高考数学难点突破_难点25__圆锥曲线综合题
高考重难点突破圆锥曲线50道题(3)含详细解析

高考重难点突破圆锥曲线50道题(3)含详细解析1.已知抛物线C:y2=4x的焦点为F,直线l过点P(2,1),交抛物线于A,B两点.(1)若P为AB中点,求l的方程.(2)求|AF|+|BF|的最小值..2.已知抛物线C:y2=2x,过点M(2,0)的直线l交抛物线C于A,B两点,点P是直线上的动点,且PO⊥AB于点Q.(Ⅰ)若直线OP的倾斜角为,求|AB|;(Ⅱ)求的最小值及取得最小值时直线l的方程.3.设F为抛物线C:y2=2px的焦点,A是C上一点,F A的延长线交y轴于点B,A为FB 的中点,且|FB|=3.(1)求抛物线C的方程;(2)过F作两条互相垂直的直线l1,l2,直线l1与C交干M、N两点,直线l2与C交于D,E两点,求四边形MDNE面积的最小值.4.已知椭圆C:1(a>b>0)的左右焦点分别为F1,F2,A,B为椭圆C上位于x轴同侧的两点,△AF1F2的周长为6,∠F1AF2,的最大值为.(Ⅰ)求椭圆C的方程;(Ⅱ)若∠AF1F2+∠BF2F1=π,求四边形AF1F2B面积的取值范围.5.已知椭圆C:1(a>b>0)的短轴长等于2,离心率为.(1)求椭圆C的方程;(2)设O为坐标原点,过右焦点F的直线与椭圆C交于A、B两点(A、B不在x轴上),若,求四边形AOBE面积S的最大值.6.设椭圆E:>的右焦点为F,上顶点为M;CD是过点F且垂直于x 轴的椭圆E的弦,|CD|=3.(1)求椭圆E的方程;(2)圆F的半径为1,直线1过点M与圆F交于A、B两点,O为坐标原点,若|OA|•|OB|=1,求直线l的方程.7.已知抛物线C:y2=4x上有一点P位于x轴的上方,且|PF|=2.(Ⅰ)求P点的坐标;(Ⅱ)若直线P A,PB的倾斜角互补,分别交曲线C于A,B两点(点A,B,P不重合),试判断直线AB的倾斜角是否为定值,若是,求出此值,若不是请说明理由.8.已知椭圆C:1(a>b>0)的离心率为,左,右焦点分别为F1,F2,过F1的直线交椭圆C于A,B两点,△AF2B的周长为8,(1)求该椭圆C的方程.(2)设P为椭圆C的右顶点,Q为椭圆C与y轴正半轴的交点,若直线l:y x+m,(﹣1<m<1)与圆C交于M,N两点,求P、M、Q、N四点组成的四边形面积S的取值范围.9.已知椭圆C:1(a>b>0)过点A(2,0),双曲线1的离心率为.(1)求椭圆C的方程;(2)过原点O作两条射线OM,ON分别交椭圆C于M,N两点,当OM,ON斜率分别为k1,k2且△OMN的面积为1时,试问k1•k2是否为定值?若为定值,求出该定值;若不为定值,请说明理由.10.已知抛物线C:x2=2py(p>0)的焦点F到准线距离为2.(1)若点E(1,1),且点P在抛物线C上,求|PE|+|PF|的最小值;(2)若过点N(0,b)的直线与圆M:x2+(y﹣2)2=4相切,且与抛物线C有两个不同交点AB,求△AOB的面积.11.已知椭圆C:1(a>b>0)的左右焦点分别为F1,F2,点P是椭圆C上一点,以PF1为直径的圆E:x2过点F2.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P且斜率大于0的直线l1与C的另一个交点为A,与直线x=4的交点为B,过点(3,)且与l1垂直的直线l2与直线x=4交于点D,求△ABD面积的最小值.12.已知椭圆C:y2=1,斜率为l的直线l与椭圆C交于A(x1,y1),B(x2,y2)两点,且x1>x2.(Ⅰ)若A,B两点不关于原点对称,点D为线段AB的中点,求直线OD的斜率;(Ⅱ)若存在点E(3,y0),使得∠EBA=∠AEB=45°,求直线AB的方程.13.已知O为坐标原点,点F1,F2为椭圆M:1(a>b>0)左右焦点,G为椭圆M上的一个动点,△GF1F2的最大面积为,椭圆M的离心率为.(1)求椭圆M的标准方程;(2)过抛物线N:y一点P与抛物线N相切的直线l与椭圆M相交于A、B两点,设AB的中点为C,直线OP与直线OC的斜率分别是k1,k2,证明:k1k2为定值.14.已知抛物线C:y2=2px(p>0)过点M(1,﹣2),且焦点为F,直线l与抛物线相交于A,B两点.(1)求抛物线C的方程,并求其准线方程;(2)O为坐标原点.若,证明直线l必过一定点,并求出该定点.15.已知圆D:(x﹣2)2+(y﹣1)2=1,点A在抛物线C:y2=4x上,O为坐标原点,直线OA与圆D有公共点.(1)求点A横坐标的取值范围;(2)如图,当直线OA过圆心D时,过点A作抛物线的切线交y轴于点B,过点B引直线l交抛物线C于P、Q两点,过点P作x轴的垂线分别与直线OA、OQ交于M、N,求证:M为PN中点.16.已知抛物线C:y2=2px(p>0)的焦点为F,点B(m,2)在抛物线C上,A(0,),且|BF|=2|AF|.(1)求抛物线C的标准方程;(2)过点P(1,2)作直线PM,PN分别交抛物线C于M,N两点,若直线PM,PN 的倾斜角互补,求直线MN的斜率.17.已知点P(1,2)到抛物线C:y2=2px(p>0)准线的距离为2.(Ⅰ)求C的方程及焦点F的坐标;(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,求直线P A与PB的斜率之积.18.在平面直角坐标系xOy中,已知椭圆C:1(a>b>0)的离心率为,且过点(,).(1)求椭圆C的方程;(2)设点P(4,2),点M在x轴上,过点M的直线交椭圆C交于A,B两点.①若直线AB的斜率为,且AB,求点M的坐标;②设直线P A,PB,PM的斜率分别为k1,k2,k3,是否存在定点M,使得k1+k2=2k3恒成立?若存在,求出M点坐标;若不存在,请说明理由.19.设离心率为3,实轴长为1的双曲线E:(a>b>0)的左焦点为F,顶点在原点的抛物线C的准线经过点F,且抛物线C的焦点在x轴上.(I)求抛物线C的方程;(Ⅱ)若直线l与抛物线C交于不同的两点M,N,且满足OM⊥ON,求|MN|的最小值.20.已知椭圆C:1(a>0,b>0)的左、右焦点分别为F1、F2,离心率为,过焦点F2的直线l交椭圆C于A、B两点,当直线l垂直于x轴时,|AB|.(1)求椭圆C的标准方程:(2)已知椭圆上顶点为P,若直线l斜率为k,求证:以AB为直径的圆过点P.21.已知抛物线C:x2=2py(p>0的焦点为F,点M(2,m)(m>0)在抛物线上,且|MF|=2.(1)求抛物线C的方程;(2)若点P(x0,y0)为抛物线上任意一点,过该点的切线为l0,过点F作切线l0的垂线,垂足为Q,则点Q是否在定直线上,若是,求定直线的方程;若不是,说明理由.22.已知椭圆C:1(a>b>0)的短轴长等于2,离心率为.(Ⅰ)求椭圆C的标准方程(Ⅱ)若过点(﹣3,0)的直线l与椭圆C交于不同的两点M,N,O为坐标原点,求•的取值范围.23.已知椭圆C:(a>b>0)的离心率,且椭圆过点(,1)(1)求椭圆C的标准方程(2)设直线l与C交于M,N两点,点D在C上,O是坐标原点,若,判定四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.24.已知椭圆C:,(a>b>0)过点(1,)且离心率为.(Ⅰ)求椭圈C的方程;(Ⅱ)设椭圆C的右顶点为P,A,B是椭圆上异于点P的两点,直线P A,PB的斜率分别为k1k2,若k1+k2=1,试判断直线AB是否经过一个定点?若是,则求出该定点的坐标;若不是,则说明理由.25.已知椭圆:>>的离心率为,,为焦点是,的抛物线上一点,H为直线y=﹣a上任一点,A,B分别为椭圆C的上,下顶点,且A,B,H三点的连线可以构成三角形.(1)求椭圆C的方程;(2)直线HA,HB与椭圆C的另一交点分别交于D,E,求证:直线DE过定点.26.在平面直角坐标系xOy中,已知曲线C的方程是1(a,b>0).(1)当a=1,b=2时,求曲线C围成的区域的面积;(2)若直线l:x+y=1与曲线C交于x轴上方的两点M,N,且OM⊥ON,求点(,)到直线l距离的最小值.27.在直角坐标系中,已知椭圆E经过点M(2,),且其左右焦点的坐标分别是(﹣3,0),(3,0).(1)求椭圆E的离心率及标准方程;(2)设P(﹣3,t)为动点,其中t∈(,),直线l经过点P且与椭圆E相交于A,B两点,若P为AB的中点,是否存在定点N,使|NA|=|NB|恒成立?若存在,求点N的坐标;若不存在,说明理由28.已知椭圆C:y2=1的左、右焦点分别为F1,F2,P是椭圆C上在第二象限内的一点,且直线PF2的斜率为.(1)求P点的坐标;(2)过点Q(﹣2,0)作一条斜率为正数的直线l与椭圆C从左向右依次交于A,B两点,是否存在实数λ使得∠AF1B=λ∠AF1P?若存在,求出λ的值;若不存在,请说明理由.29.火电厂、核电站的循环水自然通风冷却塔是一种大型薄壳型建筑物.建在水源不十分充分的地区的电厂,为了节约用水,需建造一个循环冷却水系统,以使得冷却器中排出的热水在其中冷却后可重复使用,大型电厂采用的冷却构筑物多为双曲线型冷却塔.此类冷却塔多用于内陆缺水电站,其高度一般为75~150米,底边直径65~120米.双曲线型冷却塔比水池式冷却构筑物占地面积小,布置紧凑,水量损失小,且冷却效果不受风力影响;它比机力通风冷却塔维护简便,节约电能;但体形高大,施工复杂,造价较高(以上知识来自百度,下面题设条件只是为了适合高中知识水平,其中不符合实际处请忽略.图1)(1)图2为一座高100米的双曲线冷却塔外壳的简化三视图(忽略壁厚),其底面直径大于上底直径.已知其外壳主视图与左视图中的曲线均为双曲线,高度为100m,俯视图为三个同心圆,其半径分别为40m,m,30m,试根据上述尺寸计算主视图中该双曲线的标准方程(m为长度单位米).(2)试利用课本中推导球体积的方法,利用圆柱和一个倒放的圆锥,计算封闭曲线:,y=0,y=h,绕y轴旋转形成的旋转体的体积为(用a,b,h表示)(用积分计算不得分,图3、图4)现已知双曲线冷却塔是一个薄壳结构,为计算方便设其内壁所在曲线也为双曲线,其壁最厚为0.4m(底部),最薄处厚度为0.3m(喉部,即左右顶点处).试计算该冷却塔内壳所在的双曲线标准方程是,并计算本题中的双曲线冷却塔的建筑体积(内外壳之间)大约是m3(计算时π取3.14159,保留到个位即可)(3)冷却塔体型巨大,造价相应高昂,本题只考虑地面以上部分的施工费用(建筑人工和辅助机械)的计算,钢筋土石等建筑材料费用和和其它设备等施工费用不在本题计算范围内.超高建筑的施工(含人工辅助机械等)费用随着高度的增加而增加.现已知:距离地面高度30米(含30米)内的建筑,每立方米的施工费用平均为:400元/立方米;30米到40米(含40米)每立方米的施工费用为800元/立方米;40米以上,平均高度每增加1米,每立方米的施工费用增加100元.试计算建造本题中冷却塔的施工费用(精确到万元)30.已知椭圆:>>经过点,,左焦点,,直线l:y =2x+m与椭圆C交于A,B两点,O是坐标原点.(1)求椭圆C的标准方程;(2)若△OAB面积为1,求直线l的方程.31.已知F1、F2为椭圆C:1(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M(,1).(1)求椭圆C的方程;(2)若过点(,0)的直线l与椭圆C交于A、B两点,若0,求直线l的方程.32.设椭圆:>>的右焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆Γ截得的线段长为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)如图,A、B分别为椭圆Γ的左、右顶点,过点F的直线l与椭圆Γ交于C、D两点.若,求直线l的方程.33.已知椭圆C:>>经过点(,1),离心率为.(1)求椭圆C的方程;(2)过点M(2,0)的直线l交椭圆于A,B两点,F为椭圆C的左焦点,若,求直线l的方程.34.已知F1,F2分别为椭圆:>>的左右焦点,上顶点为M,且△F1MF2的周长为,且长轴长为4.(1)求椭圆C的方程;(2)已知P(0,3),若直线y=2x﹣2与椭圆C交于A,B两点,求.35.已知椭圆C的中心为坐标原点O,焦点F1,F2在x轴上,椭圆C短轴端点和焦点所组成的四边形为正方形,且椭圆C短轴长为2.(1)求椭圆C的标准方程.(2)P为椭圆C上一点,且∠F1PF2,求△PF1F2的面积.36.已知抛物线C:y2=2px(p>0)的焦点与椭圆的右焦点重合.(1)求抛物线C的方程及焦点到准线的距离;(2)若直线y x+1与C交于A(x1,y1),B(x2,y2)两点,求y1y2的值.37.已知离心率为的椭圆C:1(a>b>0)的左焦点为F1,过F1作长轴的垂线交椭圆于M,N两点,且|MN|=2.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB 长度的最小值.38.已知抛物线y2=2px(p>0)上一点M(x0,2)到焦点F的距离|MF|,倾斜角为α的直线经过焦点F,且与抛物线交于两点A、B.(1)求抛物线的标准方程及准线方程;(2)若α为锐角,作线段AB的中垂线m交x轴于点P.证明:|FP|﹣|FP|•cos2α为定值,并求出该定值.39.已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F 的距离为.(Ⅰ)求抛物线E的方程;(Ⅱ)不过圆点的动直线l交抛物线于A、B两点,且满足OA⊥OB.(i)求证直线l过定点:(ii)设点M为圆C上任意一动点,求当动点M到直线l的距离最大时直线l的方程.40.设抛物线C:y2=2px(P>0)的焦点为F,直线l与抛物线C交于不同的两点A,B,线段AB中点M的横坐标为2,且|AF|+|BF|=6.(Ⅰ)求抛物线C的标准方程;(Ⅱ)若直线l(斜率存在)经过焦点F,求直线l的方程.41.己知点M为抛物线C:y2=4x上异于原点O的任意一点,F为抛物线的焦点,连接MF 并延长交抛物线C于点N,点N关于x轴的对称点为A.(Ⅰ)证明:直线MA恒过定点:(Ⅱ)如果|FM|=λ|OM|,求实数λ的取值范围.42.在直角坐标系xOy中,抛物线y2=4x与圆C:(x﹣a)2+y2=a2交于O,A,B三点,且O、A、B将圆C三等分(1)求a的值;(2)设直线l与抛物线交于M,N两点,点A位于第一象限,若直线AM,AN的斜率之和为,证明当线MN过定点,并求出定点坐标.43.设抛物线C:y2=4x的焦点为F,过F的直线l与C交于A,B两点.(1)若|AF|=2|BF|,求直线l的斜率;(2)设线段AB的垂直平分线交x轴于点D,求证:|AB|=2|DF|.44.在平面直角坐标系xOy中,曲线Γ:y=x2﹣mx+2m(m∈R)与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A,B,C三点的圆过定点,并求出该定点的坐标.45.设抛物线C:y2=2px(p>0)的焦点为F,过点F作垂直于x轴的直线与抛物线交于A,B两点,且以线段AB为直径的圆过点M(﹣1,0).(1)求抛物线C的方程;(2)设过点(2,0)的直线l1,l2分别与抛物线C交于点D,E和点G,H,且l1⊥l2,求四边形DGEH面积的最小值.46.在平面直角坐标系中,已知抛物线y2=2px(p>0)的焦点F到双曲线x21的渐近线的距离为.(1)求该抛物线的方程;(2)设抛物线准线与x轴交于点M,过M作斜率为k的直线l与抛物线交于A,B两点,弦AB的中点为P,AB的中垂线交x轴于N,求点N横坐标的取值范围.47.已知点P(6,﹣2)是抛物线C:y2=mx上一点,直线y=k(x﹣2)(k≠0)与抛物线C交于A,B两点.(1)求P到抛物线C焦点的距离;(2)若M的坐标为(0,1),且MA⊥MB,求k的值.48.已知点O为坐标原点椭圆C:1(a>b>0)的右焦点为F,离心率为,点P,Q分别是椭圆C的左顶点、上顶点,△POQ的边PQ上的中线长为.(1)求椭圆C的标准方程;(2)过点F的直线l交椭圆于A、B两点直线P A、PB分别交直线x=2a于M、N两点,求.49.已知椭圆1(a>b>0),若在(2,0),(,),(,)(,)四个点中有3个在M上.(1)求椭圆M的方程;(2)若点A与点B是椭圆M上关于原点对称的两个点,且C(﹣4,0),求•的取值范围.50.设抛物线C:y2=2px(p>0)的焦点为F,过点F作垂直于x轴的直线与抛物线交于A,B两点,且以线段AB为直径的圆过点M(﹣1,0).(1)求抛物线C的方程;(2)若直线:与抛物线C交于R,S两点,点N为曲线E:上的动点,求△NRS面积的最小值.高考重难点突破圆锥曲线50道题(3)含详细解析参考答案与试题解析1.已知抛物线C:y2=4x的焦点为F,直线l过点P(2,1),交抛物线于A,B两点.(1)若P为AB中点,求l的方程.(2)求|AF|+|BF|的最小值..【解答】解:(1)设A(x1,y1),B(x2,y2).则x1+x2=4,y1+y2=2又,两式相减可得:(y1﹣y2)(y1+y2)=4(x1﹣x2).∴2(y1﹣y2)=4(x1﹣x2).,即直线l的斜率为2,∴直线l的方程为y=2(x﹣2)+1.即y=2x﹣3.(2)直线l的方程为x=m(y﹣1)+2由⇒y2﹣4my+4m﹣8=0.y1+y2=4m,∵|AF|+|BF|=x1+1+x2+1=x1+x2+2=m(y1﹣1)+2+m(y2﹣1)+2+2=m(y1+y2)﹣2m+6=4m2﹣2m+6当m时,|AF|+|BF|取最小值.最小值为.2.已知抛物线C:y2=2x,过点M(2,0)的直线l交抛物线C于A,B两点,点P是直线上的动点,且PO⊥AB于点Q.(Ⅰ)若直线OP的倾斜角为,求|AB|;(Ⅱ)求的最小值及取得最小值时直线l的方程.【解答】解:(Ⅰ)依题意可设直线OP的方程为:y=x﹣2.联立,可得x2﹣6x+4=0,所以AB2.(Ⅱ)设直线l的方程为x=my+2.由得y2﹣2my﹣4=0.设A(x1,y1),B(x2,y2),则.∴AB.又PQ:y=﹣mx,故P(,)∴点P到直线l的距离d=|PQ|.∴3令m2+4=t,f(t).函数f(t)在[4,+∞)单调递增,∴f(t)min=f(4),此时m=0∴3,∴的最小值为,此时直线l的方程为x=2.3.设F为抛物线C:y2=2px的焦点,A是C上一点,F A的延长线交y轴于点B,A为FB 的中点,且|FB|=3.(1)求抛物线C的方程;(2)过F作两条互相垂直的直线l1,l2,直线l1与C交干M、N两点,直线l2与C交于D,E两点,求四边形MDNE面积的最小值.【解答】解:(1)如图,∵A为FB的中点,∴A到y轴的距离为,∴|AF|,解得p=2.∴抛物线C的方程为y2=4x;(2)由已知直线l1的斜率存在且不为0,设其方程为y=k(x﹣1).由,得k2x2﹣(2k2+4)x+k2=0.∵△>0,设M(x1,y1)、N(x2,y2)。
高考数学考纲解读与热点难点突破专题18圆锥曲线的综合问题热点难点突破文含解析

圆锥曲线的综合问题1.已知椭圆x2a2+y2b2=1(a >b >0)的离心率e =33,左、右焦点分别为F 1,F 2,且F 2与抛物线y 2=4x 的焦点重合.(1)求椭圆的标准方程;(2)若过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,求|AC |+|BD |的最小值.解 (1)抛物线y 2=4x 的焦点坐标为(1,0),所以c =1, 又因为e =c a =1a =33,所以a =3,所以b 2=2,所以椭圆的标准方程为x23+y22=1.由题意知AC 的斜率为-1k,所以|AC |=43⎝ ⎛⎭⎪⎫1k2+13×1k2+2=43()k2+12k2+3.|AC |+|BD |=43()k2+1⎝⎛⎭⎪⎫13k2+2+12k2+3=203()k2+12()3k2+2()2k2+3≥203()k2+12⎣⎢⎡⎦⎥⎤()3k2+2+()2k2+322=203()k2+12+4=1635.当且仅当3k 2+2=2k 2+3,即k =±1时,上式取等号,故|AC |+|BD |的最小值为1635.②当直线BD 的斜率不存在或等于零时, 可得|AC |+|BD |=1033>1635.综上,|AC |+|BD |的最小值为1635.2.已知椭圆 C :x2a2+y2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,点P 在椭圆C 上,且△PF 1F 2的面积的最大值为2 2.(2)已知直线l :y =kx +2(k ≠0)与椭圆C 交于不同的两点M ,N ,若在x 轴上存在点G ,使得|GM |=|GN |,求点G 的横坐标的取值范围.解 (1)由已知得⎩⎪⎨⎪⎧c a =13,12×2c×b=22,c2=a2-b2,解得a 2=9,b 2=8,c 2=1, ∴椭圆C 的方程为x29+y28=1.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点为E (x 0,y 0),点G (m ,0),使得|GM |=|GN |, 则GE ⊥MN . 由⎩⎪⎨⎪⎧y =kx +2,x29+y28=1,得()8+9k2x 2+36kx -36=0,由Δ>0,得k ∈R 且k ≠0. ∴x 1+x 2=-36k 9k2+8,∴x 0=-18k 9k2+8,y 0=kx 0+2=169k2+8.∵GE ⊥MN ,∴k GE =-1k ,即169k2+8-0-18k 9k2+8-m =-1k, ∴m =-2k 9k2+8=-29k +8k.当k >0时,9k +8k ≥29×8=12 2⎝ ⎛⎭⎪⎫当且仅当9k =8k ,即k =223时,取等号,∴-212≤m <0; 当k <0时,9k +8k≤-12 2⎝ ⎛⎭⎪⎫当且仅当9k =8k ,即k =-223时,取等号,∴0<m ≤212, ∴点G 的横坐标的取值范围为⎣⎢⎡⎭⎪⎫-212,0∪⎝ ⎛⎦⎥⎤0,212. 3.已知椭圆C 1:x2a2+y23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN||MQ|=2?若存在,求出k 的值;若不存在,请说明理由.解 (1)因为C 1,C 2的焦点重合,所以a2-3=a2,所以a 2=4. 又a >0,所以a =2.于是椭圆C 1的方程为x24+y23=1,抛物线C 2的方程为y 2=4x . (2)假设存在直线l 使得|PN||MQ|=2,当l ⊥x 轴时,|MQ |=3,|PN |=4,不符合题意, ∴直线l 的斜率存在,∴可设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4). 由错误!可得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 4=2k2+4k2,x 1x 4=1,且Δ=16k 2+16>0,所以|PN |=1+k2·错误! =错误!.由错误!可得(3+4k 2)x 2-8k 2x +4k 2-12=0, 则x 2+x 3=8k23+4k2,x 2x 3=4k2-123+4k2,且Δ=144k 2+144>0,所以|MQ |=1+k2·错误!=错误!. 若|PN||MQ|=2, 则错误!=2×错误!,解得k =±62. 故存在斜率为k =±62的直线l ,使得|PN||MQ|=2. 4.已知M ⎝ ⎛⎭⎪⎫3,12是椭圆C :x2a2+y2b2=1(a >b >0)上的一点,F 1,F 2是该椭圆的左、右焦点,且|F 1F 2|=2 3. (1)求椭圆C 的方程;(2)设点A ,B 是椭圆C 上与坐标原点O 不共线的两点,直线OA ,OB ,AB 的斜率分别为k 1,k 2,k ,且k 1k 2=k 2.试探究|OA |2+|OB |2是否为定值?若是,求出定值;若不是,说明理由. 解 (1)由题意知,F 1(-3,0),F 2(3,0), 根据椭圆定义可知|MF 1|+|MF 2|=2a ,所以2a = 3+3+⎝ ⎛⎭⎪⎫12-02+3-3+⎝ ⎛⎭⎪⎫12-02=4, 所以a 2=4,b 2=a 2-c 2=1, 所以椭圆C :x24+y 2=1.(2)设直线AB :y =kx +m (km ≠0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x24+y2=1,消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0, Δ=(8km )2-16(m 2-1)(4k 2+1)>0,x 1+x 2=-8km 1+4k2,x 1x 2=4m2-41+4k2,因为k 1k 2=k 2,所以kx1+m x1·kx2+m x2=k 2,即km (x 1+x 2)+m 2=0(m ≠0),解得k 2=14.|OA |2+|OB |2=x 21+x 2+y 21+y 2 =54[(x 1+x 2)2-2x 1x 2]=5, 所以|OA |2+|OB |2=5.5.已知椭圆C :x2a2+y2b2=1(a >b >0)的上顶点为点D ,右焦点为F 2(1,0),延长DF 2交椭圆C 于点E ,且满足|DF 2|=3|F 2E |.(1)求椭圆C 的标准方程;(2)过点F 2作与x 轴不重合的直线l 和椭圆C 交于A ,B 两点,设椭圆C 的左顶点为点H ,且直线HA ,HB 分别与直线x =3交于M ,N 两点,记直线F 2M ,F 2N 的斜率分别为k 1,k 2,则k 1与k 2之积是否为定值?若是,求出该定值;若不是,请说明理由.解 (1)椭圆C 的上顶点为D (0,b ),右焦点F 2(1,0),点E 的坐标为(x ,y ). ∵|DF 2|=3|F 2E |,可得DF2→=3F2E →, 又DF2→=(1,-b ),F2E →=(x -1,y ),∴⎩⎪⎨⎪⎧x =43,y =-b3,代入x2a2+y2b2=1,可得⎝ ⎛⎭⎪⎫432a2+⎝ ⎛⎭⎪⎫-b 32b2=1,又a 2-b 2=1,解得a 2=2,b 2=1, 即椭圆C 的标准方程为x22+y 2=1.∴⎩⎪⎨⎪⎧y1+y2=-2mm2+2,y1y2=-1m2+2.根据H ,A ,M 三点共线,可得yM3+2=y1x1+2, ∴y M =y1()3+2x1+2.同理可得y N =y2()3+2x2+2,∴M ,N 的坐标分别为⎝⎛⎭⎪⎫3,y1()3+2x1+2,⎝ ⎛⎭⎪⎫3,y2()3+2x2+2,∴k 1k 2=yM -03-1·yN -03-1=14y M y N=14·y1()3+2x1+2·y2()3+2x2+2 =错误! =错误!=-11-62m2+24⎣⎢⎡⎦⎥⎤-m2m2+2+-2()1+2m2m2+2+3+22=-11-62m2+24×6+42m2+2=42-98.∴k 1与k 2之积为定值,且该定值是42-98.6.已知平面上动点P 到点F ()3,0的距离与到直线x =433的距离之比为32,记动点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)设M (m ,n )是曲线E 上的动点,直线l 的方程为mx +ny =1. ①设直线l 与圆x 2+y 2=1交于不同两点C ,D ,求|CD |的取值范围;②求与动直线l 恒相切的定椭圆E ′的方程,并探究:若M (m ,n )是曲线Γ:Ax 2+By 2=1(A ·B ≠0)上的动点,是否存在与直线l :mx +ny =1恒相切的定曲线Γ′?若存在,直接写出曲线Γ′的方程;若不存在,说明理由.解 (1)设P (x ,y ),由题意,得()x -32+y2⎪⎪⎪⎪⎪⎪x -433=32. 整理,得x24+y 2=1,∴曲线E 的方程为x24+y 2=1.(2)①圆心到直线l 的距离d =1m2+n2, ∵直线与圆有两个不同交点C ,D , ∴|CD |2=4⎝ ⎛⎭⎪⎫1-1m2+n2.又∵m24+n 2=1(m ≠0),∴|CD |2=4⎝ ⎛⎭⎪⎫1-43m2+4.∵|m |≤2,∴0<m 2≤4, ∴0<1-43m2+4≤34.∴|CD |2∈(0,3],|CD |∈(]0,3,即|CD |的取值范围为(]0,3.②当m =0,n =1时,直线l 的方程为y =1;当m =2,n =0时,直线l 的方程为x =12.根据椭圆对称性,猜想E ′的方程为4x 2+y 2=1. 下面证明:直线mx +ny =1(n ≠0)与4x 2+y 2=1相切, 其中m24+n 2=1,即m 2+4n 2=4.由⎩⎪⎨⎪⎧4x2+y2=1,y =1-mxn ,消去y 得(m 2+4n 2)x 2-2mx +1-n 2=0, 即4x 2-2mx +1-n 2=0,∴Δ=4m 2-16()1-n2=4()m2+4n2-4=0恒成立,从而直线mx +ny =1与椭圆E ′:4x 2+y 2=1恒相切.若点M ()m ,n 是曲线Γ:Ax 2+By 2=1()A·B≠0上的动点,则直线l :mx +ny =1与定曲线Γ′:x2A +y2B =1()A·B≠0恒相切.7. 已知椭圆C :x2a2+y2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,右焦点为F 2(1,0),点B ⎝⎛⎭⎪⎫1,32在椭圆C上.(1)求椭圆C 的方程;(2)若直线l :y =k (x -4)(k ≠0)与椭圆C 由左至右依次交于M ,N 两点,已知直线A 1M 与A 2N 相交于点G ,证明:点G 在定直线上,并求出定直线的方程.解析:(1)由F 2(1,0),知c =1,由题意得⎩⎪⎨⎪⎧a2=1+b2,1a2+94b2=1,所以a =2,b =3,所以椭圆C 的方程为x24+y23=1. (2)因为y =k (x -4),所以直线l 过定点(4,0),由椭圆的对称性知点G 在直线x =x 0上.当直线l 过椭圆C 的上顶点时,M (0,3),所以直线l 的斜率k =-34,由⎩⎪⎨⎪⎧y =-34-,x24+y23=1,得⎩⎨⎧x =0,y =3或⎩⎪⎨⎪⎧x =85,y =335,所以N ⎝ ⎛⎭⎪⎫85,335,由(1)知A 1(-2,0),A 2(2,0),所以直线lA 1M 的方程为y =32(x +2),直线lA 2N 的方程为y =-332(x -2),所以G ⎝⎛⎭⎪⎫1,332,所以G 在直线x =1上.当直线l 不过椭圆C 的上顶点时,设M (x 1,y 1),N (x 2,y 2),由 错误!得(3+4k 2)x 2-32k 2x +64k 2-12=0,。
高考数学140分难点突破训练――圆锥曲线(含详解)概要

高考数学140分难点突破训练――圆锥曲线(含详解)概要高考数学140分难点突破训练——圆锥曲线1. 已知椭圆C的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率为。
w.w.w.k.s.5.u.c.o.m(1)求椭圆C的方程;(2)设A、B为椭圆上的两个动点,,过原点O作直线AB的垂线OD,垂足为D,求点D的轨迹方程.2. 设直线与双曲线相交于A,B两点,O为坐标原点.(I)为何值时,以AB为直径的圆过原点.(II)是否存在实数,使且,若存在,求的值,若不存在,说明理由.3. (理)设双曲线C:(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,△FPQ为等边三角形.(1)求双曲线C的离心率e的值;(2)若双曲线C被直线y=ax+b截得的弦长为求双曲线c的方程.(文)在△ABC中,A点的坐标为(3,0),BC边长为2,且BC 在y轴上的区间[-3,3]上滑动.(1)求△ABC外心的轨迹方程;(2)设直线l∶y=3x+b与(1)的轨迹交于E,F两点,原点到直线l的距离为d,求的最大值.并求出此时b的值.4. 已知点N(1,2),过点N的直线交双曲线于A、B两点,且(1)求直线AB的方程;(2)若过N的直线l交双曲线于C、D两点,且,那么A、B、C、D四点是否共圆?为什么?5. 设(为常数),若,且只有唯一实数根(1)求的解析式(2)令求数列的通项公式。
6. 已知点C(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足(1)当点P在y轴上运动时,求点M的轨迹C的方程;(2)是否存在一个点H,使得以过H点的动直线L被轨迹C截得的线段AB为直径的圆始终过原点O。
若存在,求出这个点的坐标,若不存在说明理由。
7. 设为直角坐标平面内x,y轴正方向上的单位向量,若向量.(1求点M(x,y)的轨迹C的方程;(2过点(0,3作直线与曲线C 的交于A、B两点,设,是否存在这样的直线,使得四边形OAPB为矩形?若存在,求出直线的方程;若不存在,说明理由.8. 已知倾斜角为的直线过点和点,点在第一象限,。
高考重难点突破圆锥曲线50道题(4)含详细解析

高考重难点突破圆锥曲线50道题(4)含详细解析1.平面直角坐标系xOy 中,已知抛物线22(0)y px p =>及点(2,0)M ,动直线l 过点M 交抛物线于A ,B 两点,当l 垂直于x 轴时,4AB =. (1)求p 的值;(2)若l 与x 轴不垂直,设线段AB 中点为C ,直线1l 经过点C 且垂直于y 轴,直线2l 经过点M 且垂直于直线l ,记1l ,2l 相交于点P ,求证:点P 在定直线上.2.已知抛物线2:2(0)C y px p =>的焦点与双曲线2213x y -=的右焦点重合.(1)求抛物线C 的方程及焦点到准线的距离; (2)若直线112y x =+与C 交于1(A x ,1)y ,2(B x ,2)y 两点,求12y y 的值. 3.已知抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,点A C ∈,A 在l 上的射影为B ,且ABF ∆是边长为4的正三角形. (1)求p ;(2)过点F 作两条相互垂直的直线1l ,2l ,1l 与C 交于P ,Q 两点,2l 与C 交于M ,N 两点,设POQ ∆的面积为1S ,MON ∆的面积为2(S O 为坐标原点),求2212S S +的最小值.4.已知抛物线22(0)y px p =>上一点0(M x ,到焦点F 的距离03||2x MF =,倾斜角为α的直线经过焦点F ,且与抛物线交于两点A 、B . (1)求抛物线的标准方程及准线方程;(2)若α为锐角,作线段AB 的中垂线m 交x 轴于点P .证明:2||sin 2FP α=5.已知F 是椭圆22184x y +=的右焦点,过F 的直线!与椭圆相交于1(A x ,22)(x B x ,2)y 两点. (1)若1285x x =,求弦AB 的长;(2)O 为坐标原点,AOB θ∠=,满足tan OA OB θ=l 的方程. 6.已知椭圆222:22(0)C x y b b +=>. (1)求椭圆C 的离心率e ;(2)若1b =,斜率为1的直线与椭圆交于A 、B 两点,且||3AB =,求A O B ∆的面积.7.已知中心在原点,一焦点为0)的双曲线被点线47y x =-被得弦中点的横坐标为2,求此双曲线的方程8.已知抛物线2:8C y x =,焦点为F ,准线为l ,线段OF 的中点为G .点P 是C 上在x 轴上方的一点,且点P 到l 的距离等于它到原点O 的距离 (1)求P 点的坐标;(2)过点(1,0)Q -作一条斜率为正数的直线L 与抛物线C 从左向右依次交于A ,B 两点,求证:2AGB AGP ∠=∠.9.已知椭圆2222:1(0)x y C a b a b+=>>,1(,0)F c -,2(,0)F c 分别为椭圆的左、右焦点,点4(,)3c 在椭圆上.(1)求C 的方程;(2)若直线(1)y k x =-与椭圆C 相交于A ,B 两点,试问:在x 轴上是否在点D ,当k 变化时,总有ODA ODB ∠=∠?若存在求出点D 的坐标,若不存在,请说明理由.10.已知以椭圆2222:(0)x y E l a b a b+=>>的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.(1)求椭圆E 的方程;(2)若(,)x y 是椭圆E 上的动点,求2x y +的取值范围;(3)直线:(0)l y kx m km =+≠与椭圆E 交于异于椭圆顶点的A ,B 两点,O 为坐标原点,直线AO 与椭圆E 的另一个交点为C 点,直线l 和直线AO 的斜率之积为1,直线BC 与x 轴交于点M ,若直线BC ,AM 的斜率分别为1k ,2k ,试判断122k k +是否为定值,若是,求出该定值;若不是,说明理由.11.已知椭圆C 的对称中心为原点O ,焦点在x 轴上,焦距为(2,1)在该椭圆上. (1)求椭C 的方程;(2)直线2x =与椭圆交于P ,Q 两点,P 点位于第一象限,A ,B 是椭圆上位于直线2x =两侧的动点.当点A ,B 运动时,满足APQ BPQ ∠=∠,问直线AB 的斜率是否为定值,请说明理由.12.已知抛物线2:2(0)C y px p =>与圆222:()2pM x y R -+=的一个公共点为(2,2)A .(1)求圆M 的方程;(2)已知过点A 的直线l 与抛物线C 交于另一点B ,若抛物线C 在点A 处的切线与直线OB 垂直,求直线l 的方程.13.已知椭圆2222:1(0)x y C a b a b +=>>,且过点1)2-.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线:(0,0)l y kx m k m =+≠≠与椭圆C 相交于A 、B 两点,且直线OA ,AB ,OB 的斜率依次成等比数列,求直线l 的斜率.14.已知椭圆2222:1(0)x y a b a bΓ+=>>,Γ的四个顶点围成的四边形面积为(1)求Γ的方程;(2)过Γ的右焦点F ,且斜率不为0的直线l 与P 交于A ,B 两点线段AB 的垂直平分线经过点(0,M ,求MAB ∆的面积.15.已知椭圆2222:1(0)x y E a b a b+=>>(0,1)P 作斜率为k 的直线l 交椭圆E 于A ,B 两点,当直线垂直于y 轴时,||AB =. (Ⅰ)求椭圆E 的方程(Ⅱ)当k 变化时,在x 轴上是否存在点(,0)M m ,使得AMB ∆是以AB 为底的等腰三角形?若存在,求出m 的取值范围;若不存在,说明理由.16.已知抛物线22(0)y px p =>上点(2,)P t 到焦点的距离是3. (Ⅰ)求抛物线的标准方程及P 点坐标;(Ⅱ)设抛物线准线与x 轴交于点Q ,过抛物线焦点F 的直线l 与抛物线交于A ,B 两点,证明:直线QA ,QB 关于x 轴对称.17.椭圆:22221(0)x y a b a b +=>>离心率为12,P是椭圆上一点.(1)求椭圆方程;(2)1F ,2F 是椭圆左右焦点,过焦点1F 的弦AB 中点为1(2E -,)t ,求线段2EF 长.18.设椭圆2222:1x y C a b+=的左、右顶点分别为(,0)A a -,(,0)B a ,焦点为(,0)F c .(Ⅰ)若有一正方形的四个顶点都在椭圆C 上,且焦点在正方形内部,求椭圆离心率e 的取值范围;(Ⅱ)若1c =,过F 作直线l 与椭圆C 交于P ,Q 两点,记直线AP ,BQ 的斜率分别为1k ,2k .①若l 与x 轴重合,且||||3FP FQ =,求椭圆C 的方程; ②若直线l 不平行于x 轴,证明:12k k 为定值,并求此定值(用a 表示). 19.已知1F ,2F 分别为椭圆2222:1(0x y C a b a b +=>>的左焦点、右焦点,椭圆上的点与1F 的最大距离等于4,离心率等于13,过左焦点F 的直线l 交椭圆于M ,N 两点,圆E 内切于三角形2F MN ;(1)求椭圆的标准方程 (2)求圆E 半径的最大值20.已知椭圆22:1(1)x E y m m+=>,过点(1,0)P 的直线与椭圆E 交于A ,B不同的两点,直线0AA 垂直于直线4x =,垂足为0A . (Ⅰ)求m 的值;(Ⅱ)求证:直线0A B 恒过定点.21.椭圆22221(0)x y a b a b+=>>,左、右焦点分别为1F 、2F ,B 是椭圆上的一点,且三角形12BF F的面积最大值为(1)求椭圆的方程及其长轴长;(2)过右焦点2F 且不与x 轴重合的直线交椭圆于P 、Q 两点,记PQ 的中点为N ,直线ON 交直线3x =于M ,求证:以QM 为直径的圆一定经过右焦点2F .22.已知椭圆2212:1(0)8x y C a a +=>与抛物线22:2(0)C y px p =>有公共的焦点F ,且公共弦长为 (1)求a ,p 的值(2)过F 的直线交1C 于A ,B 两点,交2C 于M ,N 两点,且AM BN =,求||AB 23.已知抛物线2:2(0)E y px p =>上任意一点P 到直线2x =-的距离比到焦点F 距离大1. (1)求抛物线E 方程;(2)若A ,B ,C 是抛物线上不同的三点,点(M m ,11)()4m >是AB 中点,且焦点F 是ABC ∆重心,求证:||||2||FA FB FC +=.24.已知椭圆2222:1(0)x y E a b a b +=>>上的点到椭圆一个焦点的距离的最大值是最小值的3倍,且点3(1,)2P 在椭圆E 上.(Ⅰ)求椭圆E 的方程;(Ⅱ)过点(1,1)M 任作一条直线l ,l 与椭圆E 交于不同于P 点的A 、B 两点,l 与直线:34120m x y +-=交于C 点,记直线PA 、PB 、PC 的斜率分别为1k 、2k 、3k .试探究12k k +与3k 的关系,并证明你的结论.25.已知抛物线24x y =,过点(0,2)M 的动直线1l 交抛物线予A ,B 两点,点A 关于y 轴的对称点为C ,连接CB ,直线CB 与y 轴交于点N . (1)求证:N 为定点;(2)过点N 作y 轴的垂线2l ,是否存在直线1l ,使得在直线3l 上在在点P 满足PAB ∆为等边三角形,若存在,求出直线方程1l ;若不存在,说明理由.26.已知椭圆2222:1(0)x y C a b a b+=>>的实轴长为4,焦距为(1)求椭圆C 的标准方程;(2)设直线经过点(2,1)P -且与椭圆C 交于不同的两点M ,N (异于椭圆的左顶点)设点Q 是x 轴上的一个动点,直线QM ,QN 的斜率分别为1k ,2k ,试问:是否存在点Q ,使得1211k k +为定值?若存在,求出点Q 的坐标及定值;若不存在,请说明理由, 27.已知椭圆2222:1(0)x y E a b a b +=>>的上顶点为P ,右顶点为Q ,直线PQ 与圆2245x y +=相切于点2(5M ,4)5.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)设椭圆E 的左、右焦点分别为1F 、2F ,过1F 且斜率存在的直线L 与椭E 相交于A 点,且22||||2||AF BF AB +=,求直线L 的方程28.如图,已知椭圆2222:1(0)x y C a b a b+=>>,一条准线方程为2x =.过点(0,2)T 且不与x 轴垂直的直线l 与椭圆C 相交于A ,B 两点线段AB 的垂直平分线分别交AB 和y 轴于点M ,N 两点.(1)求椭圆C 的方程;(2)求证:线段MN 的中点在定直线上;(3)若ABN ∆为等腰直角三角形,求直线l 的方程.29.已如椭圆2222:1(0)x y C a b a b+=>>,点在椭圆C 上.(1)求椭圆C 的方程;(2)动直线:(0)l y t t =+≠交椭圆C 于A 、B 两点,交y 轴于点T ,点T 关于坐标原点O 的对称点为D ,以D 为圆心,||DO 为半径的圆记作D ,过线段AB 的中点M 作D 的两条切线,切点分别为P 、Q ,证明:cos PMQ ∠为定值.30.已知圆C 经过椭圆221164x y +=的右顶点2A 、下顶点1B 、上顶点2B 三点.(Ⅰ)求圆C 的标准方程;(Ⅱ)直线l 经过点(1,1)与10x y ++=垂直,求圆C 被直线l 截得的弦长.31.已知抛物线2:4C x y =,焦点为F ,设A 为C 上的一动点,以A 为切点作C 的切线,与y 轴交于点B ,以FA ,FB 为邻边作平行四边形FANB .(1)证明:点N 在一条定直线上;(2)设直线NF 与C 交于P ,Q 两点.若直线NF的斜率k ∈,求OPN OQN S S ∆∆的最小值.32.如图,在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>过点,A ,B 分别为椭圆C 的右、下顶点,且2OA OB =.(1)求椭圆C 的方程; (2)设点P 在椭圆C 内,满足直线PA ,PB 的斜率乘积为14-,且直线PA ,PB 分别交椭圆C 于点M ,N .①若M ,N 关于y 轴对称,求直线PA 的斜率; ②若PMN ∆和PAB ∆的面积分别为1S ,2S ,求12S S .33.已知A 、B 是双曲线22122:1(0,0)x y C a b a b-=>>的两个顶点,点P 是双曲线上异于A 、B 的一点,O 为坐标原点,射线OP 交椭圆22222:1x y C a b+=于点Q ,设直线PA 、PB 、QA 、QB 的斜率分别为1k 、2k 、3k 、4k .(1)若双曲线1C 的渐近线方程是12y x =±,且过点1)2,求1C 的方程;(2)在(1)的条件下,如果12158k k +=,求ABQ ∆的面积; (3)试问:1234k k k k +++是否为定值?如果是,请求出此定值;如果不是,请说明理由. 34.已知抛物线2:(0)y ax a Γ=>的焦点为F ,若过F 且倾斜角为4π的直线交Γ于M ,N 两点满足||4MN =. (1)求抛物线Γ的方程;(2)若P 为Γ上动点,BC 在y 轴上,圆22(1)1x y -+=内切于PBC ∆,求PBC ∆面积的最小值.35.双曲线22221(,0)x y a b a b-=>的左、右焦点分别为1F ,2F ,直线l 过2F 且与双曲线交于A .B两点.(1)若l 的倾斜角为2π,a =1F AB 是等腰直角三角形,求双曲线的标准方程. (2)a b l =.若l 的斜率存在,且12()0F A F B AB +=,求l 的斜率.(3)证明:点P 到已知双曲线的两条渐近线的距离的乘积为定值2222a b a b +是该点在已知双曲线上的必要非充分条件.36.已知曲线22:143x y C +=的左右顶点是A 、B ,点M 是曲线C 上异于A 、B 两点的动点且M 关于x 轴的对称点是N .(1)若直线AM 、BN 的斜率分别为1k 、2k ,求证:1234k k =. (2)若曲线2:2C y px '=的焦点F 是曲线C 的右焦点,过点F 的直线l 分别交曲线C 和曲线C '于P 、Q 和R 、H ,APQ ∆与ARH ∆面积分别为1S ,2S ,求12S S 的最大值.37.已知椭圆2222:1(0)x y C a b a b+=>>的焦距与短轴长相等,椭圆上一点Q 到两焦点距离之差的最大值为4. (1)求椭圆的标准方程;(2)若点P 为椭圆上异于左右顶点A ,B 的任意一点,过原点O 作AP 的垂线交BP 的延长线于点M ,求M 的轨迹方程.38.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,上顶点为点A 若△12AF F是面积为 (1)求椭圆C 的标准方程;(2)已知M ,N 是椭圆C 上的两点,且|MN =,求使OMN ∆的面积最大时直线MN 的方程(O 为坐标原点)39.已知椭圆C 的中心在坐标原点,左焦点为1(1,0)F -,点(1,B 在椭圆C 上, (Ⅰ)求椭圆C 的方程;(Ⅱ)设过点2(1,0)F 的斜率为(0)k k ≠的直线l 与椭圆C 交于不同的两点M ,N ,点P 在y 轴上,且||||PM PN =,求点P 纵坐标的取值范围.40.在平面直角坐标系中,椭圆2222:(0x y C l a b a b+=>>,右焦点2F 为(,0)c .(1)若其长半轴长为2,焦距为2,求其标准方程.(2)证明该椭圆上一动点P 到点2F 的距离d 的最大值是a c +.41.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点.(1)求椭圆C 的方程(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M 、N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程;若不存在,说明理由.42.已知椭圆2222:1(0)x y E a b a b+=>>,焦距为2.(1)求椭圆E 的方程;(2)设O 为坐标原点,过左焦点F 的直线l 与椭圆E 交于A ,B 两点,若OAB ∆的面积为23,求直线l 的方程.43.已知斜率为1的直线l 与椭圆2222:1(0)x y C a b a b+=>>交于P ,Q 两点,且线段PQ 的中点为3(1,)4A -,椭圆C 的上顶点为B .(1)求椭圆C 的离心率;(2)设直线:(l y kx m m '=+≠与椭圆C 交于M ,N 两点,若直线BM 与BN 的斜率之和为2,证明:l '过定点.44.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的焦距为,且过点1)2. (1)求椭圆C 的方程;(2)斜率大于0且过椭圆右焦点2F 的直线l 与椭圆C 交于M 、N 两点,若223MF F N =,求直线l 的方程.45.已知点(2,0)A -,(2,0)B ,动点(,)M x y 满足直线AM 与BM 的斜率之积为12-.记M 的轨迹为曲线C .(Ⅰ)求C 的方程,并说明C 是什么曲线;(Ⅱ)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G ,P 点关于x 轴的对称点为P '. ①证明:PQG ∆是直角三角形;②求直线PQ 与直线P G '的斜率的积的最小值,并写出此时直线PG 的方程.46.已知椭圆2222:1(0)x y C a b a b+=>>过点,右焦点F 是抛物线28y x =的焦点.(1)求椭圆C 的方程;(2)已知动直线l 过右焦点F ,且与椭圆C 分别交于M ,N 两点.试问x 轴上是否存在定点Q ,使得13516QM QN =-恒成立?若存在求出点Q 的坐标:若不存在,说明理由.47.已知椭圆2222:1(0)x y E a b a b +=>>经过点P ,1)2,且离心率e =.(1)求椭圆E 的标准方程;(2)过椭圆E 的右焦点F 的直线l 与椭圆E 交于A ,B 两点,当(AOB O ∆为坐标原点)的时,求直线l 的方程.48.已知椭圆2222:1(0)x y C a b a b+=>>的离心率e =且圆222x y +=过椭圆C 的上、下顶点(1)求椭圆C 的方程; (2)若直线l 的斜率为12,且直线l 与椭圆C 相交于P ,Q 两点,点P 关于原点的对称点为E ,点(2,1)A -是椭圆C 上一点,若直线AE 与AQ 的斜率分别为AE k ,AQ k ,证明:0AE AQ k k +=.49.如图,过抛物线2:2(0)C y px p =>的焦点F 的直线与抛物线C 交于A 、B 两点,过AB 中点M 且与AB 垂直的直线与x 轴交于点N . (1)求||||FN AB 的值; (2)若2p =,求NA NB 的取值范围.50.已知抛物线2:2(0)M y px p =>.(1)设R 为抛物线M 上横坐标为1的定点,S 为圆221:()24p N x y -+=的一个动点,若M ,N 无公共点,且||RS 的最小值为65128,求p 的值; (2)已知AC ,BD 分别是抛物线的一条弦,且都不与x 轴垂直,AC 与BD 相交于点(,0)2p,2OA OB p =-,若四边形ABCD 的四条边都存在斜率且0CD k ≠,求证:12AB CD k k =.高考重难点突破圆锥曲线50道题(4)含详细解析参考答案与试题解析1.平面直角坐标系xOy 中,已知抛物线22(0)y px p =>及点(2,0)M ,动直线l 过点M 交抛物线于A ,B 两点,当l 垂直于x 轴时,4AB =. (1)求p 的值;(2)若l 与x 轴不垂直,设线段AB 中点为C ,直线1l 经过点C 且垂直于y 轴,直线2l 经过点M 且垂直于直线l ,记1l ,2l 相交于点P ,求证:点P 在定直线上.【解答】(1)解:当直线l 过点(2,0)M ,且垂直于x 轴时, 由4AB =,知抛物线22(0)y px p =>过点(2,2), 代入抛物线方程,得422p =⨯,解得1p =;(2)证明:由题意设直线l 的方程为:(2)y k x =-,且0k ≠, 点1(A x ,1)y ,2(B x ,2)y ,联立22(2)y x y k x ⎧=⎨=-⎩,消去x ,化简得2240ky y k --=,由根与系数的关系得122y y k+=,124y y =-; 又点C 在直线AB 上,则1212C y y y k+==,所以直线1l 的方程为1y k =;又直线2l 过点M 且与直线l 垂直,则直线2l 的方程为1(2)y x k =--;联立11(2)y k y x k ⎧=⎪⎪⎨⎪=--⎪⎩,解得11x y k =⎧⎪⎨=⎪⎩,所以点1(1,)P k ,所以点P 在定直线1x =上.2.已知抛物线2:2(0)C y px p =>的焦点与双曲线2213x y -=的右焦点重合.(1)求抛物线C 的方程及焦点到准线的距离; (2)若直线112y x =+与C 交于1(A x ,1)y ,2(B x ,2)y 两点,求12y y 的值. 【解答】解:(1)双曲线2213x y -=的右焦点为(2,0),可得22p=,即4p =,可得抛物线的方程为28y x =,焦点到准线的距离为4; (2)直线112y x =+与抛物线28y x =联立,消去x 可得 216160y y -+=,则1216y y =.3.已知抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,点A C ∈,A 在l 上的射影为B ,且ABF ∆是边长为4的正三角形. (1)求p ;(2)过点F 作两条相互垂直的直线1l ,2l ,1l 与C 交于P ,Q 两点,2l 与C 交于M ,N 两点,设POQ ∆的面积为1S ,MON ∆的面积为2(S O 为坐标原点),求2212S S +的最小值. 【解答】解:(1)设准线与y 轴的交点为点H ,连结AF ,AB ,BF , 因为ABF ∆是正三角形,且4BA AF BF ===, 在BHF ∆中,90BHF ∠=︒,30FBH ∠=︒,4BF =, 所以2HF p ==.(2)设1(P x ,1)y ,2(Q x ,2)y ,由(0,1)F ,。
高考数学难点突破_难点25__圆锥曲线综合题

难点25 圆锥曲线综合题圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.●难点磁场(★★★★)若椭圆2222by a x +=1(a >b >0)与直线l :x +y =1在第一象限内有两个不同的交点,求a 、b 所满足的条件,并画出点P (a ,b )的存在区域.●案例探究[例1]已知圆k 过定点A (a ,0)(a >0),圆心k 在抛物线C :y 2=2ax 上运动,MN 为圆k 在y 轴上截得的弦.(1)试问MN 的长是否随圆心k 的运动而变化?(2)当|OA |是|OM |与|ON |的等差中项时,抛物线C 的准线与圆k 有怎样的位置关系? 命题意图:本题考查圆锥曲线科内综合的知识及学生综合、灵活处理问题的能力,属 ★★★★★级题目.知识依托:弦长公式,韦达定理,等差中项,绝对值不等式,一元二次不等式等知识. 错解分析:在判断d 与R 的关系时,x 0的范围是学生容易忽略的.技巧与方法:对第(2)问,需将目标转化为判断d =x 0+2a 与R =a x +20的大小. 解:(1)设圆心k (x 0,y 0),且y 02=2ax 0,圆k 的半径R =|AK |=2202020)(a x y a x +=+- ∴|MN |=2202202022x a x x R -+=-=2a (定值) ∴弦MN 的长不随圆心k 的运动而变化.(2)设M (0,y 1)、N (0,y 2)在圆k :(x -x 0)2+(y -y 0)2=x 02+a 2中, 令x =0,得y 2-2y 0y +y 02-a 2=0 ∴y 1y 2=y 02-a 2∵|OA |是|OM |与|ON |的等差中项. ∴|OM |+|ON |=|y 1|+|y 2|=2|OA |=2a . 又|MN |=|y 1-y 2|=2a ∴|y 1|+|y 2|=|y 1-y 2|∴y 1y 2≤0,因此y 02-a 2≤0,即2ax 0-a 2≤0. ∴0≤x 0≤2a . 圆心k 到抛物线准线距离d =x 0+2a ≤a ,而圆k 半径R =220a x +≥a . 且上两式不能同时取等号,故圆k 必与准线相交.[例2]如图,已知椭圆122-+m y m x =1(2≤m ≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A 、B 、C 、D ,设f (m )=||AB |-|CD ||(1)求f (m )的解析式; (2)求f (m )的最值.命题意图:本题主要考查利用解析几何的知识建立函数关系式,并求其最值,体现了圆锥曲线与代数间的科间综合.属★★★★★级题目.知识依托:直线与圆锥曲线的交点,韦达定理,根的判别式,利用单调性求函数的最值. 错解分析:在第(1)问中,要注意验证当2≤m ≤5时,直线与椭圆恒有交点.技巧与方法:第(1)问中,若注意到x A ,x D 为一对相反数,则可迅速将||AB |-|CD ||化简.第(2)问,利用函数的单调性求最值是常用方法.解:(1)设椭圆的半长轴、半短轴及半焦距依次为a 、b 、c ,则a 2=m ,b 2=m -1,c 2=a 2-b 2=1 ∴椭圆的焦点为F 1(-1,0),F 2(1,0).故直线的方程为y =x +1,又椭圆的准线方程为x =±ca 2,即x =±m .∴A (-m ,-m +1),D (m ,m +1)考虑方程组⎪⎩⎪⎨⎧=-++=11122m y m x x y ,消去y 得:(m -1)x 2+m (x +1)2=m (m -1) 整理得:(2m -1)x 2+2mx +2m -m 2=0 Δ=4m 2-4(2m -1)(2m -m 2)=8m (m -1)2∵2≤m ≤5,∴Δ>0恒成立,x B +x C =122--m m. 又∵A 、B 、C 、D 都在直线y =x +1上∴|AB |=|x B -x A |=2=(x B -x A )·2,|CD |=2(x D -x C ) ∴||AB |-|CD ||=2|x B -x A +x D -x C |=2|(x B +x C )-(x A +x D )| 又∵x A =-m ,x D =m ,∴x A +x D =0 ∴||AB |-|CD ||=|x B +x C |·2=|mm 212--|·2=m m222 (2≤m ≤5)故f (m )=mm222,m ∈[2,5]. (2)由f (m )=mm222,可知f (m )=m1222-又2-21≤2-m1≤2-51∴f (m )∈[324,9210]故f (m )的最大值为324,此时m =2;f (m )的最小值为9210,此时m =5.[例3]舰A 在舰B 的正东6千米处,舰C 在舰B 的北偏西30°且与B 相距4千米,它们准备捕海洋动物,某时刻A 发现动物信号,4秒后B 、C 同时发现这种信号,A 发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度为1千米/秒,炮弹的速度是3320g 千米/秒,其中g 为重力加速度,若不计空气阻力与舰高,问舰A 发射炮弹的方位角和仰角应是多少?命题意图:考查圆锥曲线在实际问题中的应用,及将实际问题转化成数学问题的能力,属★★★★★级题目.知识依托:线段垂直平分线的性质,双曲线的定义,两点间的距离公式,斜抛运动的曲线方程.错解分析:答好本题,除要准确地把握好点P 的位置(既在线段BC 的垂直平分线上,又在以A 、B 为焦点的抛物线上),还应对方位角的概念掌握清楚.技巧与方法:通过建立恰当的直角坐标系,将实际问题转化成解析几何问题来求解.对空间物体的定位,一般可利用声音传播的时间差来建立方程.解:取AB 所在直线为x 轴,以AB 的中点为原点,建立如图所示的直角坐标系.由题意可知,A 、B 、C 舰的坐标为(3,0)、(-3,0)、(-5,23).由于B 、C 同时发现动物信号,记动物所在位置为P ,则|PB |=|PC |.于是P 在线段BC 的中垂线上,易求得其方程为3x -3y +73=0.又由A 、B 两舰发现动物信号的时间差为4秒,知|PB |-|P A |=4,故知P 在双曲线5422y x -=1的右支上. 直线与双曲线的交点为(8,53),此即为动物P 的位置,利用两点间距离公式,可得|P A |=10.据已知两点的斜率公式,得k P A =3,所以直线P A 的倾斜角为60°,于是舰A 发射炮弹的方位角应是北偏东30°.设发射炮弹的仰角是θ,初速度v 0=3320g ,则θθcos 10sin 200⋅=⋅v g v ,∴sin2θ=23102=v g ,∴仰角θ=30°. ●锦囊妙计解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.(1)对于求曲线方程中参数的取值范围问题,需构造参数满足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的目标函数,转化为函数的值域.(2)对于圆锥曲线的最值问题,解法常有两种:当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值.●歼灭难点训练 一、选择题1.(★★★★)已知A 、B 、C 三点在曲线y =x 上,其横坐标依次为1,m ,4(1<m <4),当△ABC 的面积最大时,m 等于( )A.3B.49 C.25 D.23 2.(★★★★★)设u ,v ∈R ,且|u |≤2,v >0,则(u -v )2+(vu 922--)2的最小值为( ) A.4B.2C.8D.22二、填空题3.(★★★★★)A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使 ∠OP A =2π,则椭圆离心率的范围是_________. 4.(★★★★)一辆卡车高3米,宽1.6米,欲通过抛物线形隧道,拱口宽恰好是抛物线的通径长,若拱口宽为a 米,则能使卡车通过的a 的最小整数值是_________.5.(★★★★★)已知抛物线y =x 2-1上一定点B (-1,0)和两个动点P 、Q ,当P 在抛物线上运动时,BP ⊥PQ ,则Q 点的横坐标的取值范围是_________.三、解答题6.(★★★★★)已知直线y =kx -1与双曲线x 2-y 2=1的左支交于A 、B 两点,若另一条直线l 经过点P (-2,0)及线段AB 的中点Q ,求直线l 在y 轴上的截距b 的取值范围.7.(★★★★★)已知抛物线C :y 2=4x .(1)若椭圆左焦点及相应的准线与抛物线C 的焦点F 及准线l 分别重合,试求椭圆短轴端点B 与焦点F 连线中点P 的轨迹方程;(2)若M (m ,0)是x 轴上的一定点,Q 是(1)所求轨迹上任一点,试问|MQ |有无最小值?若有,求出其值;若没有,说明理由.8.(★★★★★)如图,为半圆,AB 为半圆直径,O 为半圆圆心,且OD ⊥AB ,Q 为线段OD 的中点,已知|AB |=4,曲线C 过Q 点,动点P 在曲线C 上运动且保持|P A |+|PB |的值不变.(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D 点的直线l 与曲线C 相交于不同的两点M 、N ,且M 在D 、N 之间,设DNDM=λ,求λ的取值范围.[学法指导]怎样学好圆锥曲线圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始.高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容.2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等.3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查.4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程. (1)方程思想解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量.(2)用好函数思想方法对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a ,b ,c ,e 之间构成函数关系,函数思想在处理这类问题时就很有效.(3)掌握坐标法坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练.参考答案难点磁场解:由方程组⎪⎩⎪⎨⎧=+=+112222b y ax y x 消去y ,整理得(a 2+b 2)x 2-2a 2x +a 2(1-b 2)=0①则椭圆与直线l 在第一象限内有两个不同的交点的充要条件是方程①在区间(0,1)内有两相异实根,令f (x )=(a 2+b 2)x 2-2a 2x +a 2(1-b 2),则有⎪⎪⎩⎪⎪⎨⎧>><<<<>+⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>><+<>-+-=>-=>-+-=∆010101 0100)1()1(0)1()0(0)1)((442222222222222222b a a b b a b a b a a b a a b f b a f b b a a a 同时满足上述四个条件的点P (a ,b )的存在区域为下图所示的阴影部分:歼灭难点训练一、1.解析:由题意知A (1,1),B (m ,m ),C (4,2). 直线AC 所在方程为x -3y +2=0, 点B 到该直线的距离为d =10|23|+-m m .|41)23(|21|23|2110|23|1021||212--=+-=+-⨯⨯=⋅=∆m m m m m d AB S ABC ∵m ∈(1,4),∴当23=m 时,S △ABC 有最大值,此时m =49.答案:B2.解析:考虑式子的几何意义,转化为求圆x 2+y 2=2上的点与双曲线xy =9上的点的距离的最小值.答案:C二、3.解析:设椭圆方程为2222b y a x +=1(a >b >0),以OA 为直径的圆:x 2-ax +y 2=0,两式联立消y 得222ab a -x 2-ax +b 2=0.即e 2x 2-ax +b 2=0,该方程有一解x 2,一解为a ,由韦达定理x 2=2e a -a ,0<x 2<a ,即0<2ea-a <a 22⇒<e <1. 答案:22<e <1 4.解析:由题意可设抛物线方程为x 2=-ay ,当x =2a 时,y =-4a ;当x =0.8时,y =-a64.0.由题意知a a 64.04-≥3,即a 2-12a -2.56≥0.解得a 的最小整数为13. 答案:135.解析:设P (t ,t 2-1),Q (s ,s 2-1)∵BP ⊥PQ ,∴ts t s t t ----⋅+-)1()1(11222=-1, 即t 2+(s -1)t -s +1=0∵t ∈R ,∴必须有Δ=(s -1)2+4(s -1)≥0.即s 2+2s -3≥0, 解得s ≤-3或s ≥1.答案:(-∞,-3]∪[1,+∞) 三、6.解:设A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧=--=1122y x kx y ,得(1-k 2)x 2+2kx -2=0, 又∵直线AB 与双曲线左支交于A 、B 两点,故有⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<--=+>-+=∆≠-0120120)1(8)2(01221221222k x x k k x x k k k解得-2<k <-1.222),22,1(22)1,2(,222,0).2(221221211120111,12),,(22222200200221000-<+>--∈-+∴--∈-+==+-+=∴-+=+--=+--=-=+-=+=b b k k k k k b x x k k y l k k k k k x y l k kx y k k x x x y x Q 或即又则令的方程为的斜率为则设7.解:由抛物线y 2=4x ,得焦点F (1,0),准线l :x =-1.(1)设P (x ,y ),则B (2x -1,2y ),椭圆中心O ′,则|FO ′|∶|BF |=e ,又设点B 到l 的距离为d ,则|BF |∶d =e ,∴|FO ′|∶|BF |=|BF |∶d ,即(2x -2)2+(2y )2=2x (2x -2),化简得P 点轨迹方程为y 2=x -1(x >1).(2)设Q (x ,y ),则|MQ |=22)(y m x +-)1(45)]21([1)(22>-+---+-=x m m x x m x(ⅰ)当m -21≤1,即m ≤23时,函数t =[x -(m -21)2]+m -45在(1,+∞)上递增,故t 无最小值,亦即|MQ |无最小值.(ⅱ)当m -21>1,即m >23时,函数t =[x 2-(m -21)2]+m -45在x =m -21处有最小值m-45,∴|MQ |min =45-m .8.解:(1)以AB 、OD 所在直线分别为x 轴、y 轴,O 为原点,建立平面直角坐标系, ∵|P A |+|PB |=|QA |+|QB |=2521222=+>|AB |=4. ∴曲线C 为以原点为中心,A 、B 为焦点的椭圆.设其长半轴为a ,短半轴为b ,半焦距为c ,则2a =25,∴a =5,c =2,b =1.∴曲线C 的方程为52x +y 2=1.(2)设直线l 的方程为y =kx +2, 代入52x +y 2=1,得(1+5k 2)x 2+20kx +15=0.Δ=(20k )2-4×15(1+5k 2)>0,得k 2>53.由图可知21x x DN DM ==λ由韦达定理得⎪⎪⎩⎪⎪⎨⎧+=⋅+-=+22122151155120k x x k k x x将x 1=λx 2代入得 ⎪⎪⎩⎪⎪⎨⎧+=λ+=λ+2222222225115)51(400)1(k x k k x 两式相除得)15(380)51(15400)1(2222k k k +=+=λλ+ 316)51(3804,320515,3510,532222<+<<+<∴<<∴>kk k k 即 331,0,316)1(42<λ<∴>=λ<λλ+<∴解得DN DM① ,21DNDM x x ==λ M 在D 、N 中间,∴λ<1②又∵当k 不存在时,显然λ=31DN DM (此时直线l 与y 轴重合).Von Neumann说过:In mathematics you don't understand things .You just get used to them.掌握了课本,一般的数学题就都可以做了。
高中数学圆锥曲线解题技巧方法总结及高考试题和答案练习题.docx

精选圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程8=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___)(2)双曲线:焦点在x 轴上:2222by a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么?(ABC≠0,且A ,B 异号)。
如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
高考数学 圆锥曲线的综合问题(学案)绝密资料
圆锥曲线的综合问题★知识梳理★1.直线与圆锥曲线C 的位置关系:将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0.(1)交点个数:①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。
(2) 弦长公式: 2.对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。
3.求动点轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。
★重难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用问题1:已知点1F 为椭圆15922=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 . 点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形,||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6★热点考点题型探析★考点1直线与圆锥曲线的位置关系 题型1:交点个数问题[例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线28yx =的准线2x =-与x 轴的交点为Q (-2 , 0),于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+,4)(1 ||1||212212122x x x x k x x k AB ⋅-+⋅+=-⋅+=联立222228,(48)40.(2),y x k x k x k y k x ⎧=⇒+-+=⎨=+⎩ 其判别式为2242(48)1664640k k k ∆=--=-+≥,可解得 11k -≤≤,应选C.【名师指引】(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线)(3)联立方程组、消元后得到一元二次方程,不但要对∆进行讨论,还要对二次项系数是否为0进行讨论【新题导练】1. (09摸底)已知将圆228x y +=上的每一点的纵坐标压缩到原来的12,对应的横坐标不变,得到曲线C ;设)1,2(M ,平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A 、B 两个不同点. (1)求曲线C 的方程;(2)求m 的取值范围.[解析](1)设圆上的动点为)','('y x P 压缩后对应的点为),(y x P ,则⎩⎨⎧==yy xx 2'',代入圆的方程得曲线C 的方程:12822=+y x (2)∵直线l 平行于OM ,且在y 轴上的截距为m,又21=OMK , ∴直线l 的方程为m x y +=21. 由221,2 1.82y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩, 得 222240x mx m ++-= ∵直线l 与椭圆交于A 、B 两个不同点,∴22(2)4(24)0,m m ∆=--> 解得220m m -<<≠且.∴m 的取值范围是2002m m -<<<<或. 题型2:与弦中点有关的问题[例2](08韶关调研)已知点A 、B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜率之积为-2. (Ⅰ)求动点M 的轨迹方程; (Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程. 【解题思路】弦中点问题用“点差法”或联立方程组,利用韦达定理求解 [解析] (Ⅰ)设(,)M x y , 因为2AM BMk k ⋅=-,:()22221x y x +=≠±(Ⅱ) 设1122(,),(,)C x y D x y 当直线l ⊥x 轴时,l 的方程为12x =,则11(),(,2222C D ,它的中点不是N ,不合题意 设直线l 的方程为11()2y k x -=-将1122(,),(,)C x y D x y 代入()22221x y x +=≠±得 221122x y +=…………(1) 222222x y += (2)(1)-(2)整理得:12121212122()12()212y y x x k x x y y ⨯-+==-=-=--+⨯直线l 的方程为111()22y x -=--即所求直线l 的方程为230x y +-= 解法二: 当直线l ⊥x 轴时,直线l 的方程为12x =,则11(,(,2222C D , 其中点不是N ,不合题意.故设直线l 的方程为11()2y k x -=-, 将其代入()22221x y x +=≠±化简得222(2)2(1)(1)2022k k k x k x ++-+--=由韦达定理得222212221224(1)4(2)[(1)2]0(1)222(1)2(2)2(1)22(3)2k k k k k k x x k k x x k ⎧--+-->⎪⎪⎪-⎪+=-⎨+⎪⎪--⎪⋅=⎪+⎩,又由已知N 为线段CD 的中点,得122(1)222kk x x k -+=-+12=,解得12k =-,将12k =-代入(1)式中可知满足条件.此时直线l 的方程为111()22y x -=--,即所求直线l 的方程为230x y +-=【名师指引】通过将C 、D 的坐标代入曲线方程,再将两式相减的过程,称为代点相减.这里,代点相减后,适当变形,出现弦PQ 的斜率和中点坐标,是实现设而不求(即点差法)的关键.两种解法都要用到“设而不求”,它对简化运算的作用明显,用“点差法”解决弦中点问题更简洁 【新题导练】2.椭圆141622=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程。
【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题
解几综合题1.如图,()A m 和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-,O 为坐标原点,动点P 满足OP OA OB =+.(Ⅰ)求m n ⋅的值;(Ⅱ)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(Ⅲ)若直线l 过点E (2,0)交(Ⅱ)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程.2. 如图,在平面直角坐标系中,已知动点()y x P ,,y PM ⊥轴,垂足为M ,点N 与点P 关于x 轴对称, 4=⋅MN OP(1)求动点P 的轨迹W 的方程(2)若点Q 的坐标为()0,2,A 、B 为W 上的两个动点,且满足QB QA ⊥,点Q 到直线AB 的距离为d ,求d 的最大值3. 已知直线l 过椭圆E:2222x y +=的右焦点F ,且与E 相交于,P Q 两点. ① 设1()2OR OP OQ =+(O 为原点),求点R 的轨迹方程;② 若直线l 的倾斜角为060,求1||PF4. 在双曲线1131222=-x y 的上半支有三点A ,B ,C ,其中B 是第一象限的点,F 为双曲的上焦点.若线段AC 的中点D 在直线y=6上,且|AF|,|BF|,|CF|构成等差数列. (Ⅰ)求点B 的坐标;(Ⅱ)若直线l 经过点D ,且在l 上任取一点P (不同于D 点),都存在实数λ,使得 ||||(CP AP +=λ证明:直线l 必过定点,并求出该定点的坐标。
5. 如图,椭圆两焦点F 1、F 2与短轴两端B 1、B 2正好是正方形的四个顶点,且焦点到椭圆上一点最近距离为.12-(I )求椭圆的标准方程;(II )过D(0,2)的直线与椭圆交于不同的两点M 、N ,且M 在D 、N 之间,设λ=||DN DM ,求λ的取值范围.6. 已知F 1、F 2分别是椭圆)0,0(12222>>=+b a by a x 的左、右焦点,其左准线与x 轴相交于点N ,并且满足,.2||,221121==F F NF F F (1)求此椭圆的方程;(2)设A 、B 是这个椭圆上的两点,并且满足]31,51[,∈=λλ当NB NA 时,求直线AB 的斜率的取值范围.7. 已知O 为坐标原点,点E 、F 的坐标分别为(-1,0)、(1,0),动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .(Ⅰ)求点M 的轨迹W 的方程; (Ⅱ)点0(,)2mP y 在轨迹W 上,直线PF 交轨迹W 于点Q ,且PF FQ λ=,若12λ≤≤,求实数m 的范围.8. 已知点A (-1,0),B (1,-1)和抛物线.x y C 4:2=,O 为坐标原点,过点A 的动直线l 交抛物线C 于M 、P ,直线MB 交抛物线C 于另一点Q ,如图.(I )若△POM 的面积为25,求向量OM 与OP 的夹角; (II )试探求点O 到直线PQ 的距离是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.9. 设不等式组⎩⎨⎧x +y >0,x -y >0表示的平面区域为D .区域D 内的动点P 到直线x +y =0和直线x -y =0的距离之积为1.记点P 的轨迹为曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)过点F (2,0)的直线与曲线C 交于A ,B 两点.若以线段AB 为直径的圆与y 轴相切,求线段AB 的长.10. 如图,在△OSF 中,c OF a OS OSF ==︒=∠,,90(c a ,均为正常数),E 、P 是平面OSF内的动点,且满足0=⋅OF SE ,),(R ∈=λλ向量PE c PF a +与PE c PF a -垂 直。
高考数学圆锥曲线类题目解题思路
高考数学圆锥曲线类题目解题思路2023高考数学圆锥曲线类题目解题思路高考数学解题过程卡在某一过渡环节上是常见的。
这时,我们可以先承认中间结论,往后推,看能否得到结论。
如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
下面小编为大家带来高考数学圆锥曲线类题目解题思路,希望对您有所帮助!圆锥曲线中的范围问题怎么答1.解题路线图①设方程。
②解系数。
③得结论。
2.构建答题模板①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
高考数学答题技巧当构造辅助元素:数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。
因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
高考前数学的复习方法1、调整好状态,控制好自我。
保持清醒。
高考数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
2、提高解选择题的速度、填空题的准确度。
高考数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。
填空题也是只要结果、不要过程,因此要力求“完整、严密”。
3、审题要慢,做题要快,下手要准。
圆锥曲线问题在高考的常见题型及解题技巧
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线是数学中的一个重要概念,在高考数学考试中经常出现。
圆锥曲线问题在高考中的题型多样,涉及到椭圆、双曲线和抛物线等各种不同的情况。
学生需要掌握不同类型圆锥曲线的基本知识和解题方法,才能在考试中取得好成绩。
本文将详细介绍圆锥曲线问题在高考中的常见题型及解题技巧。
一、椭圆问题在高考数学中,椭圆问题是圆锥曲线中的一个常见题型。
椭圆是圆锥曲线中的一种,其数学方程一般表示为x²/a² + y²/b² = 1。
椭圆问题在高考中主要涉及到椭圆的性质、方程和相关的几何问题。
下面是一些常见的椭圆问题和解题技巧:1. 椭圆的性质椭圆有许多独特的性质,例如焦点、长轴、短轴等。
解决椭圆问题时,首先需要熟悉椭圆的基本性质,包括焦点的坐标、长轴和短轴的长度等。
了解这些性质可以帮助学生更好地理解和解决椭圆相关的问题。
2. 椭圆的方程学生需要掌握椭圆的标准方程和一般方程,以及如何从一个方程中得到椭圆的相关信息。
如何通过椭圆的方程确定焦点和长轴的长度等。
熟练掌握椭圆的方程和相关的计算方法是解决椭圆问题的关键。
3. 几何问题在高考中,椭圆问题经常涉及到与椭圆相关的几何问题,例如椭圆的切线、法线、焦点、离心率等。
解决这些问题需要学生具有一定的几何直觉和解题技巧,可以通过画图、几何推理等方法来解决。
二、双曲线问题三、抛物线问题在解决圆锥曲线问题时,学生需要注意以下几个解题技巧:1. 画图对于圆锥曲线相关的几何问题,画图是非常重要的。
学生可以通过画图来直观地理解问题,并且可以通过几何推理来解决问题。
2. 几何推理圆锥曲线问题往往需要一定的几何推理能力,例如通过推导得到相关的性质和结论。
学生需要熟练掌握几何推理的方法,以便解决圆锥曲线问题。
3. 代数计算除了几何推理,对于圆锥曲线的方程和相关计算问题,学生还需要掌握代数计算的方法,包括因式分解、配方法、求导等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点25 圆锥曲线综合题圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整.●难点磁场(★★★★)若椭圆2222by ax +=1(a >b >0)与直线l :x +y =1在第一象限内有两个不同的交点,求a 、b 所满足的条件,并画出点P (a ,b )的存在区域.●案例探究[例1]已知圆k 过定点A (a ,0)(a >0),圆心k 在抛物线C :y 2=2ax 上运动,MN 为圆k 在y 轴上截得的弦.(1)试问MN 的长是否随圆心k 的运动而变化?(2)当|OA |是|OM |与|ON |的等差中项时,抛物线C 的准线与圆k 有怎样的位置关系? 命题意图:本题考查圆锥曲线科内综合的知识及学生综合、灵活处理问题的能力,属 ★★★★★级题目.知识依托:弦长公式,韦达定理,等差中项,绝对值不等式,一元二次不等式等知识.错解分析:在判断d 与R 的关系时,x 0的范围是学生容易忽略的. 技巧与方法:对第(2)问,需将目标转化为判断d =x 0+2a 与R =a x +20的大小.解:(1)设圆心k (x 0,y 0),且y 02=2ax 0, 圆k 的半径R =|AK |=2202020)(ax y a x +=+-∴|MN |=2202202022x a x x R -+=-=2a (定值)∴弦MN 的长不随圆心k 的运动而变化.(2)设M (0,y 1)、N (0,y 2)在圆k :(x -x 0)2+(y -y 0)2=x 02+a 2中, 令x =0,得y 2-2y 0y +y 02-a 2=0 ∴y 1y 2=y 02-a 2∵|OA |是|OM |与|ON |的等差中项. ∴|OM |+|ON |=|y 1|+|y 2|=2|OA |=2a . 又|MN |=|y 1-y 2|=2a∴|y 1|+|y 2|=|y 1-y 2|∴y 1y 2≤0,因此y 02-a 2≤0,即2ax 0-a 2≤0. ∴0≤x 0≤2a .圆心k 到抛物线准线距离d =x 0+2a ≤a ,而圆k 半径R =220a x +≥a .且上两式不能同时取等号,故圆k 必与准线相交. [例2]如图,已知椭圆122-+m ymx=1(2≤m ≤5),过其左焦点且斜率为1的直线与椭圆及其准线的交点从左到右的顺序为A 、B 、C 、D ,设f (m )=||AB |-|CD ||(1)求f (m )的解析式; (2)求f (m )的最值.命题意图:本题主要考查利用解析几何的知识建立函数关系式,并求其最值,体现了圆锥曲线与代数间的科间综合.属★★★★★级题目.知识依托:直线与圆锥曲线的交点,韦达定理,根的判别式,利用单调性求函数的最值. 错解分析:在第(1)问中,要注意验证当2≤m ≤5时,直线与椭圆恒有交点.技巧与方法:第(1)问中,若注意到x A ,x D 为一对相反数,则可迅速将||AB |-|CD ||化简.第(2)问,利用函数的单调性求最值是常用方法.解:(1)设椭圆的半长轴、半短轴及半焦距依次为a 、b 、c ,则a 2=m ,b 2=m -1,c 2=a 2-b 2=1∴椭圆的焦点为F 1(-1,0),F 2(1,0).故直线的方程为y =x +1,又椭圆的准线方程为x =±ca2,即x =±m .∴A (-m ,-m +1),D (m ,m +1)考虑方程组⎪⎩⎪⎨⎧=-++=11122m ymx x y ,消去y 得:(m -1)x 2+m (x +1)2=m (m -1) 整理得:(2m -1)x 2+2mx +2m -m 2=0Δ=4m 2-4(2m -1)(2m -m 2)=8m (m -1)2 ∵2≤m ≤5,∴Δ>0恒成立,x B +x C =122--m m .又∵A 、B 、C 、D 都在直线y =x +1上∴|AB |=|x B -x A |=2=(x B -x A )²2,|CD |=2(x D -x C ) ∴||AB |-|CD ||=2|x B -x A +x D -x C |=2|(x B +x C )-(x A +x D )| 又∵x A =-m ,x D =m ,∴x A +x D =0 ∴||AB |-|CD ||=|x B +x C |²2=|mm 212--|²2=mm 222 (2≤m ≤5)故f (m )=mm 222,m ∈[2,5]. (2)由f (m )=mm 222,可知f (m )=m1222-又2-21≤2-m 1≤2-51∴f (m )∈[324,9210]故f (m )的最大值为324,此时m =2;f (m )的最小值为9210,此时m =5.[例3]舰A 在舰B 的正东6千米处,舰C 在舰B 的北偏西30°且与B 相距4千米,它们准备捕海洋动物,某时刻A 发现动物信号,4秒后B 、C 同时发现这种信号,A 发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度为1千米/秒,炮弹的速度是3320g千米/秒,其中g 为重力加速度,若不计空气阻力与舰高,问舰A 发射炮弹的方位角和仰角应是多少?命题意图:考查圆锥曲线在实际问题中的应用,及将实际问题转化成数学问题的能力,属★★★★★级题目.知识依托:线段垂直平分线的性质,双曲线的定义,两点间的距离公式,斜抛运动的曲线方程.错解分析:答好本题,除要准确地把握好点P 的位置(既在线段BC 的垂直平分线上,又在以A 、B 为焦点的抛物线上),还应对方位角的概念掌握清楚.技巧与方法:通过建立恰当的直角坐标系,将实际问题转化成解析几何问题来求解.对空间物体的定位,一般可利用声音传播的时间差来建立方程.解:取AB 所在直线为x 轴,以AB 的中点为原点,建立如图所示的直角坐标系.由题意可知,A 、B 、C 舰的坐标为(3,0)、(-3,0)、(-5,23).由于B 、C 同时发现动物信号,记动物所在位置为P ,则|PB |=|PC |.于是P 在线段BC 的中垂线上,易求得其方程为3x -3y +73=0.又由A 、B 两舰发现动物信号的时间差为4秒,知|PB |-|PA |=4,故知P 在双曲线5422yx-=1的右支上.直线与双曲线的交点为(8,53),此即为动物P 的位置,利用两点间距离公式,可得|PA |=10.据已知两点的斜率公式,得k PA =3,所以直线P A 的倾斜角为60°,于是舰A 发射炮弹的方位角应是北偏东30°.设发射炮弹的仰角是θ,初速度v 0=3320g,则θθcos 10sin 200⋅=⋅v gv ,∴sin2θ=23102=v g ,∴仰角θ=30°.●锦囊妙计解决圆锥曲线综合题,关键是熟练掌握每一种圆锥曲线的定义、标准方程、图形与几何性质,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,以达到巩固知识、提高能力的目的.(1)对于求曲线方程中参数的取值范围问题,需构造参数满足的不等式,通过求不等式(组)求得参数的取值范围;或建立关于参数的目标函数,转化为函数的值域.(2)对于圆锥曲线的最值问题,解法常有两种:当题目的条件和结论能明显体现几何特征及意义,可考虑利用数形结合法解;当题目的条件和结论能体现一种明确的函数关系,则可先建立目标函数,再求这个函数的最值.●歼灭难点训练一、选择题1.(★★★★)已知A 、B 、C 三点在曲线y =x 上,其横坐标依次为1,m ,4(1<m <4),当△ABC 的面积最大时,m 等于( )A.3B.49 C.25 D.232.(★★★★★)设u ,v ∈R ,且|u |≤2,v >0,则(u -v )2+(vu 922--)2的最小值为( )A.4B.2C.8D.22二、填空题3.(★★★★★)A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使 ∠OPA =2π,则椭圆离心率的范围是_________.4.(★★★★)一辆卡车高3米,宽1.6米,欲通过抛物线形隧道,拱口宽恰好是抛物线的通径长,若拱口宽为a 米,则能使卡车通过的a 的最小整数值是_________.5.(★★★★★)已知抛物线y =x 2-1上一定点B (-1,0)和两个动点P 、Q ,当P 在抛物线上运动时,BP ⊥PQ ,则Q 点的横坐标的取值范围是_________.三、解答题6.(★★★★★)已知直线y =kx -1与双曲线x 2-y 2=1的左支交于A 、B 两点,若另一条直线l 经过点P (-2,0)及线段AB 的中点Q ,求直线l 在y 轴上的截距b 的取值范围.7.(★★★★★)已知抛物线C :y 2=4x .(1)若椭圆左焦点及相应的准线与抛物线C 的焦点F 及准线l 分别重合,试求椭圆短轴端点B 与焦点F 连线中点P 的轨迹方程;(2)若M (m ,0)是x 轴上的一定点,Q 是(1)所求轨迹上任一点,试问|MQ |有无最小值?若有,求出其值;若没有,说明理由.8.(★★★★★)如图,为半圆,AB 为半圆直径,O 为半圆圆心,且OD ⊥AB ,Q 为线段OD 的中点,已知|AB |=4,曲线C 过Q 点,动点P 在曲线C 上运动且保持|PA |+|PB |的值不变.(1)建立适当的平面直角坐标系,求曲线C 的方程;(2)过D 点的直线l 与曲线C 相交于不同的两点M 、N ,且M 在D 、N 之间,设DNDM =λ,求λ的取值范围.[学法指导]怎样学好圆锥曲线圆锥曲线将几何与代数进行了完美结合.借助纯代数的解决手段研究曲线的概念和性质及直线与圆锥曲线的位置关系,从数学家笛卡尔开创了坐标系那天就已经开始.高考中它依然是重点,主客观题必不可少,易、中、难题皆有.为此需要我们做到: 1.重点掌握椭圆、双曲线、抛物线的定义和性质.这些都是圆锥曲线的基石,高考中的题目都涉及到这些内容.2.重视求曲线的方程或曲线的轨迹,此处作为高考解答题的命题对象难度较大.所以要掌握住一般方法:定义法、直接法、待定系数法、相关点法、参数法等.3.加强直线与圆锥曲线的位置关系问题的复习.此处一直为高考的热点.这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想和设而不求法与弦长公式及韦达定理联系去解决.这样加强了对数学各种能力的考查.4.重视对数学思想、方法进行归纳提炼,达到优化解题思维、简化解题过程.(1)方程思想解析几何的题目大部分都以方程形式给定直线和圆锥曲线,因此把直线与圆锥曲线相交的弦长问题利用韦达定理进行整体处理,就简化解题运算量. (2)用好函数思想方法对于圆锥曲线上的一些动点,在变化过程中会引入一些相互联系、相互制约的量,从而使一些线的长度及a ,b ,c ,e 之间构成函数关系,函数思想在处理这类问题时就很有效.(3)掌握坐标法坐标法是解决有关圆锥曲线问题的基本方法.近几年都考查了坐标法,因此要加强坐标法的训练.参考答案难点磁场解:由方程组⎪⎩⎪⎨⎧=+=+112222b yax y x 消去y ,整理得(a 2+b 2)x 2-2a 2x +a 2(1-b 2)=0 ①则椭圆与直线l 在第一象限内有两个不同的交点的充要条件是方程①在区间(0,1)内有两相异实根,令f (x )=(a 2+b 2)x 2-2a 2x +a 2(1-b 2),则有⎪⎪⎩⎪⎪⎨⎧>><<<<>+⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>><+<>-+-=>-=>-+-=∆010101 0100)1()1(0)1()0(0)1)((442222222222222222b a a b b a b a b a ab a a b f b a f b b a a a 同时满足上述四个条件的点P (a ,b )的存在区域为下图所示的阴影部分:歼灭难点训练一、1.解析:由题意知A (1,1),B (m ,m ),C (4,2). 直线AC 所在方程为x -3y +2=0, 点B 到该直线的距离为d =10|23|+-m m .|41)23(|21|23|2110|23|1021||212--=+-=+-⨯⨯=⋅=∆m m m m m d AB S ABC∵m ∈(1,4),∴当23=m 时,S △ABC 有最大值,此时m =49.答案:B2.解析:考虑式子的几何意义,转化为求圆x 2+y 2=2上的点与双曲线xy =9上的点的距离的最小值.答案:C二、3.解析:设椭圆方程为2222by ax +=1(a >b >0),以OA 为直径的圆:x 2-ax +y 2=0,两式联立消y 得222ab a -x 2-ax +b 2=0.即e 2x 2-ax +b 2=0,该方程有一解x 2,一解为a ,由韦达定理x 2=2ea -a ,0<x 2<a ,即0<2ea -a <a 22⇒<e <1.答案:22<e <14.解析:由题意可设抛物线方程为x 2=-ay ,当x =2a 时,y =-4a ;当x =0.8时,y =-a64.0.由题意知aa 64.04-≥3,即a 2-12a -2.56≥0.解得a 的最小整数为13.答案:135.解析:设P (t ,t 2-1),Q (s ,s 2-1)∵BP ⊥PQ ,∴ts ts t t----⋅+-)1()1(11222=-1,即t 2+(s -1)t -s +1=0∵t ∈R ,∴必须有Δ=(s -1)2+4(s -1)≥0.即s 2+2s -3≥0,解得s ≤-3或s ≥1.答案:(-∞,-3]∪[1,+∞) 三、6.解:设A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧=--=1122y x kx y ,得(1-k 2)x 2+2kx -2=0, 又∵直线AB 与双曲线左支交于A 、B 两点,故有⎪⎪⎪⎩⎪⎪⎪⎨⎧>--=<--=+>-+=∆≠-0120120)1(8)2(01221221222k x x k k x x k k k解得-2<k <-1.222),22,1(22)1,2(,222,0).2(221221211120111,12),,(22222200200221000-<+>--∈-+∴--∈-+==+-+=∴-+=+--=+--=-=+-=+=b b k kk k kb x x k ky l k k k k k x y l kkx y kk x x x y x Q 或即又则令的方程为的斜率为则设7.解:由抛物线y 2=4x ,得焦点F (1,0),准线l :x =-1.(1)设P (x ,y ),则B (2x -1,2y ),椭圆中心O ′,则|FO ′|∶|BF |=e ,又设点B 到l 的距离为d ,则|BF |∶d =e ,∴|FO ′|∶|BF |=|BF |∶d ,即(2x -2)2+(2y )2=2x (2x -2),化简得P 点轨迹方程为y 2=x -1(x >1).(2)设Q (x ,y ),则|MQ |=22)(y m x +-)1(45)]21([1)(22>-+---+-=x m m x x m x(ⅰ)当m -21≤1,即m ≤23时,函数t =[x -(m -21)2]+m -45在(1,+∞)上递增,故t 无最小值,亦即|MQ |无最小值.(ⅱ)当m -21>1,即m >23时,函数t =[x 2-(m -21)2]+m -45在x =m -21处有最小值m-45,∴|MQ |min =45-m .8.解:(1)以AB 、OD 所在直线分别为x 轴、y 轴,O 为原点,建立平面直角坐标系,∵|PA |+|PB |=|QA |+|QB |=2521222=+>|AB |=4.∴曲线C 为以原点为中心,A 、B 为焦点的椭圆.设其长半轴为a ,短半轴为b ,半焦距为c ,则2a =25,∴a =5,c =2,b =1. ∴曲线C 的方程为52x+y 2=1.(2)设直线l 的方程为y =kx +2, 代入52x+y 2=1,得(1+5k 2)x 2+20kx +15=0.Δ=(20k )2-4³15(1+5k 2)>0,得k 2>53.由图可知21x x DNDM ==λ由韦达定理得⎪⎪⎩⎪⎪⎨⎧+=⋅+-=+22122151155120k x x kk x x将x 1=λx 2代入得⎪⎪⎩⎪⎪⎨⎧+=λ+=λ+2222222225115)51(400)1(k x k k x 两式相除得)15(380)51(15400)1(2222kk k+=+=λλ+316)51(3804,320515,3510,532222<+<<+<∴<<∴>kk kk即331,0,316)1(42<λ<∴>=λ<λλ+<∴解得DNDM ①,21DNDM x x ==λ M 在D 、N 中间,∴λ<1②又∵当k 不存在时,显然λ=31=DNDM (此时直线l 与y 轴重合).。