考研线性代数笔记

合集下载

考研_线性代数_笔记精华_3打印

考研_线性代数_笔记精华_3打印

一章行列式一、重点1、理解:行列式的定义,余子式,代数余子式。

2、掌握:行列式的基本性质及推论。

3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。

二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。

三、重要公式1、若A为n阶方阵,则│kA│= kn│A│2、若A、B均为n阶方阵,则│AB│=│A│·│B│3、若A为n阶方阵,则│A*│=│A│n-1若A为n阶可逆阵,则│A-1│=│A│-14、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi四、题型及解题思路1、有关行列式概念与性质的命题2、行列式的计算(方法)1)利用定义2)按某行(列)展开使行列式降阶3)利用行列式的性质①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。

②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。

③逐次行(列)相加减,化简行列式。

④把行列式拆成几个行列式的和差。

4)递推法,适用于规律性强且零元素较多的行列式5)数学归纳法,多用于证明3、运用克莱姆法则求解线性方程组若D =│A│≠0,则Ax=b有唯一解,即x1=D1/D,x2= D2/D,…,xn= Dn/D其中Dj是把D中xj的系数换成常数项。

注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。

4、运用系数行列式│A│判别方程组解的问题1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解)2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法则求出第二章矩阵一、重点1、理解:矩阵的定义、性质,几种特殊的矩阵(零矩阵,上(下)三角矩阵,对称矩阵,对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵)2、掌握:1)矩阵的各种运算及运算规律2)矩阵可逆的判定及求逆矩阵的各种方法3)矩阵的初等变换方法二、难点1、矩阵的求逆矩阵的初等变换2、初等变换与初等矩阵的关系三、重要公式及难点解析1、线性运算1)交换律一般不成立,即AB≠BA2)一些代数恒等式不能直接套用,如设A,B,C均为n阶矩阵(A+B)2=A2+AB+BA+B2≠A2+2AB+B2(AB)2=(AB)(AB)≠A2B2(AB)k≠AkBk(A+B)(A-B)≠A2-B2以上各式当且仅当A与B可交换,即AB=BA时才成立。

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点考研数学线性代数必考的知识点漫长的学习生涯中,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。

还在苦恼没有知识点总结吗?以下是店铺帮大家整理的考研数学线性代数必考的知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

考研数学线性代数必考的知识点篇1考研数学线性代数必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。

相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。

复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。

概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。

其它知识点考小题,如随机事件与概率,数字特征等。

从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。

第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。

线性代数-考研笔记

线性代数-考研笔记

第一章行列式性质1 行列式与它的转置行列式相等。

性质2互换行列式的两行(列),行列式变号。

推论如果行列式的两行(列)完全相同,则此行列式等于零。

性质3行列式的某一行(列)中所以的元素都乘以同一个数,等于用数乘以此行列式。

第行(或者列)乘以,记作(或)。

推论行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。

第行(或者列)提出公因子,记作(或)。

性质4行列式中如果两行(列)元素成比例,此行列式等于零。

性质5若行列式的某一列(行)的元素都是两数之和,例如第列的元素都是两数之和,则等于下列两个行列式之和:=性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

定义在阶行列式,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记作;记,叫做元的代数余子式。

引理一个阶行列式,如果其中第行所有元素除元外都为零,那么这行列式等于与它的代数余子式的乘积,即定理3 (行列式按行按列展开法则) 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即或推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。

范德蒙德行列式克拉默法则①如果线性方程组①的系数行列式不等于零,即,那么,方程组①有唯一解其中是把系数行列式矩阵中第列的元素用方程组右端的常数项代替后所得到的阶行列式,即定理4 如果非齐次线性方程组的系数行列式,则非齐次线性方程组一定有解,且解是唯一的。

定理如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。

定理5 如果齐次线性方程组的系数行列式定理如果,则它的系数行列式必为零第二章矩阵级其运算定义1 由个数排成的行列的数表,称为行列矩阵;以数为元的矩阵可简记作或矩阵也记作。

行数和列数都等于的矩阵称为阶矩阵或阶方阵。

阶矩阵也记作。

特殊定义:两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵同型矩阵和的每一个元素都相等,就称两个矩阵相等,;元素都是零的矩阵称为零矩阵,记作;注意不同型的零矩阵是不同的。

(完整版)线性代数笔记

(完整版)线性代数笔记

等行变换,则得到的是 。
对于第二类的可先转化为第一类的 ,即由
两边转置得
按上例的方法求出 进而求出 X
二.初等变换的性质
定理 2.5.1 设线性方程组的增广矩阵 经有限次的初等行变换化为 ,则以 与
为增广矩阵的方程组同解。 定理 2.5.2 任何矩阵都可以经有限次初等行变换化成行最简形式,经有限次初等变换 (包括行及列)化成等价标准形。且其标准形由原矩阵惟一确定,而与所做的初等变换无
3、矩阵的乘法 设 A=(aij)m×n,B=(bjk)n×l,则 A*B=C=(cik)m×l 其中 C=Σaijbjk(j=1,n) 注意;两个矩阵相乘必须第一个矩阵的列数等于第二个矩阵的行数;矩阵乘法不满足交换 律,即 AB 不一定等于 BA;矩阵乘法有零因子,即 A≠0(零矩阵),B≠0(零矩阵),但 有可能 A*B=0(零矩阵) 矩阵的乘法适合以下法则: (1)结合律:(AB)C=A(BC) (2)分配律(A+B)C=AC+BC
hing at a time and All things in their being are good for somethin
此处 0 表示与 A 同型的零矩阵,即 A=(aij)m×n ,0=0m×n (4)矩阵 A=(aij)m×n,规定-A=(-aij)m×n,(称之为 A 的负矩阵),则有 A+(-A)=(A)+A=0
如果 n 个未知数,n 个方程的线性方程组的系数行列式 D≠0,则方程组
定理 1.4.3 如果 n 个未知数 n 个方程的齐次方程组的系数行列式 D≠0,则该方程组只有零 解,没有非零解。 推论 如果齐次方程组有非零解,则必有系数行列式 D=0。
第二章 矩阵
一、矩阵的运算

考研数学线性代数手写笔记

考研数学线性代数手写笔记
$ f É 3 z 3 ( NMÅ wz3a) d1 )
隽卷轴对 埔
d

蝉 竹触 © 闭 C 八


商愆酏 翅 癫 <娣榭蹊 八啪 一 夜娴© 蜘 t!枘碑堤 微
(· &i i t ój j j Éj & > 1 > t & , l s t ! d M
1
LJ; 1
1 1
AJ 1
A


A"
1
Aj
1
[
铀赫佴醐
,
F
k
wi f i q
&=

创 制
Jill
@f q w Ê
觳入 罗耗僻 A W禾我让仟
苄 \
,
人0 4 入住°
A\
"
与 与
兼 多当A 吕 o 对不能弘 A · 荻8 - o 4 瓷A 和 却粼川 s o
> x -
a
2国
/ ¢i t h 1/ 14 ®Ptìi gM
a
\
77
3 虽t
八j乙肘 A
萨 八 八 良+ 9
男沫豹力毛亭泌 朗 荫 心
z3
黄 已知八 良 t 与沟司逐短 瞬 W掌硝
只 阳目 园国
k M' A0
j 0 0
1
11


:犍 ® f c 胪 时穿易患花 ( t i. j
r
M
0i L

名 国
.
目届

卅车间
74 囤川 麟 9· Pl 花中
断腐元 囤
糙角囝闲 祥 不同 1爿啄盈凶钰 间闲
) ( 日 六 ' " 一

考研数学详细笔记

考研数学详细笔记

α
m
= =
0 0
;即
⎛ ⎜ ⎜ ⎜
α1T
α
T 2
⎞ ⎟ ⎟ ⎟
α1
α2
+ kmαmTαm = 0
⎜⎜⎝
α
T m
⎟⎟⎠
⎛ k1 ⎞
αm

)
⎜ ⎜
k2
⎟ ⎟ ⎟
=
0
⎜⎟ ⎝ km ⎠
令 A = (α1 α2
⎛ k1 ⎞
αm )
,即
AT

A
⎜ ⎜
k2
⎟ ⎟ ⎟
=
0
,因为
α1,α2 ,
⎜⎟ ⎝ km ⎠
,αm 线 性 无 关 ,
三、线性代数复习重点
大家知道,线性代数前后知识的联系非常紧密,所 以我们在这一部分复习的时候,一定 要抓住我们线性代数的前后联系的这样一些关键点, 把知识连贯起来,我们就会发现,掌 握起来是比较容易的。整个线性代数,我个人认为, 可以分成三大块内容。第一部分,行 列式和矩阵,是我们线性代数的基础部分,基础部分 一般来讲不考大题。以这个为基础,
方程组中解的判定、解的性质、解的结构这三部分要搞清楚 重要题型 1 判定向量组线性相关性; 2 向量组的线性表示 3 求向量组的秩与极大无关组 4 方程组(齐次,非齐次)解的判定与求解 5 方程组的公共解与同解。
例 5 设 向 量 组 α1,α2 ,α3 线 性 无 关 , 向 量 β1 能 由 α1,α2 ,α3 线 性 表 出 , 向 量 β2 不 能 由
⎧a11x1 + a12 x2 + ⎪⎪⎨a21x1 + a22 x2 + ⎪ ⎪⎩am1x1 + am2 x2 +

考研数学一大纲详解线性代数部分考点归纳

考研数学一大纲详解线性代数部分考点归纳

考研数学一大纲详解线性代数部分考点归纳线性代数是考研数学一科目中的一部分,具有重要的地位和作用。

掌握好线性代数的知识,不仅有助于我们在考试中获得高分,还可以帮助我们在将来的学习和研究中更好地应用数学知识。

本文将针对考研数学一大纲中的线性代数部分,对考点进行详细解析和归纳。

一、向量空间及其基本性质1. 向量空间的概念2. 向量空间的基本性质3. 闭子空间的概念与性质4. 有限维向量空间与无限维向量空间的性质5. 向量的线性相关与线性无关6. 向量组与矩阵的秩7. 基底与维数的概念及其性质二、矩阵的运算及其性质1. 矩阵的加法和数乘2. 矩阵的乘法及其性质3. 矩阵的转置4. 矩阵的逆及其性质5. 矩阵的秩与逆的关系6. 矩阵的行列式及其性质7. 克拉默法则三、特征值、特征向量与对角化1. 特征值与特征向量的概念2. 特征多项式及其性质3. 对角化的条件4. 相似矩阵的性质5. 可对角化矩阵与不可对角化矩阵的区别6. Jordan标准形四、线性方程组的解法1. 线性方程组的消元法2. 线性方程组的矩阵表示与向量表示3. 齐次线性方程组与非齐次线性方程组4. 初等变换和增广矩阵的关系5. 矩阵的秩与线性方程组解的关系6. 非齐次线性方程组的通解和特解以上是考研数学一大纲中线性代数部分的主要考点和知识点的归纳,希望对考生们在备考中有所帮助。

在复习过程中,需要注重对基本概念的理解和记忆,同时通过大量的练习来提高对知识的掌握程度。

同时,考生还应该注重对知识的应用能力的培养,能够将所学的线性代数知识应用于实际问题中。

最后,祝愿所有备战考研的同学们都能够取得优异的成绩,顺利进入心仪的研究生院校。

相信通过努力的学习和不断的积累,成功将会属于你们!加油!。

(NEW)同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解

(NEW)同济大学数学系《工程数学—线性代数》(第6版)笔记和课后习题(含考研真题)详解

目 录
第1章 行列式
1.1 复习笔记
1.2 课后习题详解
1.3 考研真题详解
第2章 矩阵及其运算
2.1 复习笔记
2.2 课后习题详解
2.3 考研真题详解
第3章 矩阵的初等变换与线性方程组
3.1 复习笔记
3.2 课后习题详解
3.3 考研真题详解
第4章 向量组的线性相关性4.1 复习笔记
4.2 课后习题详解
4.3 考研真题详解
第5章 相似矩阵及二次型5.1 复习笔记
5.2 课后习题详解
5.3 考研真题详解
第6章 线性空间与线性变换6.1 复习笔记
6.2 课后习题详解
6.3 考研真题详解
第1章 行列式
1.1 复习笔记
一、二阶与三阶行列式
1二阶行列式
定义 将四个数,,,按一定位置,排成二行二列的数表:
则表达式就是数表的二阶行列式,并记作
2三阶行列式
定义 设有9个数排成3行3列的数表

该式称为数表所确定的三阶行列式.
二、全排列和对换
1全排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研线性代数笔记考研线性代数笔记1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -? -;③、上、下三角行列式(= ◥◣):主对角元素的乘积;④、◤和◢:副对角元素的乘积(1)2(1)n n -? -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解;④、利用秩,证明()r A n <;⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:0A ≠(是非奇异矩阵);()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;?n b R ?∈,Ax b =总有唯一解;A 与E 等价;A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0;T A A 是正定矩阵;A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ?? ?= ? ??,则:Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----??= ? ? ??;②、111A O A O O B O B ---??=;(主对角分块)③、111O A O B B O A O ---??= ? ?;(副对角分块)④、11111A C A A CB O B OB -----??-??=;(拉普拉斯)⑤、11111A O A O C B B CA B -----??= ? ?-;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nE OF OO= ;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ??Λ= ? ??λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)Ei j Ei j -=,例如:1111111-= ? ? ? ?????;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -=≠ ? ? ? ???;⑤、倍加某行或某列,符号(())E i j k,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --???? ? ?=≠ ? ? ? ?????;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ?≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※)⑥、()()()r A B r A r B +≤+;(※)⑦、()min((),())r AB r A rB ≤;(※)⑧、如果A 是m n ?矩阵,B 是n s ?矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)?行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ?? ?的矩阵:利用二项展开式;二项展开式:01110()nn nn m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b -----=+=++ ++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ??==-??<-?;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ? =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0;③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ?矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ??+++= +++=?;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ?????? ??? ? ??? ?=?= ??? ? ??? ???????(向量方程,A 为m n ?矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β?? ? ?= ? ???(全部按列分块,其中12n b b b β?? ? ?= ? ???);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数) 4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ?矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ?矩阵12T T T m B βββ??= ? ? ???;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ?=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ?=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ?=是否有解;(矩阵方程)3. 矩阵m n A ?与l n B ?行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5. n 维向量线性相关的几何意义:①、α线性相关?0α=;②、,αβ线性相关,αβ坐标成比例或共线(平行);③、,,αβγ线性相关?,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示AX B ?=有解;()(,)r A r A B ?=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ? ==(85P 定理2推论)8. 方阵A 可逆?存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ?=(左乘,P 可逆)0Ax ?=与0Bx =同解②、矩阵列等价:~cA B AQ B ?=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ?=(P 、Q 可逆); 9. 对于矩阵m n A ?与l n B ?:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C =,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ? =只有零解;②、0Bx = 有非零解0ABx ? =一定存在非零解;12. 设向量组12:,,,n r r B b b b ?可由向量组12:,,,n s s A a a a ?线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ?,且A 线性无关,则B 组线性无关()r K r ?=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ?,存在n m Q ?,m AQ E = ()r A m ?=、Q 的列向量线性无关;(87P )②、对矩阵m n A ?,存在n m P ?,n PA E = ()r A n ?=、P 的行向量线性无关;14. 12,,,s ααα线性相关存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)1212(,,,)0s s x xx ααα?? ? ?= ? ???有非零解,即0Ax =有非零解;12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ?的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论) 5、相似矩阵和二次型1. 正交矩阵T A A E ?=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=?==?≠?;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ?A 经过初等变换得到B ;=PAQ B ,P 、Q 可逆; ()()?=r A r B ,A 、B 同型;②、A 与B 合同 ?=T C AC B ,其中可逆;T x Ax 与T x Bx 有相同的正、负惯性指数;③、A 与B 相似1-?=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =?A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型T x Ax 为正定:A ?的正惯性指数为n ;A ?与E 合同,即存在可逆矩阵C ,使TC AC E =; A ?的所有特征值均为正数; A ?的各阶顺序主子式均大于0;0,0ii a A ?>>;(必要条件)。

相关文档
最新文档