一至六年级数学基础知识整理

合集下载

精心整理小学一至六年级数学概念(最全、最新) 小学数学易错易失分的26个知识点总结(附例题+答案)

精心整理小学一至六年级数学概念(最全、最新) 小学数学易错易失分的26个知识点总结(附例题+答案)

精心整理小学一至六年级数学概念(最全、最新) 小学数学易错易失分的26个知识点总结(附例题+答案)小学数学概念(最全、最新)以下是小学数学易错易失分的26个知识点总结,附有例题和答案。

1.偶数:能被2整除的数叫做偶数,因为也能被2整除,所以也是偶数。

2.奇数:不能被2整除的数叫做奇数。

例如1、3、5、7.3.质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数或者素数。

例如2、3、5、7、11都是质数。

4.素数:素数就是质数。

5.合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1不是质数,也不是合数。

例如4、6、8、9、10、12.都是合数。

6.质因数:每个合数都可以写成几个质数相乘的形式。

其中每个质数都是这个合数的因数,叫做这个合数的质因数。

7.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如:12=3×2×28.公因数:几个数公有的因数,叫做这几个数的公因数。

9.最大公因数:在几个数的公因数中最大的一个,叫做这几个数的最大公因数。

例如1,2,4是8和12的公约因数;4是8和12的最大公约因数。

10.互质数:公约数只有1的两个数,叫做互质数。

例如5和7是互质数,8和9也是互质数。

11.公倍数:几个数公用的倍数,叫做这几个数的公倍数。

12.最小公倍数:在几个数的公倍数中最小的一个,叫做这几个数的最小公倍数。

例如12,24,36.都是4和6的公倍数,12是4和6的最小公倍数。

13.单价数量总价:每件商品的价钱,我们叫它单价,买了多少,叫做数量,一共用了多少钱,叫总价。

总价=单价×数量14.速度、时间、路程:每小时(或每分钟或者每天)行进的路程,我们叫它速度,行进了几小时(或几分钟或几天)我们叫它时间,一共行进多少路,我们叫它路程。

路程=速度×时间15.加法交换律:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。

小学1到六年级数学知识点总结

小学1到六年级数学知识点总结

小学1到六年级数学知识点总结小学一至六年级数学知识点总结一、加法和减法1. 单位和数的组成- 数的组成:数由数字0-9组成,可以组成各种数的大小。

- 单位:个位、十位、百位等,决定数的位数和数值大小。

2. 加法和减法的基本概念和运算规则- 加法:将两个或多个数合并在一起,求它们的和。

如:3 + 2 = 5。

- 减法:从一个数中减去另一个数,求它们的差。

如:5 - 2 = 3。

- 运算规则:交换律、结合律、消去律等。

3. 两位数的加减法- 十位进位与不进位的加减法。

- 通过列竖式进行计算,掌握进位与不进位的加减法技巧。

4. 三位数的加减法- 同样适用列竖式进行计算。

- 加法和减法的运算顺序要清楚,两种运算混合时,按从左到右的顺序进行。

二、乘法和除法1. 乘法的基本概念和运算规则- 乘法:将两个或多个数相乘,求它们的积。

如:3 × 2 = 6。

- 运算规则:交换律、结合律、分配律等。

2. 分类乘法- 乘数是10的倍数时的乘法。

- 乘数是个位数时的乘法。

- 乘数是十位数及以上时的乘法。

3. 除法的基本概念和运算规则- 除法:将一个数分成若干等份,每份是另一个数,求它们的商。

如:6 ÷ 2 = 3。

- 运算规则:整除、余数等。

4. 数的整除性- 能被另一个数整除的数称为倍数。

- 能整除某个数的数称为它的因数。

三、分数的概念和运算1. 分数的基本概念- 分数:用一个整数除以另一个整数得到的数。

- 分子和分母的概念。

- 分数的值大小由分子和分母的大小关系决定。

2. 分数的简化和等分- 约分:将分子和分母同时除以一个相同的数,使它们没有公因数。

- 等分:将一个物体或区域分成若干等份,每份的大小为一个分数。

3. 分数的加减运算- 分母相同的分数相加减:保持分母不变,将分子相加减。

- 分母不同的分数相加减:化成相同的分母后,再进行相加减。

四、面积和体积1. 长方形的面积- 面积的概念:表示一个物体的大小。

一至六年级数学知识点

一至六年级数学知识点

一至六年级数学知识点一至六年级数学知识点概述一、一年级数学知识点1. 数的认识- 认识0-100之间的数字- 了解自然数的基本概念2. 加法与减法- 掌握20以内的加法和减法- 学习加法和减法的基本概念和运算规则3. 简单的几何图形- 认识基本的平面图形,如圆形、正方形、长方形 - 了解图形的基本属性,如边数、角数4. 初步的测量概念- 了解长度、重量和容量的基本概念- 学习使用尺子、天平和量杯进行简单测量5. 数据的收集和整理- 学习简单的数据收集方法- 初步了解数据的分类和整理二、二年级数学知识点1. 进阶的数的认识- 认识100-1000之间的数字- 学习倍数和因数的基本概念2. 乘法与除法- 掌握表内乘法和除法- 理解乘法和除法的意义及其相互关系3. 几何图形的进一步认识- 认识三角形、梯形等基本图形- 学习计算简单图形的面积4. 时间和金钱的认识- 学习读时钟和日历- 了解货币的基本概念和简单的货币计算5. 数据的进一步处理- 学习制作简单的图表,如条形图和饼图 - 理解数据的平均值和中位数的概念三、三年级数学知识点1. 大数的认识和运算- 认识四位数和五位数- 学习简单的大数加减法2. 乘法表的熟练掌握- 熟练掌握1-9的乘法表- 学习简单的乘法分配律3. 分数的初步认识- 了解分数的基本概念- 掌握分数的读法和写法4. 几何图形的性质和分类- 学习图形的对称性- 了解不同图形的分类方法5. 应用题的解答技巧- 学习解决简单的数学应用题- 培养逻辑思维和问题解决能力四、四年级数学知识点1. 多位数的乘除法- 学习多位数乘以一位数和两位数的乘法 - 掌握多位数除以一位数的除法2. 分数的加减法- 学习同分母分数的加减法- 理解分数单位的概念3. 小数的初步认识- 了解小数的读法和写法- 学习小数与整数的相互转换4. 面积和周长的计算- 学习计算矩形、正方形的面积和周长 - 了解面积和周长的概念及其计算公式5. 时间的计算- 学习时间的加减法- 了解时间的计量单位和时间的推算五、五年级数学知识点1. 分数的乘除法- 学习分数乘以整数和分数的乘法- 掌握分数除以整数和分数的除法2. 小数的四则运算- 学习小数的加减乘除- 理解小数点的移动规则3. 比例和百分数- 了解比例的概念和基本性质- 学习百分数的读法、写法和计算4. 几何图形的变换- 学习图形的平移、旋转和翻转- 了解图形变换的基本概念5. 复杂应用题的解答- 学习解决多步骤的数学应用题- 培养综合运用数学知识解决问题的能力六、六年级数学知识点1. 比例和比例关系- 学习比例的计算和应用- 理解比例关系在实际问题中的应用2. 复杂的分数运算- 学习分数的加减乘除混合运算- 掌握分数的化简和比较3. 代数初步- 了解字母表示数的概念- 学习简单的代数式和方程4. 几何图形的面积和体积- 学习计算三角形、梯形等图形的面积- 了解立体图形的体积计算5. 统计和概率- 学习收集、整理和分析数据的方法- 初步了解概率的基本概念以上是一至六年级数学知识点的概述,每个年级的知识点都建立在前一年级的基础上,逐步深入和拓展。

小学一年级到六年级数学知识点整理总结

小学一年级到六年级数学知识点整理总结

小学一年级到六年级数学知识点整理总结十进制计数法:一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法。

整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”。

整数的写法:从高位一级一级写,哪一位一个单位也没有就写0.四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法.整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推.小数部分:把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示.如1/10记作0.1,7/100记作0.07.小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位.小数部分有几个数位,就叫做几位小数.如0.36是两位小数,3.066是三位小数,更多学习资料请关注ABC微课堂小数的读法:整数部分整数读,小数点读点,小数部分顺序读.小数的写法:小数点写在个位右下角.小数的性质:小数末尾添0去0大小不变.化简小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍.小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推.分数和百分数■分数和百分数的意义1、分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数.在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位.2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比.百分数通常不写成分数的形式,而用特定的“%”来表示.百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称.3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位.4、成数:几成就是十分之几.■分数的种类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数■分数和除法的关系及分数的基本性质1、除法是一种运算,有运算符号;分数是一种数.因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子.2、由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质.3、分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据.■约分和通分1、分子、分母是互质数的分数,叫做最简分数.2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分.3、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止.4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.5、通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数.■倒数1、乘积是1的两个数互为倒数.2、求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.3、 1的倒数是1,0没有倒数■分数的大小比较1、分母相同的分数,分子大的那个分数就大.2、分子相同的分数,分母小的那个分数就大.3、分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小.4、如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大.■百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐闯砂俜质褪?0%,则六成五就是65%.■纳税和利息:税率:应纳税额与各种收入的比率.利率:利息与本金的百分率.由银行规定按年或按月计算.利息的计算公式:利息=本金×利率×时间■纳税和利息:税率:应纳税额与各种收入的比率.利率:利息与本金的百分率.由银行规定按年或按月计算.利息的计算公式:利息=本金×利率×时间百分数与分数的区别主要有以下三点:1.意义不同.百分数是“表示一个数是另一个数的百分之几的数.”它只能表示两数之间的倍数关系,不能表示某一具体数量.如:可以说 1米是 5米的 20%,不可以说“一段绳子长为20%米.”因此,百分数后面不能带单位名称.分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”.分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕米等.2.应用范围不同.百分数在生产、工作和生活中,常用于调查、统计、分析与比较.而分数常常是在测量、计算中,得不到整数结果时使用.3.书写形式不同.百分数通常不写成分数形式,而采用百分号“%”来表示.如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数.而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数.数的整除■整除的意义整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b 整除(也可以说b能整除a)除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0).■约数和倍数1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数.2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身.3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数.■奇数和偶数1、能被2整除的数叫偶数.例如:0、2、4、6、8、10……注:0也是偶数 2、不能被2整除的数叫基数.例如:1、3、5、7、9……■整除的特征1、能被2整除的数的特征:个位上是0、2、4、6、8.2、能被5整除的数的特征:个位上是0或5.3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除.更多学习资料请关注A B C 微课堂■质数和合数1、一个数只有1和它本身两个约数,这个数叫做质数(素数).2、一个数除了1和它本身外,还有别的约数,这个数叫做合数.3、1既不是质数,也不是合数.4、自然数按约数的个数可分为:质数、合数5、自然数按能否被2整除分为:奇数、偶数■分解质因数1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数.例如:18=3×3×2,3和2叫做18的质因数.2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数.通常用短除法来分解质因数.3、几个数公有的因数叫做这几个数的公因数.其中最大的一个叫这几个数的最大公因数.公因数只有1的两个数,叫做互质数.几个数公有的倍数叫做这几个数的公倍数.其中最大的一个叫这几个数的最大公倍数.4、特殊情况下几个数的最大公约数和最小公倍数.(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数.(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积.■奇数和偶数的运算性质:1、相邻两个自然数之和是奇数,之积是偶数.2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数.整数、小学、分数四则混合运算■四则运算的法则1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母.能约分的先约分,结果要化简4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上.除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数■运算定律加法交换律 a+b=b+a结合律(a+b)+c=a+(b+c)减法性质 a-b-c=a-(b+c)a-(b-c)=a-b+c乘法交换律a×b=b×a结合律(a×b)×c=a×(b×c)分配律(a+b)×c=a×c+b×c除法性质a÷(b×c)=a÷b÷ca÷(b÷c)=a÷b×c(a+b)÷c=a÷c+b÷c(a-b)÷c=a÷c-b÷c商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍.一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变.推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍.被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍.■利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的除法中要注意余数.如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100.简易方程■用字母表示数用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律. ■用字母表示数的注意事项1、数字与字母、字母和字母相乘时,乘号可以简写成“•“或省略不写.数与数相乘,乘号不能省略.2、当1和任何字母相乘时,“ 1” 省略不写.3、数字和字母相乘时,将数字写在字母前面.■含有字母的式子及求值求含有字母的式子的值或利用公式求值,应注意书写格式■等式与方程表示相等关系的式子叫等式.含有未知数的等式叫方程.判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.■方程的解和解方程使方程左右两边相等的未知数的值,叫方程的解.求方程的解的过程叫解方程.■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.■解方程的方法1、直接运用四则运算中各部分之间的关系去解.如x-8=12加数+加数=和一个加数=和-另一个加数被减数-减数=差减数=被减数-差被减数=差+减数被乘数×乘数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=除数×商2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41先把3x看作一个数,然后再解.3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解.4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解.比和比例■比和比例应用题在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”.■解题策略按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答■正、反比例应用题的解题策略1、审题,找出题中相关联的两个量2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系.3、设未知数,列比例式4、解比例式5、检验,写答语数感和符号感■在数学教学中发展学生的数感主要指,使学生具有应用数字表示具体的数据和数量关系的能力;能够判定不同的算术运算,有能力进行计算,并具有选择适当方法(心算、笔算、使用计算器)实施计算的经验;能根据数据进行推论,并对数据和推论的精确性和可靠性进行检验,等等.■培养学生的数感的目的就在于使学生学会数学地思考,学会用数学的方法理解和解释现实问题.■ 数感的培养有利于学生提出问题和解决问题能力的提高.学生在遇到问题时,自觉主动地与一定的数学知识和技能建立起联系,这样才有可能建构与具体事物相联系的数学模型.具备一定的数感是完成这类任务的重要条件.如,怎样为参加学校运动会的全体运动员编号?这是一个实际问题,没有固定的解法,你可以用不同的方式编,而不同的编排方案可能在实用性和便捷性上是不同的.如,从号码上就可以分辨出年级和班级,区分出男生和女生,或很快的知道一名队员是参加哪类项目.■ 数概念本身是抽象的数概念的建立不是一次完成的,学生理解和掌握数的概念要经历一个过程.让学生在认识数的过程中,更多地接触和经历有关的情境和实例, 在现实的背景下感受和体验会使学生更具体更深刻地把握数的概念,建立数感.在认识数的过程中,让学生说一说自己身边的数,生活中用到的数,如何用数表示周围的事物等,会让学生感觉到数就在自己身边,运用数可以简单明了地表示许多现象.估计一页书的字数,一本书有多少页,一把黄豆有多少粒等,这些对具体数量的感知与体验,是学生建立数感的基础,这对学生理解数的意义会有很大的帮助.■无论在哪个学段都应鼓励学生用自己独特的方式表示具体的情境中的数量关系和变化规律,这是发展学生符号感的决定性因素.■引进字母表示是学习数学符号、学会用符号表示具体情境中隐含的数量关系和变化规律的重要一步.尽可能从实际问题中引入,使学生感受到字母表示的意义.第一,用字母表示运算法则、运算定律以及计算公式.算法的一般化,深化和发展了对数的认识.第二,用字母表示现实世界和各门学科中的各种数量关系.例如,匀速运动中的速度v、时间t和路程s的关系是s=vt.第三,用字母表示数,便于从具体情境中抽象出数量关系和变化规律,并确切地表示出来,从而有利于进一步用数学知识去解决问题.例如,我们用字母表示实际问题中的未知量,利用问题中的相等关系列出方程.■字母和表达式在不同场合有不同的意义.如:5=2x+1表示x所满足的一个条件,事实上,x这里只占一个特殊数的位置,可以利用解方程找到它的值;Y=2x表示变量之间的关系,x是自变量,可以取定义域内任何数,y是因变量,y随x的变换而变化;(a+b)(a-b)=a-b表示一个一般化的算法,表示一个恒等式;如果a和b分别表示矩形的长和宽,S表示矩形的面积,那么S=ab表示计算矩形面积公式,同时也表示矩形的面积随长和宽的变化而变化.■如何培养学生的符号感要尽可能在实际问题情境中帮助学生理解符号以及表达式、关系式意义,在解决实际问题中发展学生的符号感.必须要对符号运算进行训练,要适当地、分阶段地进行一定数量的符号运算.但是并不主张进行过繁的形式运算训练.学生的符号感的发展不是一朝一夕就可以完成的,而是应该贯穿于数学学习的全过程,伴随着学生数学思维的提高逐步发展.量的计算■事物的多少、长短、大小、轻重、快慢等这些可以测定的客观事物的特征叫做量.把一个要测定的量同一个作为标准的量相比较叫做计量.用来作为计量标准的量叫做计量单位.■数+单位名称=名数只带有一个单位名称的叫做单名数.带有两个或两个以上单位名称的叫做复名数高级单位的数如把米改成厘米低级单位的数如把厘米改成米■只带有一个单位名称的数叫做单名数.如:5小时, 3千克(只有一个单位的)带有两个或两个以上单位名称的叫做复名数.如:5小时6分,3千克500克(有两个单位的)56平方分米=(0.56)平方米就是单名数转化成单名数560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子.■高级单位与低级单位是相对的.比如,"米"相对于分米,就是高级单位,相对于千米就是低级单位.■常用计算公式表(1)长方形面积=长×宽,计算公式s=a b(2)正方形面积=边长×边长,计算公式s=a×a(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)×2(4)正方形周长=边长× 4,计算公式s= 4a(5)平形四边形面积=底×高,计算公式s=ah.(6)三角形面积=底×高÷2,计算公式s=a×h÷2(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2(8)长方体体积=长×宽×高,计算公式v=abh(9)圆的面积=圆周率×半径平方,计算公式s=лr^2(10)正方体体积=棱长×棱长×棱长,计算公式v=a^3(11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh(12)圆柱的体积=底面积×高,计算公式v=s h■1年12个月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,闰年2月29天■闰年年份是4的倍数,整百年份须是400的倍数.■平年一年365天,闰年一年366天.■公元1年—100年是第一世纪,公元1901—2000是第二十世纪.平面图形的认识和计算■三角形1、三角形是由三条线段围成的图形.它具有稳定性.从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高.一个三角形有三条高.2、三角形的内角和是180度3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形■四边形1、四边形是由四条线段围成的图形.2、任意四边形的内角和是360度.3、只有一组对边平行的四边形叫梯形.4、两组对边分别平行的四边形叫平行四边形,它容易变形.长方形、正方形是特殊的平行四边形;正方形是特殊的长方形.■圆圆是平面上的一种曲线图形.同圆或等圆的直径都相等,直径等于半径的2倍.圆有无数条对称轴.圆心确定圆的位置,半径确定圆的大小.■扇形由圆心角的两条半径和它所对的弧围成的图形.扇形是轴对称图形.■轴对称图形1、如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形;这条窒息那叫做对称轴.2、线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等.■周长和面积1、平面图形一周的长度叫做周长.2、平面图形或物体表面的大小叫做面积.3、常见图形的周长和面积计算公式。

1至6年级小学数学知识点汇总

1至6年级小学数学知识点汇总

1至6年级小学数学知识点汇总小学阶段的数学学习是为未来的学习打下坚实基础的重要阶段。

以下是对 1 至 6 年级小学数学知识点的详细汇总。

一年级:认识数字:学会 1 到 100 以内的数字认读和书写,理解数字的大小和顺序。

加减法:掌握 10 以内的加减法,例如 1+2=3,4 1=3 等。

比较大小:能够比较数字的大小,比如 5 大于 3,2 小于 7 。

位置与顺序:明白上下、左右、前后的位置关系。

认识图形:认识常见的图形,如圆形、三角形、正方形和长方形。

二年级:乘法口诀:熟练背诵乘法口诀,如 2×3=6,5×6=30 等,这是后续计算的重要工具。

除法初步:了解除法的意义,学会简单的除法运算。

长度单位:认识厘米和米,知道 1 米=100 厘米,能够进行简单的长度测量和比较。

角的初步认识:知道角的组成部分,区分直角、锐角和钝角。

观察物体:从不同角度观察物体,培养空间想象力。

三位数以内的加减法:掌握三位数以内的加减法计算,注意进位和退位。

三年级:万以内的数字:认识万以内的数,包括读法、写法和大小比较。

多位数的加减法:能够进行较复杂的多位数加减法运算。

长度和质量单位:认识千米、吨、分米、毫米等长度和质量单位,并能进行单位换算。

乘法运算:两位数乘两位数的乘法。

除法运算:三位数除以一位数的除法。

图形的周长:理解周长的概念,能计算长方形和正方形的周长。

分数的初步认识:知道分数的含义,如 1/2 表示把一个物体平均分成两份,取其中的一份。

四年级:大数的认识:包括亿以内和亿以上的数的读写、改写和求近似数。

三位数乘两位数:掌握乘法的计算方法和应用。

除数是两位数的除法:学会除法的运算和试商。

四则运算:掌握加、减、乘、除的混合运算顺序。

角的度量:学习角的度量单位,会量角和画角。

平行四边形和梯形:认识这两种图形的特征和性质。

五年级:小数乘法和除法:进行小数的乘除法运算。

简易方程:学会用字母表示数,解简易方程。

重点小学数学基础知识整理(一到小学六年级)

重点小学数学基础知识整理(一到小学六年级)

小学数学基础知识整理(一到六年级)总复习小学数学复习资料第一章数和数的运算一1 .2 .3.单位。

4. 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5.数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。

倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

106、9、122整除。

、204都能被能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。

例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。

例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。

自然数按能否被2 整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的、59、61、678、9、121例如把几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。

其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就36是(二)小数1 .小数的意义把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

一至六年级数学知识点

一至六年级数学知识点一年级数学知识点。

一、数与代数。

1. 数字的认识。

- 认识0 - 10这些数字,会读、写。

知道0表示一个也没有,也可以表示起点。

- 能数出物体的个数,会用数字表示物体的个数。

2. 数的大小比较。

- 比较10以内数的大小,例如3<5,7>4等。

- 认识“>”(大于)、“<”(小于)和“=”(等于)符号,会正确使用这些符号比较数的大小。

3. 数的加减法。

- 10以内数的加法:理解加法的意义,如3 + 2就是把3个物体和2个物体合起来,结果是5。

- 10以内数的减法:知道减法是从总数里去掉一部分,求剩下的部分,如5 - 2就是从5个物体里去掉2个,还剩3个。

二、图形与几何。

1. 认识简单图形。

- 认识长方体、正方体、圆柱、球这几种立体图形,能根据它们的特征辨认。

- 认识长方形、正方形、三角形和圆这几种平面图形,能在生活中找出这些图形的实例。

三、分类与整理。

- 能按照给定的标准对物体进行分类,如按颜色、形状分类等。

- 初步认识象形统计图,能根据分类的结果进行简单的统计。

二年级数学知识点。

一、数与代数。

1. 100以内数的认识。

- 认识100以内的数,会数、读、写100以内的数。

- 知道数的组成,如35是由3个十和5个一组成的。

- 100以内数的大小比较,会用“>”“<”“=”比较数的大小。

2. 100以内数的加减法。

- 整十数加、减整十数,如20+30 = 50,50 - 30 = 20。

- 两位数加一位数、整十数(不进位、进位),例如23+4 = 27(不进位),28+9 = 37(进位)。

- 两位数减一位数、整十数(不退位、退位),如35 - 2 = 33(不退位),32 - 5 = 27(退位)。

3. 表内乘法。

- 乘法的初步认识:知道乘法是求几个相同加数和的简便运算,如3 + 3+3+3 = 3×4。

- 2 - 9的乘法口诀:熟练背诵乘法口诀,能根据乘法口诀计算乘法算式。

小学一到六年级数学必备知识点

小学一到六年级数学必备知识点一到六年级数学基础知识整理【必背定义、定理公式】三角形的面积=底×高÷2。

公式S=a×h÷2正方形的面积=边长×边长公式S=a×a长方形的面积=长×宽公式S=a×b平行四边形的面积=底×高公式S=a×h梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2内角和:三角形的内角和=180度。

长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh圆锥的体积=1/3底面×积高。

公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数的乘法则:用分子的积做分子,用分母的积做分母。

分数的除法则:除以一个数等于乘以这个数的倒数。

定义定理性质公式1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

小学一到六年级数学基础知识

小学一到六年级数学基础知识正整数:用来表示物体个数的1、2、3、4、5……叫做正整数。

相邻的两个正数整数之间相差1。

0:0是一个数,是一个自然数,也是一个整数,但不是正整数或负整数。

0既可以表示“没有”,也可以作为某些数量的界限,如0oC等。

0是一个偶数。

0不能作除数,不能作分母,也不能作比的后项。

负整数:像-l、-2、-3、-4、-5……这样的数就叫做负整数。

相邻的两个负整数之间也是相差1。

整数:像…,-3,-2,-1,0,1,2,3,…这样的数统称整数。

整数包括负整数、0和正整数。

整数的个数是无限的。

自然数是整数的一部分。

自然数:用来表示物体个数的0、l、2、3、4、5、6、7……叫做自然数。

自然数包括0和正整数。

正数:正数包括正整数、正分数、正小数、正百分数等。

负数:负数包括负整数、负分数、负小数、负百分数等。

负数可以表示相反意义的量。

数对:用数对表示位置时,第一个数表示列,第二个数表示行。

数的读法和写法:读、写者都要从高位到低位,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个0。

不管读和写都要进行分级。

如534007000602读作:五千三百四十亿零七百万零六百零二分数:表示把“单位1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

表示其中一份的数叫做分数单位。

真分数:分子比分母小的分数叫真分数。

真分数小于1。

假分数:分子大于或等于分母的分数叫做假分数。

假分数大于或等于1。

带分数:一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。

带分数也是假分数的另一种表示形式,相互之间可以互化。

分数的基本性质:一个分数的分子、分母同时乘上或除以相同的数(零除外),分数的大小不变,这叫做分数的基本性质。

小数:小数是分数的一种特殊形式。

但是不能说小数就是分数。

循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。

纯循环小数:循环节从小数部分第一位开始的循环小数,叫做纯循环小数。

小学一年级至六年级数学公式大全

小学一年级至六年级数学公式大全一、基础知识、概念什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

定义:数学术语,含有等号的式子叫做等式。

形式:把相等的两个数(或字母表示的数)用等号连接起来等式的性质性质1:等式两边同时加上(或减去)同一个数(或式子),结果仍相等。

若a=b 那么a+c=b+c性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

若a=b 那么有a·c=b·c 或a÷c=b÷c (c≠0)性质3:等式两边同时乘方(或开方),两边依然相等若a=b 那么有a^c=b^c 或(c次根号a)=(c次根号b)性质4:等式具有传递性。

若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an什么叫方程式?答:含有未知数的等式叫方程式。

方程(英文:equation)是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,通常在两者之间有一等号“=”。

方程不用按逆向思维思考,可直接列出等式并含有未知数。

它具有多种形式,如一元一次方程、二元一次方程等。

广泛应用于数学、物理等理科应用题的运算。

含有未知数的等式叫方程,这是中学中的逻辑定义,方程的定义还有函数定义法,关系定义,而含未知数的等式不一定是方程,如0x=0就不是方程,应该这样定义,如f(x1,x2,x3......xn)=g(x1,x2,x3......xn)的等式,其中f(x1,x2,x3......xn)和g(x1,x2,x3......xn)是在定义域的交集内研究的两个解析式,且至少有一的不是常数。

等式的基本性质等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。

用字母表示为:若a=b,c为一个数或一个代数式。

则:(1)a+c=b+c(2)a-c=b-c等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。

(3)若a=b,则b=a(等式的对称性)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一至六年级数学基础知识整理小学一年级:初步认识加减法,学会基础加减。

小学二年级:完善加减法、表内乘法、学会应用题、基础几何图形。

小学三年级:学会万以内数的加减法、长度单位和质量单位、倍数的认识、多位数乘一位数、时间量及单位、长方形和正方形、分数的初步认识。

小学四年级:亿以内数的认识、面积单位(公顷和平方千米)、角的度量、两位数的乘数法、平行四边形和梯形、条形统计图的了解。

小学五年级:小数乘除法、简易方程运算、图形面积计算、可能性和植树问题。

小学六年级:掌握分数乘除法、比和百分数、圆和扇形。

必背定义、定理公式1、三角形的面积=底×高÷2。

公式 S= a×h÷22、正方形的面积=边长×边长公式 S= a×a3、长方形的面积=长×宽公式 S= a×b4、平行四边形的面积=底×高公式 S= a×h5、梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷26、内角和:三角形的内角和=180度7、长方体的体积=长×宽×高公式:V=abh8、长方体(或正方体)的体积=底面积×高公式:V=abh9、正方体的体积=棱长×棱长×棱长公式:V=a×a×a10、圆的周长=直径×π公式:L=πd=2πr11、圆的面积=半径×半径×π公式:S=πr212、圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh13、圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr214、圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh15、圆锥的体积=1/3底面积×高。

公式:V=1/3Sh16、分数的加、减法法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

17、分数的乘法法则:用分子的积作分子,用分母的积作分母。

18、分数的除法法则:除以一个数等于乘这个数的倒数。

定义定理性质公式1、加法交换律:两数相加,交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数(0除外),商不变。

0除以任何不是0的数都得0。

简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘(或除以)一个相同的数(0除外),等式仍然成立。

8、什么叫方程式?含有未知数的等式叫方程式。

9、什么叫一元一次方程式?含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。

即列出含有χ的算式并计算。

10、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

11、分数的加减法法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘这个分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘乙数的倒数。

数量关系计算公式方面1、单价×数量=总价2、单位产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和-另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。

例:90÷5÷6=90÷(5×6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克=1000克1公顷=10000平方米1升=1立方分米=1000毫升1毫升=1立方厘米7、比:两个数相除就叫做两个数的比。

如:2÷5或3:6或1/3比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。

8、比例:表示两个比相等的式子叫做比例。

如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。

10、解比例:求比例中的未知项,叫做解比例。

如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:x×y = k( k一定)或k / x = y百分数:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

其实,把小数化成百分数,只要把这个小数乘100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

其实,把分数化成百分数,要先把分数化成小数后,再乘100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

15、要学会把小数化成分数和把分数化成小数的化发。

16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。

(或几个数公有的约数,叫做这几个数的公约数。

其中最大的一个,叫做最大公约数。

)17、互质数:公约数只有1的两个数,叫做互质数。

18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。

19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

(约分用最大公约数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。

个位上是0或者5的数,都能被5整除,即能用5进行约分。

在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1不是质数,也不是合数。

25、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)26、利率:利息与本金的比值叫做利率。

一年的利息与本金的比值叫做年利率。

一月的利息与本金的比值叫做月利率。

27、自然数:用来表示物体个数的整数,叫做自然数。

0也是自然数。

28、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。

29、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断地重复出现,这样的小数叫做不循环小数。

30、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断地重复出现,这样的小数叫做无限不循环小数。

31、什么叫代数? 代数就是用字母代替数。

32、什么叫代数式?用字母表示的式子叫做代数式。

如:3x =ab+c一般运算规则1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数。

相关文档
最新文档