四杆机构设计分解
四杆机构设计分解

典型例题分析 例2-1 在图2-1a 所示的铰链四杆机构中,已知各杆长度为lAB =20mm,lBC=60mm,lCD=85mm, lAD=50mm ,
1、试判断该机构是否有曲柄; 2、判断此机构是否存在急回特性?若存在,试 确定其极位夹角,并估算行程速比系数 ; 3、若以构件AB为主动件,画出机构的最小传动 角的位置; 4、在什么情况下机构存在死点位置?
1.下面
不是平面连杆机构的优点。
A. 运动副是面接触,故压强小、耐磨损; B. 运动副制造简单,容易获得较高的制造精度; C. 容易实现多种运动形式的转换; D. 容易精确地实现预定的运动规律。
答案
2.四杆长度不等的双曲柄机构,若主动曲柄作连续匀速转动则从动曲柄将________。
A. 匀速转动 C. 周期变速转动
夹角为 的直线相交于O点;以O点为圆心,OC1为半径画圆,A 点即在此圆上,可由其它附加条件
确定。
(90 )
2)用作图法按两连架杆预定的对应位置 设计四杆机构 设计方法是:此类问题刚固反转法进行设计 (重点)
3)按预定的连杆位置设计四杆机构: 已知:连杆BC的三个预定位置B1C1、B2C2和B3C3 设计的实质是:求固定铰链中心的位置 设计方法是:此类问题可用求圆心法来解决,即作铰链B各位置点连线B1B2 、B2B3的中垂线, 两中垂线的交点即为固定铰链中心A。同理,作铰链C各位置点连线C1C2、 C2C3的中垂线,两 中垂线的交点即为固定铰链中心D。
四杆机构设计分解
2) 导杆机构 已知:机架长度d,K,设计此机构。 分析:
由于θ与导杆摆角φ相等,设计此 机构时,仅需要确定曲柄 a。
①计算θ=180°(K-1)/(K+1); ②任选D作∠mDn=φ=θ,
四杆机构的设计步骤和方法

温馨小提示:本文主要介绍的是关于四杆机构的设计步骤和方法的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。
文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。
本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。
愿本篇四杆机构的设计步骤和方法能真实确切的帮助各位。
本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。
感谢支持!(Thank you for downloading and checking it out!)阅读本篇文章之前,本店铺提供大纲预览服务,我们可以先预览文章的大纲部分,快速了解本篇的主体内容,然后根据您的需求进行文档的查看与下载。
四杆机构的设计步骤和方法(大纲)一、四杆机构概述1.1四杆机构简介1.2四杆机构的应用领域二、四杆机构设计步骤2.1确定设计目标2.2分析四杆机构类型2.3确定机构参数2.4选择合适的材料2.5计算运动与动力参数2.6进行仿真分析与优化三、四杆机构设计方法3.1几何法3.1.1尺度法3.1.2位置法3.2解析法3.2.1矩阵法3.2.2微分方程法3.3计算机辅助设计方法3.3.1CAD软件3.3.2仿真软件四、四杆机构设计实例4.1曲柄摇杆机构设计实例4.2双曲柄机构设计实例4.3双摇杆机构设计实例五、四杆机构设计注意事项5.1运动副间隙的考虑5.2刚度与强度的校核5.3疲劳寿命分析5.4安全系数的选择六、四杆机构设计总结与展望6.1设计成果总结6.2存在问题与改进方向6.3未来发展趋势与应用前景一、四杆机构概述以下是对四杆机构设计步骤和方法中的四杆机构概述部分的撰写:1.1 四杆机构简介四杆机构是由四个杆件组成的机械系统,它们通过关节连接在一起。
这四个杆件分别是:曲柄、连杆、摇杆和机架。
四杆机构根据其结构特点和运动特性,可以分为多种类型,如直动四杆机构、摆动四杆机构、转动四杆机构等。
四杆机构在工程应用中具有广泛的应用前景,其设计和研究在机械工程领域具有重要意义。
图解法设计平面四杆机构

图解法设计平面四杆机构-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN图解法设计平面四杆机构3.4.1按连杆位置设计四杆机构1.给定连杆的三个位置给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐图解过程。
::1::2.给定连杆的两个位置给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。
①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。
②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。
连接A B1、C1D、B1C1、A D,A B1C1D即为所求的四杆机构。
③测量A B1、C1D、A D计算l A B、L C D L A D的长度,由于A点可任意选取,所以有无穷解。
在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。
例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长和两个位置B1C1、B2C2.。
要求固定铰链中心A、D在同一水平线上并且A D=B C。
自己可以试着在纸上按比例作出图形,再求出各杆长度。
若想对答案请点击例题祥解3.4.2 按行程速度变化系数设计四杆机构1.设计曲柄摇杆机构按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。
怎样用作图法设计曲柄摇杆机构?2.设计曲柄摆动导杆机构已知机架长度l4和速度变化系数K,设计曲柄导杆机构。
①求出极位夹角②根据导杆摆角ψ等于曲柄极位夹角θ,任选一点C后可找出导杆两极限C m、C n。
③作∠M C N的角评分线,取C A=,得到A点,过A点作C m和C n的垂线B1和B2两点,A B1(或A B2)即为曲柄。
第8章第5讲平面四杆机构的设计——解析法

第8章第5讲平面四杆机构的设计——解析法平面四杆机构是机械工程中常用的一种机构,它由4个连接杆组成,通过连接杆与铰链的连接方式,能够实现不同形式的运动。
平面四杆机构的设计可以采用解析法,该方法通过解析机构的运动学性质和机构参数,来确定机构的设计参数和结构尺寸。
在平面四杆机构的解析法设计中,首先需要确定机构的运动类型。
根据机构的运动要求和工作环境,可以选择不同的运动类型,如平行移动、旋转、复杂曲线轨迹等。
运动类型的选择将对机构的结构设计和参数确定产生重要影响。
接下来,需要确定机构的工作原理和结构特点。
根据机构的运动类型,可以选择不同的结构形式,如平行四杆机构、向心四杆机构、菱形四杆机构等。
不同的结构形式具有不同的运动学特性和工作原理,需要根据实际需求进行选择。
确定机构的杆件长度和角度。
在机构设计中,杆件的长度和角度是关键的设计参数。
杆件的长度决定了机构的尺寸和工作范围,而杆件的角度决定了机构的运动轨迹和运动特性。
通过分析机构的运动学方程和几何方程,可以确定机构的杆件长度和角度。
确定机构的铰链位置。
铰链的位置决定了杆件之间的连接方式和机构的运动特性。
通过分析机构的力学平衡条件和运动学方程,可以确定机构的铰链位置,使机构能够实现所需要的运动要求。
最后,进行机构的参数优化和结构优化。
根据机构的运动学性能和工作要求,可以对机构的结构参数进行优化,使机构的运动特性更加优秀。
同时,还需要对机构的结构进行优化,提高机构的强度和刚度,确保机构在工作过程中的可靠性和稳定性。
通过解析法进行平面四杆机构的设计,可以使机构的结构和性能更加合理和可靠。
这种设计方法具有简单易行、工程实用性强的特点,是一种常用的机构设计方法。
在实际的机械设计中,可以根据具体的需求和实际情况,采用解析法进行平面四杆机构的设计,以提高机构的性能和工作效果。
平面四杆机构的设计

度的比值; .用缩放仪求出图谱中的连杆曲线和所要求的轨
迹之间相差的倍数,并由此确定所求四杆机构 各杆的真实尺寸; 4.根据连杆曲线上的小圆圈与铰链B、C的相对位 置,即可确定描绘轨迹之点在连杆上的位置。
§4.平面四杆机构的设计
一.连杆机构设计的基本问题 1.型综合---选型
2.尺度综合---决定各构件的尺寸 ①满足给定位置要求或运动规律要求 ②满足给定的轨迹要求
3.画出机构简图
方法:解析法,图解法,实验法。
二用图解法设计四杆机构 1.按连杆预定的位置设计四杆机构 注意:按给定连杆两个位置时,要满足一些 附加条件。如:机架的尺寸,传动角 检查:1)若采用电机等旋转原动机来驱动机构 要求其主动件为曲柄。应检验机构是 否有曲柄存在。 2)检查机构运动的连续性
3.按给定的行程速比系数设计四杆机构
注意:检查许用的传动角min≥〔〕
三。实验法
按照给定的运动轨迹设计四杆机构 1 .运输机构连杆曲线
2.运用连杆曲线图谱设计四杆机构
运用图谱设计实现已知轨迹的四杆机构
• 图3-26就是已出版的《四连杆机构分析图谱》 中的一张。
• 运用图谱设计实现已知轨迹的四杆机构的步骤: 1.从图谱中查出形状与要求实现的轨迹相似的连
3)传力条件的检验:满足min≥〔〕
运动的连续性:是指连杆机构在运动的过程中 能否连续实现给定的各个位置的问题。
B D
A
2. 按连架杆预定的对应位置设计四杆机构
反转法 (p.174)
设计时,先假设一个连架杆,将此连架杆各位置 的铰链与另一个固定铰链点相连,将所求的连架 杆反转相应的角位移求得相当连杆的各个点(B2′ 、B3′…);再按已知连杆位置的方法求解即可。
机械设计基础--四杆机构资料

5.偏心轮机构
机械设计基础
偏心轮机构
第二节 平面四杆机构的基本特性
一、 铰链四杆机构存在曲柄的条件
1. 整转副的存在条件
在 AC' D 中 l4 (l2 l1) l3 l3 (l2 l1) l4
在 AC'' D 中
l1 l2 l3 l4
即 l1 l2 l1 l3 l1 l4
不同的轨迹要求。 • (5)能方便地实现转动、摆动和移动等基本运动形式及
相互转换
机械设计基础
• 平面连杆机构的缺点: ➢ 低副中存在间隙,容易产生累积误差,当构件数和运动 当构件数和运动副较多时,传动的精度和效率较低。 ➢不易精确实现复杂的运动规律,且设计较为复杂。
机械设计基础
2.2 铰链四杆机构
机械设计基础
•
若满足最短杆与最长杆长度之和小于或等于其余两杆
长度之和时,可得到以下三种结构;
• (1)连架杆是最短杆 为曲柄摇杆机构;
• (2)机架是最短杆 为双曲柄机构;
• (3)若最短杆是连杆,此机构为双摇杆机构。
•
若满足最短杆与最长杆长度之和大于其余两杆长度之
和时,为双摇杆机构。
机械设计基础
二、学习指导
是
否
lmax+lmin ≤ l余1+l余2
不存在曲柄
双摇杆机构
可能有曲柄 固定件
机械设计基础
最短构件 最短构件的邻边 最短构件的对边
图3-9
双曲柄机构 曲柄摇杆机构
双摇杆机构
二、 急回特性与行程速比系数 1. 摇杆摆角 摇杆在两极限位置的夹角
2. 极位夹角 对应摇杆两极限位置,曲柄两位置所夹的锐角。
常用机构(四连杆机构)

三、平面四杆机构的传动特性
急回特性 死点位置 压力角和传动角
急回特征
当回程所用时间小于工作行程所用时间时,称该机构具有急回特征
极位夹角: 对应从动杆的两个极限位置, 主动件两相应位置所夹锐
角.
急回特性分析: 1 = C 1 = 1 t1 =1800 + 2 = 1 t2 =1800 -
慢 快
(3) 传力特性
压力角和传动角
压力角 从动杆(运动输出件)受力点的力作用线与该点 速度方位线所夹锐角. (不考虑摩擦)
传动角
压力角的余角.(连杆轴线与从动杆轴线所夹锐角)
F
d
V
d
d
1800 d
传动不利,设计时规定 4050 通常,机构在运动过程中传动角是变化的,最小值在哪?
设计
已知活动铰点B、C中心位置,求固定铰链A、D 中心位置。
B1
C1
B2
A●
●D
C2
四杆机构 AB1C1D 为所求.
实现连杆给定的三个位置
C1 C2
B1 B2
B3 C3
D
A
四杆机构 AB1C1D 为所求.
2.具有急回特性的机构
按给定的 K 值,设计曲柄摇杆机构
1) 给定 K、y、LCD
① 分析.
(1) 曲柄存在条件
(以曲柄摇杆机构为例)
设 AB 为曲柄, 且 a<d . 由 △BCD :
b+c>f 、 b+f >c 、 c+f >b 以 fmax = a + d , fmin = d - a 代入并整理得:
(完整版)图解法设计平面四杆机构

3.4 图解法设计平面四杆机构3.4.1按连杆位置设计四杆机构1.给定连杆的三个位置给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐?图解过程。
::1::::2::2.给定连杆的两个位置给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。
①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。
②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。
连接A B1、C1D、B1C1、A D,A B1C1D即为所求的四杆机构。
③测量A B1、C1D、A D计算l A B、L C D L A D的长度,由于A点可任意选取,所以有无穷解。
在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。
例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长0.5m和两个位置B1C1、B2C2.。
要求固定铰链中心A、D在同一水平线上并且A D=B C。
自己可以试着在纸上按比例作出图形,再求出各杆长度。
若想对答案请点击例题祥解3.4.2 按行程速度变化系数设计四杆机构1.设计曲柄摇杆机构按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。
怎样用作图法设计曲柄摇杆机构?2.设计曲柄摆动导杆机构已知机架长度l4和速度变化系数K,设计曲柄导杆机构。
①求出极位夹角②根据导杆摆角ψ等于曲柄极位夹角θ,任选一点C后可找出导杆两极限C m、C n。
③作∠M C N的角评分线,取C A=,得到A点,过A点作C m和C n的垂线B1和B2两点,A B1(或A B2)即为曲柄。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 死点:当机构出现传动角 0时,其压力角α=90o, 作往复运动的原动件通过连杆作用于从动曲柄上的力 恰好通过从动件的转动副中心,致使从动件不能转动, 机构的这种位置,称为死点位置。在曲柄摇杆机构或 曲柄滑块机构中,若以摇杆或滑块为主动件,则曲柄 与连杆共线的位置,就是死点位置。
注意:死点、自锁与机构自由度小于等于零的区别。 自由度小于等于零,表明机构中各构件间不可作相对 运动;死点是指不计摩擦时机构所处的特殊位置,可
第 1 步:选B点,以 I 位置为参考位置,DF1 为机架 第 2 步:用刚化反转法求出 B2、B3 的转位点 第 3 步:做中垂线,找C1 点 第 4 步:联接AB1C1D
教学基本要求
1.了解组成铰链四杆机构的各构件的名称,熟悉铰 链四杆机构的等基本概念。
2. 能根据四杆机构存在曲柄的条件,熟练判断铰链 四杆机构的基本类型。
φ=θ
D
3) 曲柄滑块机构 已知K,滑块行程H,偏
H C1 90°-θ C2
距e,设计此机构 。
A
90°-θ
e
E 设计:存云
①计算:
2θ
θ=180°(K-1)/(K+1);
o
②作C1 C2 =H
③作射线C1O 使∠C2C1O=90°-θ, 作射线C2O使∠C1C2 O=90°-θ。
④以O为圆心,C1O为半径作圆。
3. 掌握按行程速比系数和给定连杆位置设计四杆机 构的作图法 。
重点与难点分析
本章重点:平面四杆机构的基本特性及其设计;
本章难点:用作图法设计四杆机构 。
1.极位夹角:机构中从动摇杆处于两极限位置时, 原动曲柄的相应两位置之间所夹的锐角。
0 ,表示机构具有急回特性,且极位夹角愈
大,机构的急回运动就愈显著,所以,要判断一 个机构是否有急回特性,就要找出极位夹角。
一、按给定的行程速比系数K设计四杆机构
1) 曲柄摇杆机构
C2
已知:CD杆长,摆角φ及K, 设计此机构。步骤如下:
①计算θ=180°(K-1)/(K+1);
E
θ
φ 设计:潘存云
C1 90°-θ
②任取一点D,作等腰三角形
腰长为CD,夹角为φ;
A
θD
③作C2P⊥C1C2,作C1P使
∠C2C1P=90°-θ,交于P;
P
④作△P C1C2的外接圆,则A点必在此圆上。
⑤选定A,设曲柄为l1 ,连杆为l2 ,则:
A C1= l1+l2 ,A C2=l2- l1 => l1 =( A C1-A C2)/ 2
⑥以A为圆心,A C2为半径作弧交于E,得: l1 =EC1/ 2 l2 = A C1-EC1/ 2
2) 导杆机构
借助惯性或采用机构错位排列的方法,使机构能顺 利通过死点位置而正常运转;而自锁是指机构在考 虑摩擦的情况下,当驱动力的作用方向满足一定的 几何条件时,虽然机构的自由度大于零,但机构仍 无法运动的现象。
4. 平面四杆机构的作图法:用作图法设计四杆机构 是根据设计要求及各铰链之间相对运动的几何关系 通过作图来确定四个铰链的位置。
2)用作图法按两连架杆预定的对应位置 设计四杆机构 设计方法是:此类问题刚固反转法进行设计 (重点)
3)按预定的连杆位置设计四杆机构:
已知:连杆BC的三个预定位置B1C1、B2C2和B3C3 设计的实质是:求固定铰链中心的位置 设计方法是:此类问题可用求圆心法来解决,即作 铰链B各位置点连线B1B2 、B2B3的中垂线,两中 垂线的交点即为固定铰链中心A。同理,作铰链C 各位置点连线C1C2、 C2C3的中垂线,两中垂线的 交点即为固定铰链中心D。
例如,一个对心曲柄滑块机构,因其极位夹角 0
机构就没有急回特性;但一个偏置曲柄滑块机构, 因其极位夹角 0 ,机构就有急回特性;摆动导 杆机构的摆角与其极位夹角相等,它有急回特性, 但转动导杆机构就没有急回特性 。
2.压力角与传动角:在四杆机构中,当不计摩擦时, 主动件通过连杆作用在从动件上的力的作用线与其 受力点出的速度方向之间所夹的锐角,称为机构在 此位置的压力角,而把压力角的余角,即连杆与从 动摇杆所夹的锐角,称为传动角。
A’
D’
b)给定连杆上铰链BC的三组位置
C1 C2 C3
有唯一解。
B1
设计:潘存云
B2
B3 D
A
刚化反转法
以CD杆为机架时看到的四杆机构ABCD的位置相当 于把以AD为机架时观察到的ABCD的位置刚化,以D
轴为中心转过 1 2 得到的。
▪ 低副可逆性; ▪ 机构在某一瞬时,各构
件相对位置固定不变, 相当于一个刚体,其形 状不会随着参考坐标系 不同而改变。
⑤作偏距线e,交圆弧于A,即为所求。
⑥以A为圆心,A C1为半径作弧交于E,得: l1 =EC2/ 2 l2 = A C2-EC2/ 2
二、按预定连杆位置设计四杆机构
C1
a)给定连杆两组位置
C2
将铰链A、D分别 选在B1B2, C1C2连线的垂直平分线上任意 位置都能满足设计要求。
B1 B2
A
D
有无穷多组解。
它们常用来衡量机构的传动性能。传动角愈大, 即压力角愈小,机构的传动性能愈好,效率愈高。
多数机构运动中的传动角是变化的。为了使机构 传动质量良好,一般规定机构的最小传动角 min 40 。 为了检查机构的最小传动角,需要确定最小传动角的 位置。通过分析可知:曲柄摇杆机构的最小传动角出 现在曲柄与机架共线的两位置之一;曲柄滑块机构的 最小传动角出现在曲柄与导路垂直的位置;导杆机构 在任何位置最小传动角都等于90o。
根据不同的设计要求,作图法设计四杆机构可 分为三种类型。
1)按给定的行程速比系数K设计四杆机构 (重点)
已知:行程速比系数K,摇杆CD的长度lCD ,摇杆的 摆角,设计此四杆机构。
设计的实质是:确定曲柄的固定铰链中心A 的位置, 进而定出其余三杆长度。 设计方法是:先根据行程速比系数K 由公式 180 K 1 求出极位夹角,根据几何条件作出摇杆的两个极限K位1 置C1D和C2D;由C1、C2点各作与C1C2 连线夹角为 (90 ) 的直线相交于O点;以O点为圆心,OC1为半 径画圆,A 点即在此圆上,可由其它附加条件确定。
m
已知:机架长度d,K,设计此机构。 分析:
由于θ与导杆摆角φ相等,设计此 机构时,仅需要确定曲柄 a。
①计算θ=180°(K-1)/(K+1);
②任选D作∠mDn=φ=θ, 作角分线;
③ 取 A 点 , 使 得 AD=d, 则 : a=dsin(φ/2)。
n A
设计:潘存云
φ=θ d
D
Aθ
设计:潘存云