n] 把list按每n各元为⼀个⼦表分割后再组成的⼤表Flatten[list] 抹平所有⼦表后得到的⼀维⼤表Flatten[list,n] 抹平到第n层Split[list] 把相同的元组成⼀个⼦表,再合成的⼤表FlattenAt[list, n] 把list[[n]]处的⼦表抹平Permutations[list] 由list的元素组成的所有全排列的列表Order[expr1,expr2] 如果expr1在expr2之前返回1,如果expr1在expr2之后返回-1,如果expr1与expr2全等返回0Signature[list] 把list通过两两交换得到标准顺序所需的交换次数(排列数)以上函数均为仅返回所需表⽽不改变原表AppendTo[list,elem] 相当于list=Append[list,elem];PrependTo[list,elem] 相当于list=Prepend[list,elem];⼗四、绘图函数⼆维作图Plot[f,{x,xmin,xmax}] ⼀维函数f[x]在区间[xmin,xmax]上的函数曲线Plot[{f1,f2..},{x,xmin,xmax}] 在⼀张图上画⼏条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}] 由参数⽅程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在⼀张图上画多条参数曲线选项:PlotRange->{0,1} 作图显⽰的值域范围AspectRatio->1/GoldenRatio⽣成图形的纵横⽐PlotLabel ->label 标题⽂字Axes ->{False,True} 分别制定是否画x,y轴AxesLabel->{xlabel,ylabel}x,y轴上的说明⽂字Ticks->None,Automatic,fun⽤什么⽅式画轴的刻度AxesOrigin ->{x,y} 坐标轴原点位置AxesStyle->{{xstyle}, {ystyle}}设置轴线的线性颜⾊等属性Frame ->True,False 是否画边框FrameLabel ->{xmlabel,ymlabel,xplabel,yplabel}边框四边上的⽂字FrameTicks同Ticks 边框上是否画刻度GridLines 同Ticks 图上是否画栅格线FrameStyle ->{{xmstyle},{ymstyle}设置边框线的线性颜⾊等属性ListPlot[data,PlotJoined->True] 把离散点按顺序连线PlotSytle->{{style1},{style2},..}曲线的线性颜⾊等属性PlotPoints->15 曲线取样点,越⼤越细致三维作图Plot3D[f,{x,xmin,xmax}, {y,ymin,ymax}]⼆维函数f[x,y]的空间曲⾯Plot3D[{f,s}, {x,xmin,xmax}, {y,ymin,ymax}]同上,曲⾯的染⾊由s[x,y]值决定ListPlot3D[array] ⼆维数据阵array的⽴体⾼度图ListPlot3D[array,shades]同上,曲⾯的染⾊由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]⼆元数⽅程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmin,tmax}]多条空间参数曲线选项:ViewPoint ->{x,y,z} 三维视点,默认为{1.3,-2.4,2}Boxed -> True,False 是否画三维长⽅体边框BoxRatios->{sx,sy,sz} 三轴⽐例BoxStyle 三维长⽅体边框线性颜⾊等属性Lighting ->True 是否染⾊LightSources->{s1,s2..} si为某⼀个光源si={{dx,dy,dz},color}color为灯⾊,向dx,dy,dz⽅向照射AmbientLight->颜⾊函数慢散射光的光源Mesh->True,False是否画曲⾯上与x,y轴平⾏的截⾯的截线MeshStyle 截线线性颜⾊等属性MeshRange->{{xmin,xmax}, {ymin,ymax}}⽹格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜⾊Shading ->False,True 是否染⾊HiddenSurface->True,False 略去被遮住不显⽰部分的信息等⾼线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]⼆维函数f[x,y]在指定区间上的等⾼线图ListContourPlot[array] 根据⼆维数组array数值画等⾼线选项:Contours->n 画n条等⾼线Contours->{z1,z2,..} 在zi处画等⾼线ContourShading -> False 是否⽤深浅染⾊ContourLines -> True 是否画等⾼线ContourStyle -> {{style1},{style2},..}等⾼线线性颜⾊等属性FrameTicks 同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]⼆维函数f[x,y]在指定区间上的密度图ListDensityPlot[array] 同上图形显⽰Show[graphics,options] 显⽰⼀组图形对象,options为选项设置Show[g1,g2...] 在⼀个图上叠加显⽰⼀组图形对象GraphicsArray[{g1,g2,...}]在⼀个图上分块显⽰⼀组图形对象SelectionAnimate[notebook,t]把选中的notebook中的图画循环放映选项:(此处选项适⽤于全部图形函数)Background->颜⾊函数指定绘图的背景颜⾊RotateLabel -> True 竖着写⽂字TextStyle 此后输出⽂字的字体,颜⾊⼤⼩等ColorFunction->Hue等把其作⽤于某点的函数值上决定某点的颜⾊RenderAll->False 是否对遮挡部分也染⾊MaxBend 曲线、曲⾯最⼤弯曲度⼗四、绘图函数(续)图元函数Graphics[prim, options]prim为下⾯各种函数组成的表,表⽰⼀个⼆维图形对象Graphics3D[prim, options]prim为下⾯各种函数组成的表,表⽰⼀个三维图形对象SurfaceGraphics[array, shades]表⽰⼀个由array和shade决定的曲⾯对象ContourGraphics[array]表⽰⼀个由array决定的等⾼线图对象DensityGraphics[array]表⽰⼀个由array决定的密度图对象以上定义图形对象,可以进⾏对变量赋值,合并显⽰等操作,也可以存盘Point[p] p={x,y}或{x,y,z},在指定位置画点Line[{p1,p2,..}]经由pi点连线Rectangle[{xmin, ymin}, {xmax, ymax}] 画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}]由对⾓线指定的长⽅体Polygon[{p1,p2,..}] 封闭多边形Circle[{x,y},r] 画圆Circle[{x,y},{rx,ry}] 画椭圆,rx,ry为半长短轴Circle[{x,y},r,{a1,a2}] 从⾓度a1~a2的圆弧Disk[{x, y}, r] 填充的园、椭圆、圆弧等参数同上Raster[array,ColorFunction->f] 颜⾊栅格Text[expr,coords] 在坐标coords上输出表达式PostScript["string"] 直接⽤PostScript图元语⾔写Scaled[{x,y,..}] 返回点的坐标,且均⼤于0⼩于1颜⾊函数(指定其后绘图的颜⾊)GrayLevel[level] 灰度level为0~1间的实数RGBColor[red, green, blue] RGB颜⾊,均为0~1间的实数Hue[h, s, b] 亮度,饱和度等,均为0~1间的实数CMYKColor[cyan, magenta, yellow, black] CMYK颜⾊其他函数(指定其后绘图的⽅式)Thickness[r] 设置线宽为rPointSize[d] 设置绘点的⼤⼩Dashing[{r1,r2,..}] 虚线⼀个单元的间隔长度ImageSize->{x, y} 显⽰图形⼤⼩(像素为单位)ImageResolution->r 图形解析度r个dpiImageMargins->{{left,right},{bottom,top}}四边的空⽩ImageRotated->False 是否旋转90度显⽰流程控制—————————————————————————————————————⼗五、流程控制分⽀If[condition, t, f] 如果condition为True,执⾏t段,否则f段If[condition, t, f, u] 同上,即⾮True⼜⾮False,则执⾏u段Which[test1,block1,test2,block2..] 执⾏第⼀为True的testi对应的blockiSwitch[expr,form1,block1,form2,block2..]执⾏第⼀个expr所匹配的formi所对应的blocki段循环Do[expr,{imax}] 重复执⾏expr imax次Do[expr,{i,imin,imax}, {j,jmin,jmax},...]多重循环While[test, body] 循环执⾏body直到test为FalseFor[start,test,incr,body]类似于C语⾔中的for,注意","与";"的⽤法相反examp: For[i=1;t =x,i^2<10,i++,t =t+i;Print[t]]异常控制Throw[value] 停⽌计算,把value返回给最近⼀个Catch处理Throw[value, tag] 同上,Catch[expr] 计算expr,遇到Throw返回的值则停⽌Catch[expr, form] 当Throw[value, tag]中Tag匹配form时停⽌其他控制Return[expr] 从函数返回,返回值为exprReturn[ ] 返回值NullBreak[ ] 结束最近的⼀重循环Continue[ ] 停⽌本次循环,进⾏下⼀次循环Goto[tag] ⽆条件转向Label[Tag]处Label[tag] 设置⼀个断点Check[expr,failexpr] 计算expr,如果有出错信息产⽣,则返回failexpr的值Check[expr,failexpr,s1::t1,s2::t2,...]当特定信息产⽣时则返回failexprCheckAbort[expr,failexpr]当产⽣abort信息时放回failexprInterrupt[ ] 中断运⾏Abort[ ] 中断运⾏TimeConstrained[expr,t] 计算expr,当耗时超过t秒时终⽌MemoryConstrained[expr,b]计算expr,当耗⽤内存超过b字节时终⽌运算交互式控制Print[expr1,expr2,...] 顺次输出expri的值examp: Print[ "X=" , X//N , " " ,f[x+1]];Input[ ] 产⽣⼀个输⼊对话框,返回所输⼊任意表达式Input["prompt"] 同上,prompt为对话框的提⽰Pause[n] 运⾏暂停n秒函数编程—————————————————————————————————————⼗六、函数编程(*函数编程是Mathematica中很有特⾊也是最灵活的⼀部分,它充分体现了 *)(*Mathematica的“⼀切都是表达式”的特点,如果你想使你的Mathematica程 *)(*序快于⾼级语⾔,建议你把本部分搞通*)纯函数Function[body]或body& ⼀个纯函数,建⽴了⼀组对应法则,作⽤到后⾯的表达式上Function[x, body] 单⾃变量纯函数Function[{x1,x2,...},body]多⾃变量纯函数#,#n 纯函数的第⼀、第n个⾃变量## 纯函数的所有⾃变量的序列examp: #1^#2& [2,3] 返回第⼀个参数的第⼆个参数次⽅映射Map[f,expr]或f/@expr 将f分别作⽤到expr第⼀层的每⼀个元上得到的列表Map[f,expr,level] 将f分别作⽤到expr第level层的每⼀个元上Apply[f,expr]或f@@expr 将expr的“头”换为fApply[f,expr,level] 将expr第level层的“头”换为fMapAll[f,expr]或f//@expr把f作⽤到expr的每⼀层的每⼀个元上MapAt[f,expr,n] 把f作⽤到expr的第n个元上MapAt[f,expr,{i,j,...}] 把f作⽤到expr[[{i,j,...}]]元上MapIndexed[f,expr] 类似MapAll,但都附加其映射元素的位置列表Scan[f, expr] 按顺序分别将f作⽤于expr的每⼀个元Scan[f,expr,levelspec] 同上,仅作⽤第level层的元素复合映射Nest[f,expr,n] 返回n重复合函数f[f[...f[expr]...]]NestList[f,expr,n] 返回0重到n重复合函数的列表{expr,f[expr],f[f[expr]]..} FixedPoint[f, expr] 将f复合作⽤于expr直到结果不再改变,即找到其不定点FixedPoint[f, expr, n] 最多复合n次,如果不收敛则停⽌FixedPointList[f, expr] 返回各次复合的结果列表FoldList[f,x,{a,b,..}] 返回{x,f[x,a],f[f[x,a],b],..}Fold[f, x, list] 返回FoldList[f,x,{a,b,..}]的最后⼀个元ComposeList[{f1,f2,..},x]返回{x,f1[x],f2[f1[x]],..}的复合函数列表Distribute[f[x1,x2,..]] f对加法的分配率Distribute[expr, g] 对g的分配率Identity[expr] expr的全等变换Composition[f1,f2,..] 组成复合纯函数f1[f2[..fn[ ]..]Operate[p,f[x,y]] 返回p[f][x, y]Through[p[f1,f2][x]] 返回p[f1[x],f2[x]]Compile[{x1,x2,..},expr]编译⼀个函数,编译后运⾏速度可以⼤⼤加快Compile[{{x1,t1},{x2,t2}..},expr] 同上,可以制定函数参数类型⼗七、替换规则lhs->rhs 建⽴了⼀个规则,把lhs换为rhs,并求rhs的值lhs:>rhs 同上,只是不⽴即求rhs的值,知道使⽤该规则时才求值Replace[expr,rules] 把⼀组规则应⽤到expr上,只作⽤⼀次expr /. rules 同上expr //.rules 将规则rules不断作⽤到expr上,直到⽆法作⽤为⽌Dispatch[{lhs1->rhs1,lhs2->rhs2,...}]综合各个规则,产⽣⼀组优化的规则组查询函数、串函数—————————————————————————————————————⼗⼋、查询函数(*查询函数⼀般是检验表达式是否满⾜某些特殊形式,并返回True或False*)(*可以在Mathematica中⽤“?*Q”查询到 *)ArgumentCountQ MatrixQAtomQ MemberQDigitQ NameQEllipticNomeQ NumberQEvenQ NumericQExactNumberQ OddQFreeQ OptionQHypergeometricPFQ OrderedQInexactNumberQ PartitionsQIntegerQ PolynomialQIntervalMemberQ PrimeQInverseEllipticNomeQ SameQLegendreQ StringMatchQLetterQ StringQLinkConnectedQ SyntaxQLinkReadyQ TrueQListQ UnsameQLowerCaseQ UpperCaseQMachineNumberQ ValueQMatchLocalNameQ VectorQMatchQ⼗九、字符串函数"text" ⼀个串,头为_String"s1"<>"s2"<>..或StringJoin["s1","s2",..] 串的连接StringLength["string"] 串长度StringReverse["string"] 串反转StringTake["string", n] 取串的前n个字符的⼦串,参数同Take[]StringDrop["string", n] 参见Drop,串也就是⼀个表StringInsert["string","snew",n] 插⼊,参见Insert[]StringPosition["string", "sub"] 返回⼦串sub在string中起⽌字母位置StringReplace["string",{"s1"->"p1",..}] ⼦串替换StringReplacePart["string", "snew", {m, n}]把string第m~n个字母之间的替换为snewStringToStream["string"] 把串当作⼀个输⼊流赋予⼀个变量Characters["string"] 把串"string"分解为每⼀个字符的表ToCharacterCode["string"] 把串"string"分解为每⼀个字符ASCII值的表FromCharacterCode[n] ToCharacterCode的逆函数FromCharacterCode[{n1,n2,..}]ToCharacterCode的逆函数ToUpperCase[string] 把串的⼤写形式ToLowerCase[string] 把串的⼩写形式CharacterRange["c1","c2"] 给出ASCII吗在c1到c2之间的字符列表ToString[expr] 把表达式变为串的形式ToExpression[input] 把⼀个串变为表达式Names["string"] 与?string同,返回与string同名的变量列表。
mathematica参数范围

mathematica参数范围【最新版】目录1.Mathematica 简介2.参数范围的概念3.Mathematica 中参数范围的设置方法4.参数范围的实际应用正文【1.Mathematica 简介】Mathematica 是一款功能强大的数学软件,它被广泛应用于科学研究、工程应用和数学教育等领域。
Mathematica 具有丰富的函数库和强大的计算能力,能够解决各种复杂的数学问题。
【2.参数范围的概念】在 Mathematica 中,参数范围是指在函数定义时,自变量允许取值的范围。
通过设置参数范围,可以限制函数的输入值,从而使函数的输出结果更加精确和合理。
【3.Mathematica 中参数范围的设置方法】在 Mathematica 中,可以通过以下几种方法设置参数范围:(1) 使用 Domain 参数在函数定义时,可以使用 Domain 参数指定自变量的取值范围。
例如,定义一个函数 f(x),其中 x 的取值范围是 [0, π],可以写成:f[x_] := Sin[x], Domain: {x, 0, π}(2) 使用条件语句在某些情况下,需要根据自变量的取值范围来决定函数的表达式。
这时,可以使用条件语句来实现。
例如,定义一个函数 g(x),当 x 在 [0, 1] 范围内时,返回 x 的平方;当 x 在 (1, +∞) 范围内时,返回 2x-1,可以写成:g[x_] := If[0 <= x <= 1, x^2, 2 x - 1], x > 0(3) 使用分段函数当需要根据自变量的取值范围返回不同的函数表达式时,可以使用分段函数。
例如,定义一个函数 h(x),当 x 在 [0, 1] 范围内时,返回 x 的平方;当 x 在 (1, +∞) 范围内时,返回 2x-1,可以写成:h[x_] := Piecewise[{{x^2, 0 <= x <= 1}, {2 x - 1, x > 1}}] 【4.参数范围的实际应用】参数范围在 Mathematica 中有广泛的应用,例如在绘图、求解方程、数值计算等方面。
mathematica的输出格式 矩阵

mathematica的输出格式矩阵一、简介Mathematica是一款强大的数学软件,它提供了丰富的数学函数和工具,可以用于进行各种数学计算和数据处理。
在Mathematica 中,矩阵是一种常用的数据结构,用于表示一组数据。
输出格式矩阵是指将矩阵数据以特定的格式展示出来,以便于观察和理解。
二、输出格式矩阵的方法在Mathematica中,可以使用多种方法来输出矩阵格式。
以下是几种常用的方法:1.使用Table格式:使用Table格式可以将矩阵数据以表格的形式展示出来,适用于较小的矩阵。
使用方法如下:```mathematicaMatrixForm[Table[a,{i,1,2},{j,1,2}]]```其中,a是一个矩阵变量,i和j是矩阵的行和列的索引。
MatrixForm函数用于将矩阵格式化输出。
2.使用Grid格式:Grid格式可以将矩阵数据以网格的形式展示出来,适用于较大的矩阵。
使用方法如下:```mathematicaGrid[{{a1,a2},{b1,b2}}]```其中,a1、a2、b1和b2是矩阵中的元素。
Grid函数将矩阵数据放置在一个网格中输出。
3.使用Plot格式:如果矩阵是一个线性变换的结果,可以使用Plot格式将其可视化。
使用方法如下:```mathematicaListPlot[MatrixPlot[a]]```其中,a是一个矩阵变量。
MatrixPlot函数用于将矩阵数据转换为图形输出。
三、常见输出格式矩阵的细节和用法示例1.使用Table格式时,可以使用颜色、字体等元素来美化表格输出。
例如,可以使用TableStyle函数来设置表格的样式。
2.使用Grid格式时,可以使用各种网格布局来排列矩阵数据,如垂直或水平排列。
还可以使用标签和注释来解释矩阵的含义。
3.使用Plot格式时,可以通过调整颜色、线型等参数来可视化矩阵数据。
例如,可以使用ContourPlot函数来绘制等高线图,以便于观察矩阵的变换情况。
mathematica教程

M athematica是美国Wolfram研究公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。
假设在Windows环境下已安装好Mathematica4.0,启动Windows后,在“开始”菜单的“程序”中单击,就启动了Mathematica4.0,在屏幕上显示如图的Notebook窗口,系统暂时取名Untitled-1,直到用户保存时重新命名为止输入1+1,然后按下Shif+Enter键,这时系统开始计算并输出计算结果,并给输入和输出附上次序标识In[1]和Out[1],注意In[1]是计算后才出现的;再输入第二个表达式,要求系统将一个二项式展开,按Shift+Enter输出计算结果后,系统分别将其标识为In[2]和Out[2].如图在Mathematica的Notebook界面下,可以用这种交互方式完成各种运算,如函数作图,求极限、解方程等,也可以用它编写像C那样的结构化程序。
在Mathematica系统中定义了许多功能强大的函数,我们称之为内建函数(built-in function), 直接调用这些函数可以取到事半功倍的效果。
这些函数分为两类,一类是数学意义上的函数,如:绝对值函数Abs[x],正弦函数Sin[x],余弦函数Cos[x],以e为底的对数函数Log[x],以a为底的对数函数Log[a,x]等;第二类是命令意义上的函数,如作函数图形的函数Plot[f[x],{x,xmin,xmax}],解方程函数Solve[eqn,x],求导函数D[f[x],x]等。
必须注意的是:如果输入了不合语法规则的表达式,系统会显示出错信息,并且不给出计算结果,例如:要画正弦函数在区间[-10,10]上的图形,输入plot[Sin[x],{x,-10,10}],则系统提示“可能有拼写错误,新符号‘plot’ 很像已经存在的符号‘Plot’”,实际上,系统作图命令“Plot”第一个字母必须大写,一般地,系统内建函数首写字母都要大写。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 利用函数包绘制特殊图形 载入图形函数包的方法:
<<类名 包名 类名`包名 类名 包名` 例:<<Graphics`Graphics`
PolarPlot[r,{t,tmin,tmax}] LogPlot[f,{x,xmin,xmax}] BarChart[list] PieChart[list]
例:有如下的抛物线簇:
gx2 sec2 α y = (tanα)x − 2 2v0 (g = 9.8 v0 = 200) ,
当 从 变 到 , 15 为 隔 , 出 组 形 α 15 化 75 以 间 时 绘 这 图
程序: Clear[a,y,x] v=200;g=9.8; y[a_,x_]:=Tan[a]*x-g*x^2*Sec[a]^2/(2v^2) Plot[Evaluate[Table[y[i,x],{i,Pi/12,5Pi/12, Pi/12}]],{x,0,4000}]
③ ParametricPlot [{ fx , fy},{t,tmin,tmax}] 用于绘制形如{x = fx(t) , y = fy(t)}的参数方程图形。 例:绘制以点(3,4)为圆心,半径为2的圆。 例:绘制以点( )为圆心,半径为 的圆。
ParametricPlot[{3+2Cos[t],4+2Sin[t]}, {t,0,2Pi}]
3. 矩阵及向量的运算 M.N M*N 对M、N做矩阵乘法(向量内积) 将M、N的对应位置元素相乘
Outer[Times,M,N] 求M、N的外积 Dimensions[ M ] Transpose[ M ] Inverse[ M ] Det[ M ] 给出矩阵M的维数 转置 求逆 方阵M的行列式值
3. 多项式及其操作 (1) 定义、替换符操作 (2) 常用操作: Expand、Factor、Together、Apart Simplify、Collect、Coefficient、 Exponent
四、序列及其操作 1. 序列的定义 2. 序列的生成:Table函数 3. 序列的操作 (1) 检测:Length、Count、Position (2) 添加删除:Append、Prepend、Insert、 Delete、DeleteCases (3) 取元素:Part、Take、Drop、Select
y轴 转 所 的 形 (g = 9.8, v0 = 200) 旋 60 得 图 。
解 旋 所 的 物 参 方 为 : 转 得 抛 面 数 程 : x = r cosθ 2 a 其 θ ] z = r sin θ , 中 ∈[0, π ], r ∈[0, 3 b y = a − br2 v g 其 a= 中 ,b = 2 2g 2v0
程序:
g1=ListPlot[p1,PlotJoined->True, DisplayFunction -> Identity]; g2=ListPlot[p2,PlotJoined -> True, DisplayFunction -> Identity]; Show[g1,g2,DisplayFunction -> $DisplayFunction];
2· 输出语句Print
3· 循环语句
◆ Do 语句 语法:Do[expr, {i, imin, imax, di}] 计算expr,i=imin,…,imax,步长为di ◆ While 语句 语法:While[test, body] 当test为True时,计算body
◆ For 语句 语法:For[start, test, incr, body] 以start为起始值,重复计算body和 incr,直到test为False时为止 ◆ 循环控制语句Break和Continue Break[] 退出最里面的循环 Continue[] 转入当前循环的下一步
Integrate[ f ,{x,xmin,xmax}, {y,ymin,ymax}] 求 f 的多重积分 例:∫ 2dx
x +a dx x2 +1
∫ sin(sin x)dx
∫ sin(sin x)dx
0 2
∫
2
1
第三章 线性代数
1. 构造矩阵和向量 Table[ f ,{i,m} ,{j,n}] 构造m×n矩阵,f 是 i, j的函数,给出[i, j]项值 Array[ f ,{m, n}] 构造m×n矩阵,[i, j] 项的值是 f [i, j] DiagonalMatrix[ List] 生成对角线元素为 List的对角矩阵 IdentityMatrix[n] 构造n阶单位阵
② ParametricPlot3D [{ fx , fy , fz}, {t,tmin,tmax} ,{u,umin,umax}] 用于绘制形如{x = fx(t) , y = fy(t) , z = fz(t)}的参数图形。 2 v0 g 2 − 2 x (x ≥ 0, y ≥ 0)绕 例 画 抛 线 = : 出 物 y 2g 2v0
3. 三维图形 ① Plot3D[ f,{x,xmin,xmax},{y,ymin,ymax}] 绘制形如Z = f (x, y)的三维图形。
例:绘制以下的函数图形: Z = 10sin(x+siny) 命令:Plot3D[10 可增加选项:
Sin[x+Sin[y]],{x,-10,10}, {y,-10,10}] PlotPoints->40
第四章 幂级数、极限、微分与积分
1. 幂级数展开 Series[expr,{x, xo ,n}] 次的幂级数展开 求在点 x=xo 处至多n
例:求ex 在点 x=0处 x4 级幂级数展开 注:使用Normal函数可以去掉级数中的极小 项,从而转变成一般表达式。
2. 极限 Limit[expr,x-> xo] 求 x 逼近 xo时expr的极限
可增加如下选项:
AspectRatio->1, AxesOrigin->{0,0}
2. 其它二维图形 ① ContourPlot[ f, {x,xmin,xmax}, {y,ymin, ymax}],用于绘制形如z =f (x, y)的函 数的等高线图。 ② DensityPlot[ f, {x,xmin,xmax}, {y,ymin, ymax}],用于绘制形如z =f (x, y)的函 数的密度图。
MatrixPower[M,n] MatrixExp[M] Eigenvalues[ M ] Eigenvectors[M]
n阶矩阵幂 矩阵指数 M的特征值 M的特征向量
第四章 求解方程(组)、微分方程(组)
3. 微分 D[ f ,{x,n}] Dt[ f ] 求f 的n阶偏微分 求f 的全微分
例:D[x^n,{x,3}]
Dt[x^2+y^2]
例:y = xarctgx,求其100阶导数及其在0 点的值
4. 积分 Integrate[ f , x] 求f 的不定积分 求 f 的定积分
Integrate[ f ,{x,xmin,xmax}]
◆ 逻辑运算符 ! || && ◆ /;运算符 x = a /;test 仅当test为True时才执行赋值语句 ◆ If 语句 语法:If [test, then, else] 若test为 True,则执行then,若test为 False,则执行else.
◆ Which 语句 语法:Which [test1, value1, test2,…] 依次计算testi,给出对应第一个test 为True 的value ◆ Switch[expr,form1,value1,form2,…] 比较expr与formi,给出与第一个form 值匹配的value
五、自定义函数 1. 一元函数 例: Clear[f,x]
f[x_]:= x^2+4x-2
2. 多元函数 例: f[x_,y_]:= 3. 迭代函数 例:f[n_]:=
f[n-1]+f[n-2]; x^2+y^2-3
f[0]= 1; f[1]=1;
第二章 编程语言 1· 条件语句
◆ 逻辑判断符 == >= <= > === =!= < !=
例1. 定义如下的函数:
0 x x2 x <= 0 0< x ≤2 x>2
① 使用 /; 定义: f [x_]:= 0 /;x<=0 f [x_]:= x /; x>0&&x<=2 f [x_]:= x^2 /; x>2
② 使用 If 定义: f [x_]:= If [ x<=0, 0, If [x>2, x^2, x ] ] ③ 使用Which定义: f [x_]:= Which [ x<=0, 0, x>2, x^2, True, x ]
绘制极坐标图形 画对数线性图
画出list的条形图 画出list的百分图
例:<<Graphics`ImplicitPlot`
ImplicitPlot[eqn,{x,xmin,xmax}] f (x,y)=0的隐函数图形
绘制形如
例:绘制以点(3,4)为圆心,半径为2的圆。
ImplicitPlot[(x-3)^2+(y-4)^2==2,{x,0,5}]
② ListPlot [List],用于绘制散点 图。
{{注意,List的形式应为: }} x0 , y0},{x1, y1},⋯ ,{xn , yn ⋯
例在同一坐标系下绘制下列两组散点图
p1={{0,0},{0,45},{5.3,89.6},{22.6,131.2}}; p2={{0,0},{2.68,44.8},{12.57,88.28},{27,130.3}};