高效音频功率放大器的设计a
高效率音频功率放大器设计文献综述【文献综述】

文献综述电子信息工程高效率音频功率放大器设计文献综述一、前言为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D类功率放大器,实现了高效率,低失真的设计要求。
为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。
使设计获得了良好的效果。
二、主题在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。
所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。
音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。
(一)早期的晶体管功放半导体技术的进步使晶体管放大器向前迈进了一大步。
自从有了晶体管,人们就开始用它制造功率放大器。
早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。
这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。
再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。
变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。
“还是胆机规声”,这种看法的确事出有因。
(二)晶体管功放的发展和互调失真随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的OCL电路或OTL电路。
最初的大功率PNP管是锗管,而NPN管是硅管,两者的特性差别非常显著,电路的对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管Q1与一只大功率的NPN硅管Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。
高保真音频功率放大器设计

高保真音频功率放大器设计高保真音频功率放大器是一种能够放大电信号的设备,用于驱动扬声器或头戴耳机等音响设备。
它的设计目标是尽可能地保持输入信号的原始特性,同时输出高质量的音频信号。
本文将介绍高保真音频功率放大器的设计中的关键因素和步骤。
首先,设计一个高保真音频功率放大器的关键因素之一是选择合适的放大器拓扑结构。
通常使用AB类放大器作为高保真音频功率放大器的基本拓扑结构。
AB类放大器有两个工作状态,A类状态用于低功率操作,而B类状态用于高功率操作,这可以提供高效率和低失真的输出。
其次,使用线性化技术对放大器进行线性化处理也是关键因素之一、线性化技术的目的是减小失真并提高放大器的线性度。
常见的线性化技术包括负反馈、反噪音技术、温度补偿技术等。
负反馈是一种将输出信号与输入信号相比较的技术,通过调节放大器的增益和频率响应来减小失真。
反噪音技术通过消除输入信号中的噪音来提高放大器的信噪比。
温度补偿技术可以有效地消除温度对放大器性能的影响。
另外,选取合适的元件和电路参数也是设计高保真音频功率放大器的重要步骤之一、首先,选取合适的功率管要求其具有低失真、高带宽等特性。
其次,电源的设计也很关键。
音频功率放大器的电源设计需要保证输出信号的稳定性和供电的整洁性,以避免电源噪声对音频信号的干扰。
辅助电路、滤波器、阻抗匹配网络等也需要合理选取和设计。
最后,进行实际的电路实现和调试是设计过程的最后一步。
设计者需要通过仿真和实际测量来验证设计的性能和指标。
同时,还需要不断地调整电路参数和元件选择,以达到设计要求。
综上所述,设计高保真音频功率放大器需要考虑到拓扑结构的选择、线性化技术的应用、元件和电路参数的选取等关键因素。
通过合理设计和调试,可以实现高保真和低失真的音频放大效果。
音频功率放大器设计

1 绪论随着时代科技的高速发展,大量的电子设备应运而生。
在现实生活中,绝大部分电子设备都离不开音频信号的处理,高效率音频放大器直接影响到了许多电子产品的质量。
传统的音频功放工作时,直接对模拟信号进行放大,工作期间必须工作于线性放大区,功率耗散较大,虽然采用推挽输出,减小了功率器件的承受功率,但在较大功率情况下,仍然对功率器件构成极大威胁。
功率输出受到限制。
低失真,大功率,高效率是对功率放大器提出的普遍要求。
高效率功率音频功率放大器设计的关键是功率放大器放大电路的研究,提高功放的效率的根本途径是减小功放管的功耗。
方法之一是减小功放管的导通角,增大其在一个信号周期内的截止时间,从而减小管子所消耗的平均功率,高频大功率放大电路中,功放工作处于丙类(C类)状态。
方法之二是使功放管工作处于开关状态(即D类状态),此时管子仅在饱和导通时消耗功率,而且由于管压降很小,故无论电流大小,管子的瞬时功率都不大,因此管子的平均功耗也就不大,电路的效率必然提高,但是应当指出,当功放中的功放管工作在C类或D类状态时,集电极电流将严重失真,因此必须采取措施消除失真,如采用谐振功率放大电路,从而使负载获得基本不失真的信号功率[1]。
1.1设计高效率功率音频功率放大器的目的和意义音频领域数字化的浪潮以及人们对音频节能环保的要求,要求我们尽快研究开发高效、节能、数字化的音频功率放大器。
传统的音频功率放大器工作于线性放大区,功率耗散较大,虽然采用推挽输出,仍然很难满足大功率输出;而且需要设计复杂的补偿电路和过流,过压,过热等保护电路。
这次音频功率放大器的设计为了达到高效率的设计,采用D类功率放大器,D 功放是基于脉冲宽度调制技术的开关放大器,包括脉冲宽度调制器,功率桥电路,低通滤波器。
这种类型的功放已经展示出了良好的性能,要想设计出并实现电源效率高于90%,THD低于0.01%,低电磁噪音的D类功率放大器,或者甚至包括能将高保真音质技术引入的D类的放大器[2]。
音频功率放大器的制作与设计

放大器是电子设备中最重要、最基本的单元电路,应 用非常广泛。一般电子设备总是要带一定负载的,例如音 响中的扬声器、自动记录仪中的电动机、继电器中的电感 线圈、电视机中的偏转线圈等,而这些负载需供以足够的 功率才能发挥其效能。
技
能
目
标
技能目标
① 能正确识别和使用万用表检测功率放大电路 的元器件,掌握功率放大管的选配方法 ② 学会识读功率放大器的电路图、装配图等图 纸,掌握组装工艺,可以完成组装任务 ③ 掌握OTL功率放大器的调试与测量方法,学 会 检修其典型故障
操作2 判别晶体管引脚
操作2 判别晶体管引脚
(2)集电极和发射极的判别
当管型和基极确定后,用比较晶体管β 值大小的方法来判别 发射极和集电极。以NPN型晶体管为例,如图2-3(a)所示,将万 用表置R×100Ω 或R×1kΩ 挡。知道基极后,假定其余的两只脚中 的一只是集电极,将黑表笔接到此脚上,红表笔则接到假定的发 射极上,并看好万用表的读数。而后再用湿润的手指把假设的集 电极和已测出的基极捏起来(但不要相碰),或用一只几十千欧 的电阻接在基极与假定的集电极之间,观察表针摆动情况(摆动 幅度越大,β 值越大),记下此时的读数;然后作相反的假设, 即把原来假设为集电极的脚假设成发射极,作同样的测量并记下 这时的读数。比较两次表笔摆动的幅度(读数的大小),表笔摆 动幅度大(阻值读数小,β 值较大)的一次所假设的发射极和集 电极是正确的。
知
识
目
标
理和基本指标
知识目标
① 了解晶体管的结构,掌握晶体管的符号、分类、基本原 ② 了解晶体管放大器的组成和应用,理解基本放大器的工 作原理 ③ 掌握功率放大器的分类和用途,理解功率放大器的基本
音频功率放大器的设计毕业论文

单刀音频功率放大器的设计摘要本次课程设计题目为音频功率放大器,简称音频功放,音频功率放大器主要用于推动扬声器发声,凡发声的电子产品中都要用到音频功放。
设计中主要采用OP07进行音频放大器的设计,OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。
由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。
设计中的音频功率放大器主要由直流稳压电源、前置放大电路、二级放大电路和功率放大电路组成。
前置放大电路采用了反相比例运算放大器,二级放大电路用一个低通滤波器和一个高通滤波器组成一个带通滤波器,功率放大电路采用了OCL电路。
直流电源采用桥式电路进行整流,输出则采用了三端集成稳压器。
对前置放大电路和二级放大电路进行了输入、输出分析和频率响应分析。
对功率放大电路进行了输入和输出功率分析。
对直流电源进行了输出电压验证。
最后对总电路进行了输入、输出分析、频率响应分析、噪声分析。
关键词: OP07 音频功率放大器AbstractThe curriculum design entitled the audio power amplifier, referred to as audio amplifier, audio power amplifier is mainly used to promote the speaker sound, and where the sound of electronic products to be used in audio amplifier.The main design using the OP07 audio amplifier design, the OP07 chip is a low-noise, non-chopper-stabilized bipolar op amp IC. OP07 has very low input offset voltage (for OP07A 25μV), OP07 in many applications do not require additional zero measures. The design of audio power amplifier by the DC power supply, preamplifier circuit, two amplification circuit and power amplifier circuit. Preamplifier circuit using a reversed-phase proportion of op amp, two amplifier with a low-pass filter and a high-pass filter composed of a band pass filter, power amplifier OCL circuit. The DC power bridge circuit rectifier, the output uses a three-terminal integrated voltage regulator.Preamplifier and two amplifier input, output and frequency response analysis. Power amplifier input and output power analysis. V alidation of the output voltage of DC power. Finally, the total circuit input-output analysis, frequency response analysis, noise analysis.Key words:OP07 audio power amplifier目录摘要 (I)Abstract (II)第一章音频放大器的概述 (1)1.1音频放大电路的回顾 (1)1.2音频功率放大器的介绍 (1)1.2.1 A类(甲类)功率放大器 (2)1.2.2 B类(乙类)功率放大器 (2)1.2.3 AB类(甲乙类)功率放大器 (2)1.2.4 C类(丙类)功率放大器 (2)1.2.5 D类(丁类)功率放大器 (3)1.3放大器的技术指标 (3)第二章音频功率放大器的设计 (6)2.1设计方案分析 (6)2.2前置放大电路设计 (6)2.3二级放大电路设计 (8)2.2.1 低通滤波器设计 (8)2.2.2 高通滤波器设计 (10)2.2.3 二级放大电路电路设计 (12)2.4功率放大器设计 (12)2.5 直流稳压电源设计 (13)2.6 OP07的功能介绍 (14)第三章电路的仿真 (16)3.1 前置电路的仿真 (16)3.1.1 输入与输出分析 (16)3.1.2 电路频率响应特性分析 (17)3.2二级放大电路仿真 (18)3.2.1电路输入与输出分析 (18)3.2.2电路频率响应特性分析 (19)3.3 功率放大电路功率仿真 (20)3.4 直流稳压电源仿真 (22)3.5音频功率放大电路仿真和分析 (23)3.5.1 电路输入与输出分析 (23)3.5.2电路频率响应特性分析 (24)第四章焊接调试组装 (26)4.1焊接 (26)4.2组装 (26)4.3调试 (26)4.4结果 (26)总结 (27)致谢 (28)参考文献 (29)第一章音频放大器的概述1.1音频放大电路的回顾音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。
音频功率放大器设计

音频功率放大器设计一、设计任务设计一个实用的音频功率放大器。
在输入正弦波幅度≤5mV,负载电阻等于8Ω的条件下,音频功率放大器满足如下要求:1、最大输出不失真功率P OM≥8W。
2、功率放大器的频带宽度BW≥50Hz~15KHz。
3、在最大输出功率下非线性失真系数≤3%。
4、输入阻抗R i≥100kΩ。
5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz处有±12dB的调节范围。
二、设计方案分析根据设计课题的要求,该音频功率放大器可由图所示框图实现。
下面主要介绍各部分电路的特点及要求。
图1 音频功率放大器组成框图1、前置放大器音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。
声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。
一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。
所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。
另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。
对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。
对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。
前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。
音频功率放大电路的设计 实验报告
课程名称:电路与电子技术实验Ⅱ指导老师:成绩:__________________实验名称:音频功率放大电路的设计类型:___________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.了解复杂电子电路的设计方法。
2了解集成功率放大器的基本特点。
3了解放大电路的频率特性及音调控制原理。
4.学习复杂电子电路的分模块调试方法。
5. 学习扩音机电路的特性参数的测试方法。
二、实验内容和原理1. 整机电路设计整机电路主要分为:前置电路、音调电路、功放电路、音量调节、退耦电路、电路负载、电源保护电路几部分。
其中主要部分为前置放大电路、音量调节电路、功率放大电路。
2.前置放大电路前置放大级的主要功能是:进行功率放大,同时消除自激震荡。
为了减小噪声,前置级通常选用低噪声的运放。
由A1组成的前置放大级是一个同相比例放大器,具有较高的输入电阻。
前置放大级的放大倍数:输入电阻Rif=R1,输出电阻Rof=03.音调控制级电路音调控制级的主要功能是:分别对高音和低音的信号进行调节,来满足不同声音的要求。
音调控制级通过不同的负反馈网络和输入网络,使得放大器的Af随信号频率的不同而改变,从而达到音调控制的目的。
音调控制级由音调控制网络和运算放大器A2组成,为电压并联型负反馈电路。
调节RP1和RP2可以改变放大器的Af,达到音调控制的效果。
(1)低音部分在低频区,C6、R7支路可视为开路,反馈网络主要由上半部分电路起作用,R5的影响可忽略;低音时上半部分电路实质上是一个一阶有源低通滤波器。
①RP1活动端移至A点转折频率为:②RP1活动端移至B点时转折频率为:(2)高音部分高音时,下半部分电路实质上是一个一阶有源高通滤波器。
①RP2活动端移至C点转折频率为:②RP2活动端移至D点转折频率为:4.功率放大级功率放大级的主要功能:主要进行功率放大。
音频功率放大器设计
04 音频功率放大器性能测试 与优化
测试方法与设备
测试方法
采用失真度测试、动态范围测试 、信噪比测试等多种方法,全面 评估音频功率放大器的性能。
测试设备
需要使用音频分析仪、信号发生 器、功率计等专业设备,确保测 试结果的准确性和可靠性。
测试结果分析
01
02
03
失真度分析
分析音频功率放大器在不 同功率输出下的失真度, 判断其线性度表现。
加强散热设计
优化散热设计,降低放 大器工作温度,提高其
稳定性。
噪声抑制措施
采取有效的噪声抑制措 施,提高信噪比性能。
05 设计总结与展望
设计总结
设计目标达成情况 实现了预期的功率放大倍数,满足了音频信号放大的需求。
优化了电路的效率,减少了能源消耗,符合绿色环保标准。
设计总结
提高了放大器的稳定 性,减少了噪声和失 真,提升了音质。
为单位。
频率响应
衡量音频功率放大器的频率范 围,即其能够处理的最低频率
和最高频率。
失真度
衡量音频功率放大器对原始音 频信号的失真程度,失真度越
低,音质越好。
阻尼系数
衡量音频功率放大器对扬声器 的控制能力,阻尼系数越高, 对扬声器的控制能力越强。
03 音频功率放大器设计
输入级设计
输入阻抗匹配
确保输入信号源与放大器输入阻抗相匹配,以减 小信号源的负担并提高信号传输质量。
动态范围评估
了解音频功率放大器在高、 低电平信号下的表现,判 断其动态范围。
信噪比分析
通过对比放大器输入与输 出信号的噪声水平,评估 其信噪比性能。
性能优化建议
改进电路设计
根据测试结果,优化电 路设计,降低失真度,
音频功率放大器设计与制作
音频功率放大器设计与制作
一、音频功率放大器设计综述
音频功率放大器是以音频信号作为输入,将输入的音频信号放大,输出更大的音频功率(声压),以满足音频系统的需要。
由于音频功率放大器的设计要求较高,一般采用多种多样的电子元件组成,如放大器、功率放大器、低通滤波器、高通滤波器等,以确保良好的信号质量。
1.1功率放大器的电路类型选择
在音频功率放大器的电路类型选择上,一般采用双极功率放大器电路类型,因为它具有优良的输入输出特性,它的输出电流和输入电压相关性较大,输入阻抗较低,输出阻抗较高,具有低失真和高信噪比等特点。
1.2功率放大器的输出功率
在音频功率放大器设计中,输出功率大小起着重要作用,当音频功率放大器的输出功率大小过大时,音响系统将出现过载的问题,导致音响系统出现声音变化,甚至发生损坏。
因此,必须根据音响系统的需要,合理选择功率放大器的输出功率。
8002a典型电路
8002a典型电路8002a典型电路是一种常见的电路设计,它具有多种应用。
本文将从人类视角出发,以生动的方式描述8002a典型电路的特点和作用。
第一段:引言8002a典型电路是一种广泛应用于音频放大器中的电路设计。
它能够提供高质量的音频放大功能,使得音乐和声音更加动听和清晰。
本文将为您详细介绍8002a典型电路的特点和作用。
第二段:特点介绍8002a典型电路具有多项特点,使得它在音频放大领域中备受青睐。
首先,它采用了高性能的音频功率放大芯片,能够提供稳定而高效的功率输出。
其次,它采用了精心设计的音频输入和输出电路,能够实现低失真和高保真的音频放大效果。
此外,8002a典型电路还具有低功耗和高可靠性的特点,能够满足长时间使用的需求。
第三段:作用介绍8002a典型电路在音频放大领域中有着广泛的应用。
首先,它常用于音响设备中,如家庭影院系统、音乐播放器等。
通过将8002a典型电路与扬声器连接,可以实现音频信号的放大和增强,使得音乐和声音更加震撼和逼真。
其次,8002a典型电路还常用于汽车音响系统中,为驾驶者和乘客提供高品质的音乐享受。
此外,8002a典型电路还可用于电视、电脑和手机等设备中,提升其音频输出的质量和效果。
第四段:应用案例举例为了更好地理解8002a典型电路的作用,我们来看一个具体的应用案例。
假设你正在享受一部电影,而这部电影有着激动人心的音乐和精彩的对话。
如果你使用的是一个配备了8002a典型电路的家庭影院系统,那么你将会感受到音乐的震撼和对话的逼真。
8002a典型电路通过放大音频信号,使得影院系统的扬声器能够更好地表现出音乐的细节和对话的情感,让你仿佛置身于电影的现场,享受着身临其境的视听盛宴。
第五段:总结8002a典型电路是一种应用广泛的电路设计,它能够提供高质量的音频放大功能。
无论是在家庭影院系统、汽车音响系统还是其他音响设备中,8002a典型电路都能够使音乐和声音更加动听和清晰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高效音频功率放大器的设计摘要在音频功率放大器的市场上,AB类一直处于统治地位。
近年来,随着MP3、DVD和移动电话等便携式消费电子产品的普及,D类音频功率放大器以高效率、低功耗、小体积的优点日益成为音响领域的主流,在未来便携式和大功率音频视频领域中将具有广阔的发展前景,因此对高效音频功率放大器的设计具有十分重要的意义。
本设计根据D类功放的工作原理设计的D类音频功率放大器,能对音频信号进行放大,放大器的通频带达到300~3400HZ,输出功率1W,输出信号无明显失真。
根据D类功放的原理分别设计了前置放大模块、三角波产生模块、比较器模块、驱动模块、H桥互补对称输出及低通滤波模块等。
其中三角波产生器及比较器共同组成脉宽调制(PWM)模块,H桥互补对称输出电路采用驱动电流小、低导通电阻及良好开关特性的VMOSFET 管,滤波器采用两个相同的四阶Butterworth低通滤波器。
经过仿真和测试都达到了设计的要求。
关键词:高效,音频,D类功放,放大器Design of High-High-EfficientEfficient Audio Power Amplifier ABSTRACTIn the audio power amplifier market,AB has been the dominant class.In recent years,along with MP3,DVD and mobile phones,the popularity of portable consumer electronic products,D audio power amplifier with high efficiency,low power,small size advantage of the field is increasingly becoming the mainstream audio,portable and high-power audio in the future Video area will have a bright future,Therefore,efficient audio power amplifier design is of great significance.According to the working principle of class D amplifier,this product is designed and the audio signal can be amplified to the amplifier's pass band to 300~3400HZ,the output power 1W,the output signal without significant distortion.Class D amplifier according to the principle of preamp modules were designed,triangular wave generator module,comparison module,driver module,H bridge output and the complementary symmetric low-pass filter module.One triangular wave generator and pulse width modulation comparator common form (PWM)module,H bridge output circuit using complementary symmetry drive current,low resistance and good switching characteristics of VMOSFET tube,filter uses two identical fourth-order Butterworth low-pass filter.KEY WORDS :High-Efficient,Audio,Class D amplifier,Amplifier目录摘要 (I)ABSTRACT (II)目录 (III)1绪论 (1)1.1音频功率放大器概述 (1)1.2D类音频功率放大器的发展 (2)1.3本论文的主要工作及主要内容 (3)2音频功率放大器 (4)2.1音频功率放大器的指标 (4)2.1.1THD+N指标 (4)2.1.2功率放大器的效率η (4)2.1.3最大输出功率(POCM) (4)2.1.4脉冲宽度调制(PWM) (5)2.1.6转换速率 (6)2.2功率放大器的分类 (6)2.2.1A类放大器 (6)2.2.2B类放大器 (7)2.2.3AB类放大器 (8)2.2.3D类放大器 (8)2.2.4T类放大器 (9)3D类功率放大器 (10)3.1D类放大器原理 (10)3.2D类放大器的系统分析 (11)3.3综合比较 (12)4D类音频功率放大器的设计 (13)4.1设计任务与要求 (13)4.1.1设计任务 (13)4.1.2设计要求 (13)4.2方案论证与比较 (13)4.2.1脉宽调制器(PWM) (13)4.2.2高速开关电路 (14)4.3各部分电路分析与计算 (15)4.3.1脉宽调制器 (15)4.3.2前置放大器电路 (17)4.3.3驱动电路 (17)4.3.4H桥互补对称输出电路 (18)4.3.5低通滤波器 (19)4.3.6系统整体分析 (19)4.4模块仿真 (19)4.4.1前置放大电路 (20)4.4.2比较器电路 (21)4.4.3H桥互补对称输出及低通滤波电路 (22)4.5系统测试 (24)4.5.1测试步骤 (24)4.5.2测试工具 (24)4.5.3三角波产生电路测试 (24)4.5.4PWM脉宽调制模块的测试 (25)4.5.5调制与解调测试 (25)4.5.6系统测试 (26)4.5.7系统数据分析 (27)4.5.7系统分析 (28)5总结 (29)5.1收获 (29)5.2总结 (29)致谢 (30)参考文献 (31)附录Ⅰ系统原理图 (32)附录Ⅱ系统PCB图 (33)1绪论1.1音频功率放大器概述音频功率放大器是MP3播放器、笔记本电脑、手机以及便携式DVD等消费类电子产品中应用最广泛的组件之一,有很大的市场。
传统音频功率放大器主要有A类(甲类)、B类(乙类)和AB类(甲乙类)。
A类放大器主要特点是:放大器工作点Q设定在负载线中点附近,晶体管在输入信号整个周期内均导通。
放大器可单管工作,也可以推挽工作。
由于放大器工作在特性曲线线性范围内,所以瞬态失真和交替失真较小。
电路简单,调试方便。
但效率较低,晶体管功耗大,功率理论最大值仅有25%,且有较大非线性失真。
由于效率比较低现在设计基本上不在再使用。
B类放大器主要特点是:放大器静态点在(VCC,0)处,当没有信号输入时,输出端几乎不消耗功率。
在输入信号正半周期内,三极管一个导通一个截止,输出端正半周正弦波;同理,当输入信号为负半波正弦波也是一样,所以必须用两管推挽工作。
其特点是效率较高(78%),但是因放大器有一段工作在非线性区域内,故其缺点是"交越失真"较大。
即当信号在-0.6V~0.6V之间时,两个三极管都无法导通而引起。
所以这类放大器也逐渐被设计师摒弃。
AB类功率放大器能够提供高品质的信号放大性能,所以已经被广泛的应用,然而AB类功率放大器工作时,由于直接对模拟信号进行放大,工作期问必须处于线性放大区,因此其功率耗散较大,在大输出功率情况下,AB类放大器会对功率器件构成极大威胁。
其特点是:1.效率低,其输出功率不可能很大;2.大功率输出时,通常需要散热器,因此系统体积较大。
随着科技的进一步发展,更多、更新的便携式多媒体产品都要求其中的音响系统具有更小的外形设计和更大的电池容量,所以上述缺点都成为AB 类功率放大器的致命弱点,限制了AB类音频功放的进一步发展。
近些年来,随着各领域数字化程度不断加深,D类音频功率放人器逐渐进入了人们的视线,D类放大器的工作方式小不同与于A类、B类和AB类,它采用切换电压方式的同时利用数字信号控制导通时间以放大信号,其输输出级的工作状态不是完全导通就是完全截至,因此输出器件的功耗非常小,使它的效率远比A类、B类和AB类要高的多,同时D类放大器的效率和输入信号的大小无关,不像AB类放大器只有在很高的输出功率时才能达到比较高的效率,在电源电压为额定值时,D类放大器的效率高达80%—90%以上,其平均效率大约要比AB类放大器高2—3倍,也就是说,通常系统电池的寿命可以延2—3倍,同时在输出功率一样的情况下,D类音频功率放大器的表面温度会远远低AB类,因此使用时不需或只需要一个很小的散热器,这就大大减小了D类音频功率放大器的体积。
D类音频功放的特点:(1)节能,所需散热片小,这样可以节省空间,系统可以设计得较轻、较小,便于携带;(2)电源使用效率很高,可以延长系统电池的寿命。
上述优点使得D类音频放大器和模拟音频放大器相比时具有很大的优势。
随着目前市场上消费电子行业的快速发展以及音频功率放大器高效、节能和小型化的趋势,D类音频功率放大器开始逐渐取代AB类进入可携式产品、家庭AV设备、专业影音、汽车音响、平板电视、媒体播放器笔记本电脑和汽车音箱等多个领域,可以说,在未来的很长时间内,D类音频功率放大器将一直是研究的热点,设计出一款兼顾效率与保真度的D类音频功率放人器也会越来越成为众多研究机构和企业所关注的课题。
1.2D类音频功率放大器的发展D类工作模式在1959年由Baxandall首先提出,即使用脉冲形式的信号来驱动高速的功率开关,该脉冲信号一般都是脉宽凋制(PWM)信号,它的低频部分包含了调制信号的信息,通过一个低通滤波器以后,可以将调制信号重现。
从60年代起,人们就开始尝试研制D类放大器,最早是想用真空管来研制D类放大器,但由于受到真空管在电压降和电流能力方面的限制,降低了放大器的效率,限制了放大器的输出。
在60年代后期,双极型晶体管取代了真空管,此时研制低频高效D类放大器的条件已经成熟,然而由于D类放大器需要在高频条件下工作,其工作频率至少为20KHz音频频率的4~5倍,因此在这样的高频下,使用双极型晶体管会产生连续的开关损耗,这限制了D类放大器效率的提高。
直到1970年金属氧化物半导体场效应管出现后,满足了D类放大器对高开关速度和低导通损耗的要求,实现了高性能的开关器件,这才开发出宽频带D 类音频功率放大器,D类音频功率放大器从一经问世立即显示出其高效、节能、数字化的显著特点,引起了电子工业界的广泛关注。