几何动点问题

合集下载

动点问题

动点问题

动点问题1、直接(译)法:如果动点满足的几何条件本身以数量间的等量关系的形式直接给出,或这些几何条件简单明了且易于表达,那么,只须把这种关系直接翻译成含x,y的等式,就得到曲线的轨迹方程。

2、定义法:若动点轨迹条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可以根据定义直接求出动点的轨迹方程。

3、代入法(相关点法或转移法):如果动点P(x,y)随着另一动点Q(x1,y1)(称之为相关点)运动而运动,而动点Q在某一己知曲线上或Q点所满足的条件是明显的或可析的,这时,我们可以用动点P 坐标表示相关点Q坐标,根据相关点Q所满足的方程即可求得动点的轨迹方程。

4、几何法:当问题涉及到三角形、圆等几何图形时,往往联系平几知识,以简化计算。

5、射影法6、参数法:在解决某些问题时,当直接探求动点的两个坐标间的关系有困难,这时可以选择适当的参数(即中间变量或辅助变量),使动点的坐标分别与参数有关,从而得出它的参数方程,然后再消去参数即得动点的轨迹方程。

7、交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,对于这类问题,可选取和两动曲线均相关的某参变量作媒介,分别求出两动曲线的含参变量的方程,然后联立消去参数即得所求轨迹方程。

1、过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1()2OP OA OB =+ ,则动点P 的轨迹为2、若动点111(,)P x y ,222(,)P x y 分别在直线L1:x-y-5=0,L2:x-y-15=0上移动,则线段12PP 中点P 到原点的距离的最小值是3、若动点P 到圆229x y +=的切线长等于点P 到直线x=2的距离,则动点P 的轨迹?4、已知点M(-2√2,0),N(2√2,0),动点P 满足条件|PM|-|PN|=4,记动点P 的轨迹为W.(1)求W 的方程;(2)若A 、B 是W 上的不同两点,O 是坐标原点,求()OA OB ∙ 的最小值5、已知A(3,0),B(0,4),动点P(x,y)在线段AB 上移动,则xy 的最大值等于6、p 为抛物线24y x =上的动点,F 为焦点。

几何图形动点问题2大类12小类模型全梳理-

几何图形动点问题2大类12小类模型全梳理-

MO的长度,过点M作MN⊥BC于点N,在△AOM和△COP′中,
例3题图
∠AOM=∠COP′,OA=OC,∠OAM=∠OCP′,
∴△AOM≌△COP′,∴OM=OP′= 1 MP′,∴CP′=AM=4-1
2
=3,BP′=1,∴P′N=4-1-1=2,∴MP′= 22 +32 = 13 ,
1 ∴OM=2
例2题图
例2题解 图
类型2 线圆最值 【模型分析】 (i) 如图,AB为 O的一条定弦,点C为圆上一动点. (1)如图①,若点C在优弧 AB上,当CH⊥AB且CH过圆心O时,线段CH即为点C到 弦AB的最大距离,此时△ABC的面积最大; (2)如图②,若点C在劣弧AB上,当CH⊥AB且CH 的延长线过圆心O时,线段CH即为点C到弦AB的最大距离,此时△ABC的面积最大.
A. 4
B. 5
C. 6
D. 7
例5题图
【解析】如解图,分别作点P关于OA、OB的对称点C、D,连接 CM、OC、DN、OD,∵点P关于OA的对称点为C,∴PM=CM, OP=OC,∠COA=∠POA,∵点P关于OB的对称点为D,∴PN =DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6, ∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+ 2∠POB=2∠AOB=60°,△PMN的周长为PM+PN+MN= CM+DN+MN,连接CD分别交OA,OB于点M′,N′,∵CM+ DN+MN≥CM′+DN′+M′N′,当M与M′,N与N′重合时, △PMN的周长最小,即为线段CD的长度,∵∠COD=60°, OC=OD,∴△COD是等边三角形,∴CD=OC=OD= 6.∴△PMN的周长的最小值为6.
中点,点M在BC边上,且BM=6,P为对角线BD上一点,则PM-PN的最大值为

2022高考数学立体几何—空间中的动点问题全文

2022高考数学立体几何—空间中的动点问题全文

可编辑修改精选全文完整版立体几何—空间中的动点问题专题综述空间中的动点问题是指在一定的约束条件下,点的位置发生变化,在变化过程中找出规律,将动点问题转化为“定点”问题、将空间问题转化为平面问题、将立体几何的问题转化为解析几何的问题等,目的是把问题回归到最本质的定义、定理或现有的结论中去.立体几何中考查动点问题,往往题目难度较大,渗透化归与转化思想,对学生的逻辑推理能力要求较高.一般考查动点轨迹、动点的存在性、定值、范围、最值等问题,除了利用化动为定、空间问题平面化等方法,在几何体中由动点的变化过程推理出结果以外,也可以通过建系,坐标法构建函数,求得结果.专题探究探究1:坐标法解决动点问题建立空间直角坐标系,使几何元素的关系数量化,借助空间向量求解,省去中间繁琐的推理过程.解题步骤与空间向量解决立体几何问题一致,建立适当的空间直角坐标系由动点的位置关系,如在棱上或面内,转化为向量的关系,用参数表示动点的坐标通过空间向量的坐标运算表示出待求的量若求最值或取值范围,转化为函数问题,但要注意自变量的取值范围.一般坐标法用于解决动点的存在性问题、求最值、求范围问题.说明:对于求最值、范围问题,也可以直接通过几何体中的某个变量,构建函数,求最值或范围.(2022湖北省宜昌市模拟) (多选)在正方体1111ABCD A B C D -中,点为线段1AD 上一动点,则( ) A. 对任意的点,都有1B D CQ ⊥ B. 三棱锥1B B CQ -的体积为定值 C. 当为1AD 中点时,异面直线1B Q 与所成的角最小D. 当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大【审题视点】以正方体为载体考查定点的定值、最值问题,正方体便于建立空间直角坐标系,可选择用坐标法解决.【思维引导】选项,可以用几何知识证明;选项,设出点坐标,用坐标表示出异面直线成角的余弦值或线面角的正弦值,求最值,得出点位置.【规范解析】解:对于:连接,1.CD因为在正方体1111ABCD A B C D -中, 1B D ⊥平面1ACD ,CQ ⊂平面1ACD , 1B D CQ ⊥,故正确; 对于:平面11//ADD A 平面11BCC B ,平面11ADD A 与平面11BCC B 的距离为正方体棱长,1123111326B B CQ Q BCB V V a a a --==⨯⋅=,为定值,故正确;对于:以为坐标原点,直线分别轴,建立空间直角坐标系如下图:设正方体1111ABCD A B C D -的棱长为2, ()[](),0,20,2Q x x x -∈,则1(2,2,2)B , ()2,2,0B , (0,2,0)C , 因此()12,2,B Q x x =---, ()2,0,0BC =-, 设异面直线1B Q 与所成的角为θ,则当时,,当时,当时,故当与1D 重合时,异面直线1B Q 与所成的角最小,故不正确;对于: ()12,2,B Q x x =---, 又是平面11BCC B 的一个法向量,设直线1B Q 与平面11BCC B 所成的角为α,则,所以当1x =时,sin α取得最大值63,而0,2πα⎡⎤∈⎢⎥⎣⎦, 因此α取得最大值,即当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大, 故正确. 故选.ABD用一个参数表示动点的坐标,并求出参数范围,即为函数定义域转化为函数求最值,求出当函数取最值时的x 的值【探究总结】典例1是一道典型的研究动点问题的多选题,难度中等,但能够反映出坐标法研究最值范围问题的思路.建系设坐标,写出参数范围 根据向量运算构造函数求最值.(2021安徽省蚌埠市联考) 已知圆柱1OO 底面半径为1,高为π,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面绕着轴1OO 逆时针旋转(0)θθπ<<后,边11B C 与曲线Γ相交于点.P(1)求曲线Γ长度; (2)当2πθ=时,求点1C 到平面的距离;(3)证明:不存在(0)θθπ<<,使得二面角D AB P --的大小为.4π探究2:化动为定点的位置在变化的过程中,有些量或位置关系是不变的,比如点到平面的距离不变,从而使几何体的体积不变;动点与另外一定点的连线与某条直线始终垂直,与某个平面始终平行.在证明体积为定值、证明位置关系时,要动中寻定,将动态的问题静态化:将动点转化为定点,寻找动直线所在的确定平面,从而解决问题.答题思路:1.动点到平面的距离为定值:证明平面,动点到平面的距离即为定点到平面的距离;2.为动点,为定点,证明:证明所在平面与垂直;3.为动点,为定点,证明平面:证明所在平面与平面平行.(2021湖南省四校联考) 在正三棱柱中,,,分别为的中点,P 是线段DF 上的一点.有下列三个结论:①平面;②;③三棱锥的体积时定值,其中所有正确结论的编号是 A. ①②B. ①③C. ②③D. ①②③【审题视点】求证关于动直线的线面平行或线线垂直,三棱锥的体积为定值问题,要化动为定.【思维引导】证明动直线所在平面与已知平面平行;证明定直线与动直线所在平面垂直;寻找过点与平面平行的直线,即得出点到平面的距离.【规范解析】解:如图,对于①,在正三棱柱中,,分别为的中点,平面平面,由平面,得平面,故①正确;对于②,在正三棱柱中,平面平面,平面平面平面,,平面平面,故②正确;对于③,平面平面,平面到平面的距离为定值,而有为定值,故是定值,线面平行,转化为面面平行异面直线垂直,转化为线面垂直体积的定值问题,转化点到平面的距离是定值,即通过线面平行或面面平行,得出动点到平面距离为定值故③正确.故选D .【探究总结】立体几何证明中经常出现,求证关于动直线的线面平行与线线垂直问题,其思路是转化为证明动直线所在的定平面与其他平面或直线的位置关系.关键是分析动点,动线或动面间的联系,在移动变化的同时寻求规律.(2021云南省曲靖市联考) 如图所示的几何体中,111ABC A B C -为直三棱柱,四边形为平行四边形,2CD AD =,60ADC ∠=︒,1.AA AC =(1)证明:,1C ,1B 四点共面,且11A C DC ⊥;(2)若1AD =,点是上一点,求四棱锥的体积,并判断点到平面11ADC B 的距离是否为定值?请说明理由.探究3: 巧用极端位置由于点位置连续变化,使研究的图形发生连续的变化,利用点的位置变化“极端”位置,避开抽象及复杂的运算,得到结论.常见题型:1.定值问题:几何体中存在动点,但所求结果是确定的,即随着动点位置的改变不会影响所求的量,故可以考虑动点在极端位置的情况,优化解题过程.2.范围问题:几何体中存在动点,结果会随着动点位置改变而改变,当动点从一侧极端位置移动到令一个极端位置的过程中,所求量在增大、或减小、或先增后减、或先减后增,通过求出极端位置处的值,及最值,从而得出范围;3.探究问题:探究满足条件的点是否存在,也可以转化为求出范围,从而得出结论.(2021湖南省株洲市模拟) 在正四面体中, 为棱的中点, 为直线上的动点,则平面与平面夹角的正弦值的取值范围是 .【审题视点】本例可用极端位置法分析,也可以建系,用坐标法解决.【思维引导】借助极端位置分析,不难看出经过和底边中线的平面与平面垂直,点在移动的过程中,存在一个位置使平面与经过和底边中线的平面平行,即平面平面,此时两平面所成角为,角最大;当点移动到无穷远时,平面平面,此时两平面所成角最小.【规范解析】解:由下左图 设为的中心,为的中点, 则在正四面体中平面, 为中点,为的中点,,故平面连接,并延长交于点, 连接,并延长交于点, 则过点的平面交直线于点. 则平面平面 即平面与平面的夹角的正弦值为1,点从取最值的位置处移动至直线的无穷远处的过程中, 平面与平面的夹角逐渐减小,即当点在无穷远处时,看作, 如下右图 故平面与平面的夹角即为平面与平面的夹角,求出其正弦值为. 综上可知:面与面的夹角的正弦值的取值范围为.【探究总结】借助极端位置解决典例3中的问题,首先利用几何知识,明确点在移动的过程中 ,所求量的变化情况,若在极端位置处取“最值”,问题就简化为求出极端位置处的值.(2021浙江省杭州市高三模拟)高为1的正三棱锥的底面边长为,二面角与二面角A PB C --之和记为,则在从小到大的变化过程中,的变化情况是( )A .一直增大B .一直减小C .先增大后减小D .先减小后增大专题升华结合几何知识,两平面成角的变化过程,即动点从一个极端位置变化到另一极端位置时,夹角大小的增减情况在极端位置处取“最值”,直接求出点该处时的夹角的正弦值,即为范围区间的一个端点几何体中研究动点问题往往难度较大,开放性强,技巧性高.总体思路是:用几何知识,经过逻辑推理,证明位置关系或求出表示出所求量;或者建立空间直角坐标系,将几何问题代数化,用空间向量研究动点问题,省去了繁杂的推理环节,但计算量较大.解决动点问题的策略不局限与上述方法,常用的的方法还有:运用条件直接推算,借助条件将几何体还原到长方体中去;构造函数,数形结合;还将空间问题转化为平面几何解决,如化折为直、利用解析几何的知识解决. 但只要我们熟练掌握这些基本方法,并灵活加以应用,不仅能化繁为简,化难为易,而且还可以得到简捷巧妙的解法.【答案详解】 变式训练1【解答】解:(1)在侧面展开图中为的长,其中AB AD π==,∴曲线Γ的长为2;π(2)当2πθ=时,建立如图所示的空间直角坐标系,则有()0,1,0A -、()0,1,0B 、1,0,2P π⎛⎫- ⎪⎝⎭、()11,0,C π-, 、(1,1,)2AP π=-、1(1,0,)OC π=-设平面的法向量为(,,)n x y z =,则2002n AB y n AP x y z π⎧⋅==⎪⎨⋅=-++=⎪⎩, 取2z =得(,0,2)n π=,所以点1C 到平面的距离为12||||4OC n d n ππ⋅==+; (3)假设存在满足要求的(0)θθπ<<, 在(2)的坐标系中,()sin ,cos ,P θθθ-,,设平面的法向量为111(,,)m x y z =,则111120sin (cos 1)0y x y z θθθ=⎧⎨-+++=⎩,取11x =得sin (1,0,)m θθ=,又平面的法向量为(1,0,0)k =,由二面角D AB P --的大小为4π, 则|cos ⟨,m k ⟩2212|sin .21sin θθθθ==⇒=+ sin (0)2πθθθ<<<,0θπ∴<<时,均有sin θθ<,与上式矛盾.所以不存在(0)θθπ<<使得二面角D AB P --的大小为.4π 变式训练2【解答】(1)证明:因为111ABC A B C -为直三棱柱, 所以,且,又四边形为平行四边形,//BC AD ,且BC AD =,,且,四边形为平行四边形,,1B 四点共面;,又1AA ⊥平面,AC ⊂平面,,四边形11A ACC 为正方形,连接1AC 交1A C 于,,在ADC ∆中,2CD AD =,,由余弦定理得,,所以,AD AC ⊥,又1AA ⊥平面ABCD ,AD ⊂平面ABCD ,1AA AD ⊥,,1AA ⊂平面11A ACC ,,AD ⊥平面11A ACC ,1AC ⊂平面11A ACC ,所以,又,平面,1A C ⊥平面, 1DC ⊂平面,(2)解:由(1)知:1A C ⊥平面,在Rt DAC 中,由已知得3AC =,,四棱锥的体积,//BC AD ,点到平面的距离为定值,即为点到平面的距离变式训练3【解析】解:设二面角为,二面角A PB C --为,当时,正三棱锥趋向于变为正三棱柱,;当时,正三棱锥趋向变为平面,.当正三棱锥为正四面体时,且,,故.当从小变大时,要经过从变为小于的角,然后变为的过程, 故只有选项符合.故选:.静夜思[ 唐] 李白原文译文对照床前明月光,疑是地上霜。

初一几何动点问题的解题技巧

初一几何动点问题的解题技巧

初一几何动点问题的解题技巧解决初一几何动点问题的关键在于理解动点的概念并熟练运用相关的几何性质和解题技巧。

以下是几个常用的解题技巧:1. 确定动点的位置:首先,要明确问题中动点的位置信息。

通过观察题目中的几何图形,确定动点所在的线段、圆弧或多边形等位置。

2. 使用变量表示:用变量来表示动点的坐标或长度。

常见的表示方式可以使用字母如"A"、"B"等来表示动点,使用"x"、"y"等来表示坐标。

3. 利用几何性质:根据几何图形的性质,运用传统的几何知识来推导和解决问题。

例如,利用直角三角形的性质、相似三角形的性质、平行线的性质等。

4. 延长线和引出辅助线:有时候,延长线或引出辅助线可以帮助我们更好地理解问题和得出结论。

通过引出合适的辅助线,可以简化或改变问题的形式,使得解题更容易。

5. 利用相关定理和公式:了解和掌握基本的几何定理和公式,如勾股定理、正弦定理、余弦定理等。

在解决动点问题时,这些定理和公式常常可以提供有用的信息和关键的方程式。

6. 理清逻辑关系和方向:动点问题往往涉及到几何图形之间的相对方向和关系,如垂直、平行、相交等。

在解题过程中,要仔细分析这些关系,并据此推导出正确的结论。

7. 尝试特殊情况:有时候,特殊情况下的解法能够启发我们找到普遍情况下的解法。

可以尝试选择特殊的数值或角度,验证一些猜想,从而推导出一般情况的结论。

8. 画图辅助解题:通过绘制几何图形,可以更直观地理解问题,并更好地分析和推导解题过程。

要善于利用图形和图形性质来辅助解题。

以上是一些初一几何动点问题的解题技巧,希望能对您有所帮助。

请记住,多多练习和思考,通过实践来提高解题能力。

几何动点问题解题技巧

几何动点问题解题技巧

几何动点问题是在几何学中,点的位置随时间变化的问题。

解决这类问题时,可以采用一些基本的技巧和方法。

以下是一些建议:1. **引入坐标系:** 通过引入坐标系,可以更清晰地描述动点的位置。

选择一个适当的坐标系有助于简化问题,使得计算更加方便。

2. **参数表示法:** 使用参数表示法是解决几何动点问题的一种常见方法。

通常,可以用一个或多个参数表示动点的坐标,然后通过参数的变化来描述动点的运动轨迹。

3. **列方程:** 根据几何关系,列出方程。

这可能涉及到距离、角度、斜率等几何性质。

通过分析几何特征,可以建立与动点位置相关的方程。

4. **运用几何性质:** 利用几何图形的对称性、相似性、垂直关系等性质,简化问题或找到额外的几何信息。

5. **使用矢量:** 如果问题涉及到向量,可以使用矢量的性质进行分析。

矢量表示法在描述动点的位移和速度等方面很有优势。

6. **微积分方法:** 如果问题涉及到动点的速度、加速度等变化率,可以考虑使用微积分的方法。

通过对位置函数进行微分或积分,可以得到速度和加速度的表达式。

7. **利用已知几何定理:** 利用已知的几何定理和性质,可以更容易地解决动点问题。

这包括三角形的性质、圆的性质等。

8. **画图辅助理解:** 在解决问题的过程中,画图是一个非常重要的辅助手段。

通过绘制动点在不同时间的位置,可以更好地理解问题,并找到解决问题的线索。

9. **考虑特殊情况:** 对于复杂的问题,可以考虑一些特殊情况,以简化问题或获得一些有用的信息。

10. **检查解的合理性:** 解决问题后,检查得到的解是否符合几何直觉和常识。

确保解决方案在几何上是合理的。

总体而言,解决几何动点问题需要一定的创造性和灵活性。

通过深入理解几何性质,巧妙地运用数学工具,可以更轻松地解决这类问题。

初一下册几何动点问题

初一下册几何动点问题

初一下册几何动点问题1、(1)已知AB⊥BD,ED⊥BD,AB=CD,BC=DE,要证明AC⊥CE.2)将CD沿CB方向平移得到图②③的情形,其余条件不变,要判断AC⊥CE是否成立,需要重新证明一遍。

2、(1)已知△ABC为等边三角形,动点D在边CA上,动点P边BC上,要证明当AP=BD时,Q点为定点。

2)已知动点D,P在射线CA和射线BC上运动,要证明∠BQP=60°。

3)已知动点P在AB的延长线上运动,连接PD交BC于E,要证明DE=PE。

3、已知梯形ABCD,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,CE与BD交于F,要证明CM=AB和CF=AB+AF。

4、已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D。

1)要证明当三角形绕点P旋转到PC⊥OA时,PC=PD。

2)要说明当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD不相等。

3)要直接给出结论,当三角形绕点P旋转到PC与OA 所在直线相交的位置时,线段PC和PD相等。

5、在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB 边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,要证明△ADF≌△CEF,并试证明△DFE是等腰直角三角形。

6、(1)已知△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形。

2)当把△ADE绕A点旋转到图②的位置时,需要重新判断CD=BE是否成立。

7、已知△ABC中,AB=AC=10厘米,BC=8厘米,点D 为AB的中点。

点P在线段BC上以3厘米/秒的速度由B点向C点运动,点Q在线段CA上由C点向A点运动。

①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等。

答:是。

证明:由于AB=AC,所以∠ABC=∠ACB,又因为D是AB的中点,所以AD=BD。

动点问题题型方法

动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

一、三角形边上的动点 1、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。

然后画出各类的图形,根据图形性质求顶点坐标。

2、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60º. (1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.图(3)B图(1)B图(2)注意:第(3)问按直角位置分类讨论3、如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60°,当△OPQ 面积最大时,四边形BCPQ 的面积最小。

八年级几何之动点问题

八年级几何之动点问题中考数学动点几何问题动点求最值:例1:在正方形ABCD中,面积为12,△ABE是等边三角形,点E在正方形内,在对角线AC上有一动点P,使PD+PE的值最小,则其最小值是多少?例2:在直角梯形中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,当PA+PD取得最小值时,△APD中AP边上的高为多少?一定两动型:例3:在锐角△ABC中,AB=4√2,∠BAC=45°,∠BAC 的平分线交BC于点D,M、N分别是AD、AB上的动点,则BM+MN的最小值是多少?例4:在正方形ABCD中,边长为2,E为AB的中点,P 是AC上的一动点,连接BP,EP,则PB+PE的最小值是多少?例5:在⊙O的半径为2的圆上,点A、B、C满足OA⊥OB,∠AOC=60°,P是OB上的一动点,PA+PC的最小值是多少?例6:在∠AOB=45°的情况下,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是多少?例7:在△ABC中,∠B=60°,BA=24cm,BC=16cm,(1)求△ABC的面积;(2)现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动,如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,△PBQ的面积是△ABC的面积的一半;(3)在第(2)问题前提下,P、Q两点之间的距离是多少?例8:在梯形ABCD中,DC∥AB,A=90°,AD=6cm,DC=4cm,BC的坡度i=3∶4,动点P从A出发以2cm/s的速度沿AB方向向点B运动,动点Q从点B出发以3cm/s的速度沿B→C→D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC的长;(2)当t为何值时,PC与BQ相互平分;(3)连结PQ,设△PBQ的面积为y,求y与t 的函数关系式,求t为何值时,y有最大值?例9、在直角三角形$ABC$中,$\angle ACB=90^\circ$,$\angle B=60^\circ$,$BC=2$。

怎样运用分类讨论思想解答几何中的动点问题

数学篇几何动点问题一直是初中几何中的一个难点,因为点运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种.同学们在求解此类问题时常常因为考虑不周导致漏解而出错.因此,解答动点问题尤其要注意分类讨论.下面就如何运用分类讨论思想解答两类几何图形中的动点问题进行分析,以供参考.一、运用分类讨论思想解答等腰三角形中的动点问题等腰三角形具有两条边相等、底角相等的特点,在求解涉及等腰三角形的动点问题时,由于边的不确定性或角的不确定,需要运用分类讨论思想,从动态的角度逐一讨论三角形的三边两两相等的三种情况,或三角形的三个角为其顶角的三种可能性,然后综合所有分类的结果确定最终答案.例1如图1,在直角坐标系中,已知点P (-2,-1),点T (t ,0)是x 轴上的一个动点.(1)求点P 关于原点的对称点P ′的坐标;(2)当[t ]取何值时,△P ′TO是等腰三角形?图1图1-1分析:第(1)问求P 点的对称点P ′比较简单,利用对称性即可解答.第(2)问,T 是x 轴上的动点,它在运动的过程中△P ′TO 可能是等腰三角形但顶点未确定,需要分情况讨论.解:(1)∵P (-2,-1),∴P 关于原点的对称点P ′坐标为(2,-1),(2)由(1)知P ′(2,-1),作图如图1-1所示,①当△P ′TO 中,点P ′为顶点时,T 点为图1-1中T 4点,此时P ′T =P ′O ,T 坐标为T 4(4,0),②当△P ′TO 中,点T 为顶点时,T 点为图1-1中T 2点,此时TO =TP ′,又∵T (t ,0)且P ′(2,-1),∴(0-t )2+(0-0)2=(2-t )2+(-1-0)2解得,t =54,此时点T 坐标为T 2(54,0),③当△P ′TO 中,点O 为顶点时,T 点为图1-1中T 1和T 3点,此时TO =P ′O ,∵T (t ,0)且P ′(2,-1),∴(0-t )2+(0-0)2=(0-2)2+[0-(-1)]2,解得,t =±5,此时T 点坐标为T 1(-5,0)和T 3(5,0),综合①②③可知,当t 取-5、54、5、4时,△P ′TO 是等腰三角形.评注:本题看似简单,实则非常复杂.由于题目中没有明确等腰三角形的顶点,且T 为坐标轴上的一个动点,所以点T 、O 、P 均有可能为等腰三角形顶角的顶点,需要对此进怎样运用分类讨论思想解答几何中盐城市新洋初级中学吉华丽解法荟萃32数学篇行分类讨论.二、运用分类讨论思想解答圆中的动点问题圆既是轴对称图形,又是中心对称图形,还具有旋转不变性.圆的这些特性决定了与圆有关的动点问题可能存在多解.在解题时,我们可以根据题目要求初步绘制“圆”可能存在的位置,然后依据分类标准(比如x 轴、y 轴等)逐一分类讨论,做到不重不漏,最后综合所有情况得到完整答案.例2如图2,直线y =-43x +4与x 轴、y 轴分别交于点M ,N .(1)求M ,N 两点的坐标;(2)如果点P 在坐标轴上,以点P 为圆心,125为半径的圆与直线y=-43x +4相切,求点P 的坐标.图2图2-1分析:这是一个直线与圆相结合的题目.第(1)问,我们借助直线方程y=-43x +4可以直接求出M 、N 的坐标.第(2)问P 点在坐标轴上,到底在x 轴还是y 轴不确定,所以以P 点为圆心,半径为125的圆也具有不确定性,需要借助分类讨论思想加以讨论.解:(1)∵直线y =-43x +4与x 轴、y 轴分别交于点M ,N ,∴令x =0,y =4,即N (0,4).同理可得M (3,0).(2)经过分析发现P 点可能在x 轴上或y 轴上,通过作图发现可能有4种情况,如图2-1所示.①当P 在x 轴上时,设P (x 0,0),则圆P可能是图2-1中的两个虚线圆.125=43x ,解得x 0=0或6,此情况下P 点坐标为P 1(0,0)P 2(6,0);②当P 在y 轴上时,设P (0,y 0),则圆P可能是图2-1中的两个实线圆.125=|-43×0-y 0+4|4,解得y 0=0或8,此情况下P 坐标为P 3(0,0)和P 4(0,8),由此可见P 1和P 3重合,是同一个点.综合①②,符合条件的P 点一共有3个,分表为(0,0)、(6,0)、(0,8).评注:审题时一定要充分挖掘隐含条件,“点P 在坐标轴上”就是一个不确定的表述,可能存在多种情况.另外作图要准确,可以通过作图的方式大致确定点的位置,预估答案.此外,该题还有一个关键之处,即“点到直线的距离公式”.考试中常用的有两种公式,分别为:①设直线方程为一般式Ax +By +C =0,点P 的坐标为(x 0,y 0),则点P 到直线L 的距离为:d =|Ax 0+By 0+C |A 2+B2;②当P (x 0,y 0),直线L 的方程为截距式y =kx +b ,则P 点到直线的距离为d =|kx 0-y 0+b |1+k2.总之,动点问题常常要借助分类讨论思想辅助解题.一般涉及到与“直角三角形”“等腰三角形”“相似三角形”“圆”等相关的动点问题,往往具有不确定性,存在多解的情况.解法荟萃。

几何中的动点问题:中考数学轨迹与路径

几何中的动点问题:中考数学轨迹与路径几何作为数学的一部分,一直以来被认为是高难度的学科之一,但是在实际中,几何也是生活和科学中必不可少的组成部分。

而在几何中,动点问题一直是人们感到困惑的一个问题。

在这篇文章中,我们将为大家全面介绍几何中的动点问题,以及如何在中考数学中处理轨迹和路径的问题。

一、动点问题的基本定义及特点动点问题可以简单定义为:在几何图形中,设有一个动点进行运动,如何求出该点的轨迹和路径。

动点问题是几何中的一个重要问题,具有以下特点:1. 动点问题一般是基于静态点进行分析,因此需要对静态点的性质有深刻的认识。

2. 动点问题的解决需要具备一定的数学能力和三维空间思维能力,需要较高的数学水平。

3. 动点问题结合实际进行探究,可以帮助人们更好地理解几何、物理等知识,也有益于培养人们的空间思维能力。

二、动点问题的基本应用1. 针对不同的几何图形,我们可以找到它们的动点问题:(1)直线的动点问题:一般是着眼于直线上的动点,分析其轨迹和路径;(2)圆的动点问题:针对圆上的任意一点,求其轨迹和路径;(3)曲线的动点问题:着重考虑曲线上的动点,探究它们的轨迹和路径。

2. 在实际生活中,动点问题也有很多应用:(1)公路的修建:如何建设一条曲线公路,使得大车可以顺利通过,是一个很好的动点问题实例;(2)太空飞行器飞行:在太空中,如何预测航天器的运动轨迹,需要运用动点问题的相关知识;(3)排球比赛中跑位:排球比赛中,如何控制自己的跑位,使得球能够顺利地落到自己的手中,也是一种动点问题的体现。

三、如何在中考数学中处理轨迹和路径在中考数学中,轨迹和路径的处理是重点。

我们可以通过以下方法来解决问题:1. 把动点分解成几个静止的点,结合点的特性,推导出动点刚好经过这些点时的轨迹和路径。

2. 找到一个合适的坐标系,将动点变成坐标,问题就可以转化为一个数学问题,更加便于解决。

3. 运用相关的几何定理,如垂线定理、角平分线定理等,结合动点的运动特性,解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二动点问题
1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,
动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B 以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.
(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,四边形PQCD为等腰梯形?
(3)当t为何值时,四边形PQCD为直角梯形?
2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
(1)试说明EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.
3、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P 从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.
4、如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B 运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
(1)当t为何值时,四边形MNCD是平行四边形?
(2)当t为何值时,四边形MNCD是等腰梯形?
1、解:(1)∵四边形PQCD平行为四边形∴PD=CQ∴24-t=3t解得:t=6
即当t=6时,四边形PQCD平行为四边形.
(2)过D作DE⊥BC于E,则四边形ABED为矩形∴BE=AD=24cm∴EC=BC-BE=2cm ∵四边形PQCD为等腰梯形∴QC-PD=2CE,即3t-(24-t)=4,解得:t=7(s)
即当t=7(s)时,四边形PQCD为等腰梯形.
(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2
解得:t=6.5(s),即当t=6.5(s)时,四边形PQCD为直角梯形.
2、解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,
∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.
(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,
∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,
同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.
(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,
∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.
3、解:(1)∵AQ=3-t∴CN=4-(3-t)=1+t在Rt△ABC中,AC2=AB2+BC2=32+42
∴AC=5 在Rt△MNC中,cos∠NCM= = ,CM= .
(2)由于四边形PCDQ构成平行四边形,∴PC=QD,即4-t=t 解得t=2.
(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB
即:(1+t)+1+t= (3+4+5)解得:t= (5分)而MN= NC= (1+t)
∴S△MNC= (1+t)2= (1+t)2 当t= 时,S△MNC=(1+t)2= ≠ ×4×3 ∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.
(4)①当MP=MC时(如图1)则有:NP=NC,即PC=2NC∴4-t=2(1+t)解得:t=
②当CM=CP时(如图2)则有:
(1+t)=4-t 解得:t=
③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2,而MN= NC= (1+t)
PN=NC-PC=(1+t)-(4-t)=2t-3∴[ (1+t)]2+(2t-3)2=(4-t)2
解得:t1= ,t2=-1(舍去)∴当t= ,t= ,t= 时,△PMC为等腰三角形
4、解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形。

相关文档
最新文档