金属材料学--钢铁材料的合金化原参考课件

合集下载

金属材料 第一课时合金课件2022--2023学年高一上学期化学人教版(2019)必修第一册

金属材料 第一课时合金课件2022--2023学年高一上学期化学人教版(2019)必修第一册

【铝合金】
思考与交流
➢ 钢铁用于制作武器虽然坚固,但是太沉重
了,不利于搬运或携带,能否将钢铁材料 改进 换做更轻的铝呢?为什么?
铝合金
➢ 铝有一个致命的弱点:太软了,不够坚固
应用
硬:刀枪不入 轻:身轻如燕 耐腐蚀:百毒不侵
航空、航天、汽车、消费电子、机械制造等
【铝合金】
【资料卡片】
铝合金
纯铝的硬度和强度较小,不适合制造机器零件。 向铝中加人少量的合金元素,如 Cu、 Mg、 Si、 Mn、 Zn及稀土元素等,可制成铝合金,并成为目前用途广泛的合金之一。
有很强的抗腐蚀能力。 ➢ 用途:生活中常见的医疗器材、厨房用具
和餐具等,很多都是用不锈钢制造的;有些 地铁列车的车体材质也是不锈钢。
超级钢
【铁合金】
2017年8月24日,我国宣布已经成功完成某种性 能优异的超级钢的研制。
我国研制的这种超级钢具有优异的强度和延展 性的结合。这种超级钢中含Mn 10%、C 0.47%、 Al 2%、V 0.7%,这种合金配方低廉,强度很大。
【金属元素猜一猜】
猜一猜 有一种“后来者居上”的金属元素,它在地壳中的含量由大到小排名第三,同时 也是地壳中含量最多的金属元素,你知道它是哪一种金属元素吗?
【铝及其氧化物】
铝的小故事
人类发现铝很晚,炼铝技术成熟得更晚。如果倒退到18世纪 中旬,你家的房子可能不如你家的窗户值钱——因为它的价 格超过黄金。
决定
合金的性能
合金的用途
对组成元素
定量研究
定性研究
【铁合金】
启示2:合金的性能可以通过所添加的合金元素的种类、含量和生成合金的条件等 来加以调节。
启示3:科学研究需要以大量的实验为依据,通过实验研究,研制出具有不同性能 的合金材料,制成不同的产品,为生活增添便利。

金属材料(第2课时 常见的合金及应用)-高一化学课件(人教2019必修第一册)

金属材料(第2课时 常见的合金及应用)-高一化学课件(人教2019必修第一册)
A.a点时溶液中存在的金属阳离子仅有Cu2+和Fe2+
√B.b点时溶液中发生的反应为Fe+Cu2+===Cu+Fe2+
C.c点时加入的铁粉与Cu2+反应
√D.原溶液中Fe2(SO4)3和CuSO4的物质的量之比为1∶2
11.硫酸铁铵[NH4Fe(SO4)2·xH2O]是一种重要铁盐。为充分利用资源,
6.将m g镁铝合金投入500 mL 2 mol·L-1的盐酸中,固体完全溶解, 收集到气体5.6 L(标准状况下)。向反应所得溶液中加入4 mol·L-1的氢 氧化钠溶液,沉淀质量的最大值为13.60 g,则m的值为( A ) A.5.10 B.8.50 C.9.35 D.11.48
7.将一定质量的Al、Mg混合物加入足量的盐酸中,充分反应后得 到标准状况下的氢气8.96 L;如果将等质量的该混合物加入足量的 NaOH溶液中,充分反应后得到标准状况下的氢气6.72 L。 (1)混合物与NaOH溶液反应的离子方程式为 ___2_A_l_+__2_O__H__-_+__2_H__2_O_=__=_=__2__A_l_O_2_-__+__3_H_2_↑_________。 (2)求混合物中各成分的质量。
A.①② B.①③ C.①④ D.②④
(3)镁、铝合金与盐酸完全反应后,加入过量的氢氧化钠溶液,最后的结 果是 C 。 A.没有沉淀物生成 B.只有氢氧化铝沉淀生成 C.只有氢氧化镁沉淀生成 D.有氢氧化铝和氢氧化镁沉淀生成
10.现代建筑的门窗架常用电解加工成的古铜色硬铝制造。取硬铝样品 进行如下实验(每一步试剂均过量),由此可以推知硬铝的组成可能为
第三章 第二节 金属材料
第2课时 常见的合金及应用 Nhomakorabea一、铁合金
一 铁合金 1.合金:合金属于混合物,合金的机械性能一般 优于 各成分金属;合金的 硬度一般 高于 它的各成分金属。 2.铁合金 生铁和钢是含碳量不同的两种铁碳合金。 (1)生铁:含碳量为2%~4.3% 的铁碳合金称为生铁。生铁硬度 大 、抗压, 性脆、可以铸造成型,是制造机座、管道的重要材料。

高二化学选修1_《合金》参考课件3

高二化学选修1_《合金》参考课件3

钛合金:Ti,V,Fe,Al等,飞机起落架
耐热合金:喷气式飞机的发动机叶片 记忆合金: 泡沫合金:
“阿波罗”11号
多孔金属材料兼 有功能材料和结 构材料的双重作 用,是一种性能 优异的多用途工 程材料。广泛应 用于航空航天、 泡沫金属 汽车、建筑、化 工、冶金、医药、 电化学以及军事 等。具体应用在:各种气液过滤器、吸热器、消声器、 减震缓冲器、催化剂及其载体、流体分布器、热交换 器、灭火器、阻燃器、多孔金属电极、电磁屏蔽器件、 电磁兼容器件等。
思考:为什么在纯金属加入其他元素形成合金 以后,它的性能与纯金属有很大的差异呢?
纯金属和合金的结构不同
学与问
固体的熔点与原子排列是否规整有关。你 能根据图3—1简单结实为什么多数合金的 熔点一般比各成分金属的低吗?
在纯金属内,所有原子大小相同,排列十分规整;而
合金内原子的大小不一,排列没有纯金属那么整齐,
的常见操作或者常见现象,其中不属于氧化还
原反应的是:(D)
A.烧菜用过的铁锅,经放置常出现红棕色斑迹 B.用煤气灶燃烧沼气(主要成分为甲烷:CH4) 为炒菜提供热量 C.牛奶久置变质腐败 D.用盐卤(主要成分是MgCl2)点制豆腐
5.向一铝制易拉罐中充满 CO2 后,再往罐中注入足量 的质量分数为 20% 的 NaOH 溶液,立即严封罐口,不 一会儿就发现易拉罐变瘪,再过一会易拉罐又鼓胀起
齐是钠和汞组成的合金,锌汞齐是锌和汞组成的合金。
除铁以外,几乎所有的金属都能跟汞形成汞齐。
考考你
1、金属晶体的形成是因为晶体中存在( C ) A、金属离子间的相互作用
B、金属原子间的相互作用
C、金属离子与自由电子间的相互作用 D、金属原子与自由电子间的相互作用

第1章钢合金化概论钢的强化和韧化课件

第1章钢合金化概论钢的强化和韧化课件
Si 和Fe的结合力 >Fe和C的结合力 ,↑ac
Si能溶于ε ,不溶于Fe3C ,Si要从ε 中出去
↓ε-FeXC的形核、长大
↓ε→ Fe3C 效果: 含2% Si能使M分解温度从260℃提高到350℃以上
(2)对残余A转变的影响
(3)回火时K的形成
各元素明显开始扩散的温度为:
Me
Si
Mn
Cr
(2) Me对A晶粒长大倾向的影响
➢合金元素形成的碳化物在高温下越稳定,
越不易溶入A中,能阻碍晶界长大,显著细 化晶粒。 按照对晶粒长大作用的影响,合 金元素可分为:
①Ti 、V 、Zr 、Nb等强烈阻止A晶粒长大,
Al在钢中易形成高熔点AlN 也能强烈阻止晶粒长大;
、Al2O3细质点,
AlN含量对A晶粒度的影响
第二 相
K ↓韧性。 K 小、匀、圆、适量 → 工艺努力方向。
杂质
杂质往往是形变断裂的孔洞形成核心, → 提高钢的冶金质量是必须的。
3、改善钢韧性的途径
1.改善延性断裂的途径 2.改善解理断裂抗力的途 3.改径善沿晶断裂抗力的途径
4、提高钢韧度的合金化途径
1)细化晶粒、组织—— 如Ti 、V 、Mo; 2) ↑回火稳定性 —— 如强K形成元素 ; 3)改善基体韧度 —— Ni ; 4) 细化K —— 适量Cr 、V ,使K小而匀 ; 5) ↓回脆 —— W 、Mo ; 6)在保证强度水平下,适当↓含C量.
效果
有效提高强度,但稍降低塑韧性。
钢强度表达式
位错被质点障碍物所挡住
4、位错强化
表达式
机理
位错密度ρt →tt位错交割、缠结, → 有效地阻止了位错运动 → t钢强度。
效果

金属材料学(全套课件)

金属材料学(全套课件)

物理性能
化学性能
热处理可以改变金属材料的化学性能 ,如耐腐蚀性、抗氧化性等。例如, 不锈钢经过热处理后,其耐腐蚀性会 得到显著提高。
热处理对金属材料的物理性能也有显 著影响,如导热性、导电性、磁性等 。
04
金属材料的力学性能
金属的拉伸性能
拉伸试验
通过拉伸试验测定金属材料的强 度、塑性和韧性等力学性能指标
02
金属材料的晶体结构
金属的晶体结构类型
01
体心立方晶格(BCC)
体心立方晶格的晶胞是一个立方体,在其中心有一个原子,八个顶点上
各有一个原子。具有此晶格的金属有铬、钨、钼、铁、铌等。
02 03
面心立方晶格(FCC)
面心立方晶格的晶胞是一个立方体,在其八个顶点上各有一个原子,六 个面的中心各有一个原子。具有此晶格的金属有铝、铜、镍、铅、金等 。
铝合金
密度小、比强度高、耐腐蚀性好,用于航空 航天、汽车、电子等领域。
钛合金
比强度高、耐腐蚀性好、高温性能优异,用 于航空航天、医疗等领域。
金属材料的发展趋势与挑战
高性能化
轻量化
发展更高强度、更高韧性、更耐腐蚀的金 属材料,以满足高端制造的需求。
通过合金化、复合化等手段降低金属材料 的密度,以适应节能减排的要求。
包括模具设计、熔炼、浇注、冷却、落砂、清理 等步骤,影响铸件的质量和性能。
铸造合金
常用的铸造合金有铸铁、铸钢、铝合金等,具有 不同的铸造性能和机械性能。
金属的压力加工与成型工艺
压力加工
01
通过外力使金属坯料产生塑性变形,从而获得所需形状、尺寸
和性能的加工方法。
成型工艺
02
包括锻造、轧制、挤压、拉拔等,可生产各种形状和规格的金

2019年金属材料学-金属材料合金化基础(第一章)教案.doc

2019年金属材料学-金属材料合金化基础(第一章)教案.doc

表1-1 碳素结构钢的牌号、成分和力学性能(摘自GB700-88)注:1.带“*”号处Q235-A、B级沸腾钢锰的质量分数上限为0.60%。

2.本类钢通常不进行热处理而直接使用,因此只考虑其力学性能和有害杂质含量,不考虑碳含量。

图1-1 扩大γ相区并与γ-Fe无限互溶的Fe-Me相图(a)及Fe-Ni相图(2)α相稳定化元素合金元素使A4降低,A3升高,在较宽的成分范围内,促使铁素体形成,即缩小了γ相区。

根据铁与合金元素构成的相图的不同,又可分为如下两种情况:图1-2 扩大γ相区并与γ-Fe有限互溶的Fe-Me相图(a)及Fe-C相图②缩小γ相区(但不能使γ相区封闭) 合金元素使A3升高,降,使相区缩小但不能使其完全封闭。

如图1-4。

这类合金元素有:综上所述,可将合金元素分为两大类:将扩大γ相区的元素称为奥相区的元素称为铁素体的形成元素。

显上述合金元素与铁的相互作用规律,通过控制钢中合金元素的种类和含量,使钢在室温下获得单相组织。

如欲发展奥氏体钢时,需要往钢中加等奥氏体形成元素;欲发展铁素体钢时,需要往钢中加等铁素体形成元素。

图1-4 缩小γ相区的Fe-Me相图(a)及Fe-Nb相图(b)最后应该指出,同时向钢中加入两类合金元素时,其作用往往相互Cr铁素体形成元素,在Cr18%与合金元素的摩尔原子浓度对1000℃时碳在奥氏体中的相对活度系数C f的影响合金元素对C在奥氏体中的扩散激活能和扩散系数的影响如图。

由图可知,碳化物形成元素如Cr、Mo和W等升高扩散激活能,这是由于碳化物形成元素降低了C的活度,图1-6 合金元素对C在奥氏体中的扩散激活能和扩散系数的影响图1-7 合金元素对Fe-Fe3C相图中奥氏体区的影响四、合金元素对钢的热处理的影响合金元素对钢的热处理的影响主要表现在对加热、冷却和回火过程中相变的影响。

图1-8 合金元素对共析温度的影响图1-9 合金元素对共析含碳量的影响奥氏体形成后,还残留有一些稳定性各不相同的碳化物。

金属材料学不锈钢课件.ppt

金属材料学不锈钢课件.ppt


具,所以采用淬火低温回火。T淬在1000

~1050℃,为减少变形,可用硝盐分级冷

却。组织为马氏体+碳化物+少量AR
金属材料学不锈钢课件
5.5 奥氏体不锈钢
奥氏体不锈钢是应用最广泛的耐酸钢,约占不锈 钢总产量的2/3。奥氏体不锈钢优点如下:
① 具有很高的耐腐蚀性; ② 塑性好,容易加工变形成各种形状钢材; ③ 加热时没有同素异构转变,焊接性好; ④ 韧度和低温韧度好,一般情况下没有冷脆 倾向,有一定的热强性; ⑤ 不具有磁性; ⑥ 价格较贵,切削加工较困难,导热性差。
金属材料学不锈钢课件
图 不锈钢组织状态图(焊后冷却)
金属材料学不锈钢课件
⑴ M不锈钢: 1Crl3~4Crl3等Crl3型, Crl7Ni2、9Cr18等

⑵ F不锈钢:如0Cr17Ti ,1Cr25Ti,

00Cr27Mo等
钢 分 类
⑶ A不锈钢:具有单相A组织,如 0Cr18Ni9、1Crl8Mn8Ni5N等
金属材料学不锈钢课件
5.5.1 奥氏体不锈钢的成分特点
奥氏体不锈钢的主要成分是Cr和Ni,18Cr和 8Ni
的配合是世界各国奥氏体不锈钢的典型成分。
Cr+Ni= 18+8=26
耐蚀电位接近n/8定 律中n=2的电位值
耐蚀性达到 较高的水平. Cr、Ni再↑, 更为优良
具有良好钝化性能 单相奥氏体组织

至700~800℃保温2~6小时后空冷,使
理 马氏体转变为回火索氏体。
另外也可以采用完全退火。
金属材料学不锈钢课件

1Cr13、2Cr13常用于结构件→调质。

2022版新教材高中化学第三章铁金属材料第二节课时1合金课件新人教版必修第一册ppt

2022版新教材高中化学第三章铁金属材料第二节课时1合金课件新人教版必修第一册ppt

A.铁
B.碳
C.铜
D.铝
2.铁和不锈钢都是生活中常见的材料,下列说法中不正确的是 A.铁和不锈钢都能与盐酸反应 B.铁是纯净物,不锈钢是混合物 C.铁和不锈钢中都只含有金属元素 D.不锈钢比铁更耐腐蚀
(C )
3.(2021福建泉州高一期末)用铝箔包装0.1 mol金属钠,用针扎出一些小孔,放
入水中,完全反应后,用排水集气法收集产生的气体,则收集到的气体(标准状
2.(2021福建漳州高一期末)将10 g铁碳合金放入O2中高温灼烧,反应后的气体 通入过量石灰水中得沉淀1.4 g。则此铁碳合金是 ( B ) A.生铁 B.高碳钢 C.中碳钢 D.低碳钢
解析 根据C~CO2~CaCO3可知碳原子的物质的量等于碳酸钙的物质的
量。1.4 g碳酸钙的物质的量为 1.4 g =0.014 mol,碳原子的质量为
应,若同温同压下放出相同体积的气体,则两份铝粉的质量之比为 ( A )
A.1∶1
B.1∶6
C.3∶2
D.2∶3
2.等质量的两份铝分别与足量稀硫酸和足量NaOH溶液反应,若消耗的两溶
液的体积相等,则两溶液的物质的量浓度之比为 ( A )
A.3∶2
B.2∶3
C.1∶1
D.1∶2
解析 两份铝的物质的量相等,设n(Al)=1 mol。
互动探究·关键能力
探究点一 铝与盐酸或氢氧化钠溶液反应
情境探究 铝是一种金属元素,质地坚韧而轻,有延展性,容易导电。纯铝可做超高电压 的电缆。做日用器皿的铝通常称“钢精”“钢种”。 1919年,用铝合金造出 了第一架飞机,从此以后,铝的命运就牢固地与飞机制造业联系在一起了。铝 被誉为“带翼的金属”。在现在的生活中,我们到处都可以看到铝的“影
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具有在一定程度内变化的化学成分、具有不同 的晶体结构因而不同性能和性质、用相界面与 其他相分隔的部分物质被称为相
成分分析,元素与含量 相分析,晶体结构(衍射晶面间距)与量(衍
射强度)和尺寸 组织分析,形貌(成分与相相同时有可能形貌
不同,如珠光体、索氏体、托氏体)
5
钢中基础相
α-铁,室温稳定,体心立方点阵,点阵产生 0.286645±1nm,由此计算出的最小原子间 距为0.248240nm,配位数为12时的原子直 径为0.25715 nm,理论摩尔体积为 0.709165×10-5m3/mol,理论密度为 7.875Mg/m3,通常采用的实际测定密度 7.870Mg/m3,室温线胀系数11.8×10-6/K。
900
800
700
600
19Cr 15Cr
12Cr 5Cr 0Cr
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
碳含量,%
20
封闭γ相区相图的特点
最为简单的相图,右边往往是一匀晶相图 (开启γ相区相图由于上面开口连接液相, 故一般应有一包晶相变)
α-Fe与δ-Fe相区合并
钴的特殊性,它开启γ相区,但却使Α3温度略微升 高,这使钴产生了一些反常的行为(如降低钢的 淬透性)。
13
扩大γ相区相图
δ
A4

度 A3
γ
A1 α
Fe
14
扩大γ相区相图的特点
合金元素在γ-Fe中有限固溶,当合金元素含 量超过溶解度限时,则将出现石墨、ε-铜等 单质相或Fe3C、Fe4N等化合物相。
12
碳含量,%
开启γ相区相图的特点
合金元素在γ-Fe中可以无限固溶,因而使γ相区存 在的温度范围显著变宽,使δ和α相区明显缩小, 当固溶度较大时甚至在室温温度也仍可使钢保持 为单相奥氏体。奥氏体形成元素如镍,本身就具 有面心立方点阵;而锰和钴的多型性固态相变晶 型中,在一定温度范围内存在着面心立方点阵。
合金化后称为奥氏体
7
合金元素在钢中的存在方式
固溶于铁基体,使其热力学行为和相变行为发生 明显改变,产生固溶强化
形成第二相,各种类型的第二相将产生显著不同 的作用
仅固溶的元素:周期表铁右边如Co、Ni、Si;但 金属性较强元素会形成单质第二相如Cu;非金属 性较强元素与金属形成化合物如C、N、O、S、P
-缩小γ相区:出现了金属间化合物,破坏了 γ圈的完整性,使得α-Fe相区与δ-Fe相区被 分割开,主要有硼、锆、铌、钽、硫、铈
16
封闭γ相区相图
A4

度γ
α
A3
Fe
17
封闭与开启γ相区相图的对称性
A4
温 度
A3
α
ΔH<0
γ
A4 ΔH>0
温 度
γ
α
A3
18
钼对Fe-Fe3C相图奥氏体区的影响
1500
大多数合金元素即可固溶也可形成第二相
8
钢第二相种类
碳化物 氮化物 硼化物 金属间化合物 非金属化合物(夹杂物) 单质如铜、石墨
9
固溶合金元素对相图的影响1
扩大γ相区的奥氏体形成元素 (使Α3温度降 低,Α4温度升高 ):
-开启γ相区:主要有锰、钴和镍三种元素 -扩大γ相区:主要有碳、氮、铜、金、锌等
元素
10
开启γ相区相图
δ
A4
温 度
A3
γ
α
Fe
11
锰对Fe-Fe3C相图奥氏体区的影响
1500 1400 1300
温 1200 度, ℃ 1100
1000 900 800 700 600
0.35Mn 2.5Mn
4Mn
9Mn
6.5Mn
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
3
Fe-C合金
钢铁材料实质上是Fe-C合金 Fe-C合金发现的偶然性 C的间隙固溶强化的经济有效性 C形成各种碳化物(最典型的是Fe3C) C的加入使铁的固态相变复杂多变,由此导
致钢的性能变化范围大幅度扩大 热处理技术的发展
4
成分与相
合金元素加入后,使钢的基体化学成分发生变 化,同时还会产生新相
金属材料学
1
四、钢铁材料的合金化原理 -合金元素在钢中的存在方式
2
合金化的作用
纯金属中只能采用位错强化和晶粒细化强 化,且强化效果受到一定限制
金属结构材料广泛采用合金化,合金化后 增加了固溶强化和第二相强化方式,同时 使强化技术与工艺丰富多彩
传统认为合金化主要作用是提高钢材淬透 性,但实际合金化的作用已远不止这一作 用
21
缩小γ相区相图
A4
δ
温 度γ
A3 α Fe
22
缩小γ相区相图的特点
出现金属间化合物限制合金元素的固溶 高于Α3温度出现包析相变:γ+金属间化合物
→α,该温度下合金元素在γ-Fe中的固溶度 小于在α-Fe中的固溶度 γ相区的右端点一般连接一共析相变: δ→γ+金属间化合物,该温度下合金元素在 γ-Fe中的固溶度小于在δ-Fe中的固溶度
合金化后称为铁素体
6
钢中基础相
γ-铁 ,912—1394℃ 稳定,面心立方点阵, 912 ℃点阵 常数0.36468nm,计算最小原子间距(即配位数12时 原子直径)0.25787nm,理论摩尔体积 0.730163×10-5m3/mol,理论密度7.649Mg/m3,实 测密度为7.694Mg/m3。α→γ相变时体积变化约0.66%。室温下γ铁点阵常数0.35782nm,计算最小 原子间距(即配位数12时原子直径)0.25302nm,理 论摩尔体积0.689728×10-5m3/mol,理论密度为 8.097Mg/m3。
1400
1300
温 1200
度, ℃ 1100
7Mo
4Mo
1000
2Mo
900
800
0Mo
700
600
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
碳含量,%
19
铬对Fe-Fe3C相图奥氏体区的影响
1500
1400
1300
温 1200 度, ℃ 1100
1000
低于Α3温度的A1温度出现共析相变:γ→α+ 第二相,该温度下合金元素在γ-Fe中的固溶 度大于在α-Fe中的固溶度
γ相区的右端点一般连接一共晶相变
15
固溶合金元素对相图的影响2
缩小γ相区的铁素体形成元素 (使Α3温度升 高、Α4温度降低 ):
-封闭γ相区:形成γ相圈,主要有钒、铬、 钛、钼、钨、铝、硅、磷、锡、锑、砷等 , 其中钒和铬在α-Fe中无限固溶
相关文档
最新文档