六年级下册《鸽巢问题》教案知识分享

合集下载

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

5.1鸽巢问题(教案)人教版六年级下册数学

5.1鸽巢问题(教案)人教版六年级下册数学

5.1 鸽巢问题(教案)人教版六年级下册数学我的教案:5.1 鸽巢问题一、教学内容今天我们要学习的章节是人教版六年级下册数学的第五章第一节——鸽巢问题。

这部分内容主要介绍了鸽巢问题的基本概念、原理和解决方法。

通过本节课的学习,学生将能够理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法,并能应用于实际问题中。

二、教学目标1. 理解鸽巢问题的定义和原理;2. 掌握解决鸽巢问题的方法;3. 能够将鸽巢问题应用于实际问题中,提高解决问题的能力。

三、教学难点与重点1. 鸽巢问题的理解;2. 解决鸽巢问题的方法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:笔记本、文具。

五、教学过程1. 实践情景引入:讲述一个关于鸽巢问题的实际例子,引发学生对鸽巢问题的兴趣。

2. 理论知识讲解:通过PPT展示,讲解鸽巢问题的定义、原理和解决方法。

3. 例题讲解:给出一个典型的鸽巢问题,引导学生思考并解决问题。

4. 随堂练习:让学生独立解决一些鸽巢问题,巩固所学知识。

5. 板书设计:将鸽巢问题的解决方法进行板书,方便学生理解和记忆。

6. 作业设计:布置一些有关鸽巢问题的练习题,让学生课后巩固。

六、板书设计鸽巢问题解决方法:1. 确定鸽巢数量和鸽子数量;2. 利用排除法或枚举法,找到符合条件的解答。

七、作业设计1. 题目:小明有5个鸽巢,已知每个鸽巢至少要放一只鸽子,现有6只鸽子,请问如何放置这些鸽子?答案:可以将6只鸽子分别放入5个鸽巢中,保证每个鸽巢至少有一只鸽子。

2. 题目:有一个长10cm,宽8cm的长方形盒子,每只鸽子占一个格子,请问最多能放多少只鸽子?答案:长方形盒子可以分成108=80个格子,每只鸽子占一个格子,所以最多能放80只鸽子。

八、课后反思及拓展延伸通过本节课的学习,学生对鸽巢问题有了基本的认识和解决方法。

在课后,学生可以通过查阅资料,了解更多的鸽巢问题及其解决方法,提高自己的解决问题的能力。

六年级数学下册教案-5鸽巢问题-人教版

六年级数学下册教案-5鸽巢问题-人教版

六年级数学下册教案5 鸽巢问题人教版今天我要为大家分享的是六年级数学下册的教案,第五单元的内容——鸽巢问题。

人教版教材在这一单元中引导学生探究鸽巢问题的规律,提高他们的逻辑思维能力。

一、教学内容我们使用的教材是六年级数学下册,人教版。

本节课的主要内容是第五单元的鸽巢问题。

在这一部分,学生们将学习到鸽巢问题的基本概念,掌握求解鸽巢问题的方法,并能够运用这一方法解决实际问题。

二、教学目标1. 理解鸽巢问题的含义,掌握求解鸽巢问题的基本方法。

2. 能够运用鸽巢问题的方法解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点本节课的重点是让学生理解鸽巢问题的含义,掌握求解鸽巢问题的基本方法。

难点是让学生能够运用这一方法解决实际问题。

四、教具与学具准备为了帮助学生更好地理解和掌握鸽巢问题,我准备了一些教具和学具,包括黑板、粉笔、多媒体教具以及一些实际的物品,如鸽子模型等。

五、教学过程1. 实践情景引入:我会先给学生展示一个实际的情景,比如有10只鸽子要放在5个鸽巢里,让学生观察和思考。

2. 讲解鸽巢问题的定义和基本方法:然后我会向学生解释鸽巢问题的定义,并讲解求解鸽巢问题的基本方法。

4. 随堂练习:在讲解完例题后,我会给学生一些随堂练习题,让学生自己动手解决实际问题。

5. 学生展示和讨论:在学生完成随堂练习后,我会让学生展示他们的解题过程和答案,并进行讨论。

六、板书设计在教学过程中,我会利用黑板和粉笔进行板书,将鸽巢问题的定义、基本方法和求解步骤等内容展示给学生。

七、作业设计作业题目:1. 有8只鸽子要放在3个鸽巢里,每个鸽巢至少要放几只鸽子?2. 有12只鸽子要放在4个鸽巢里,每个鸽巢至少要放几只鸽子?答案:1. 每个鸽巢至少要放3只鸽子。

2. 每个鸽巢至少要放3只鸽子。

八、课后反思及拓展延伸通过本节课的学习,学生们对鸽巢问题有了更深入的了解和掌握。

在教学过程中,我发现学生们对鸽巢问题的求解方法掌握得比较好,但在解决实际问题时,有些学生还缺乏一定的逻辑思维能力。

六年级数学下册教案-5.鸽巢问题-人教版

六年级数学下册教案-5.鸽巢问题-人教版

六年级数学下册教案:鸽巢问题(人教版)一、教学目标1. 知识与技能:让学生掌握鸽巢原理,理解其在实际生活中的应用。

2. 过程与方法:通过实际操作,培养学生运用鸽巢原理解决问题的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养其逻辑思维能力。

二、教学内容1. 鸽巢原理的定义:如果每个鸽巢里最多只能放一只鸽子,那么如果有更多的鸽子,就必然有至少一只鸽子没有自己的鸽巢。

2. 鸽巢原理的应用:如何将物体分配到不同的组中,确保每组至少有一个物体。

三、教学过程1. 导入通过一个实际例子引入鸽巢原理:如果一家公司有10个部门,但是有11个新员工需要分配,那么至少有一个部门会有两个新员工。

2. 探索让学生分组,每组有10个鸽巢和11个鸽子,让学生尝试将鸽子放入鸽巢,观察结果。

3. 讲解讲解鸽巢原理的定义,并通过学生的实际操作,让学生理解鸽巢原理。

4. 应用给出几个实际问题,让学生运用鸽巢原理解决。

四、教学评价通过学生在课堂上的参与度,以及他们在解决问题时的表现,来评价他们对鸽巢原理的理解和应用。

五、教学反思教师应反思自己在教学过程中的教学方法,以及如何更好地激发学生的学习兴趣,提高他们的逻辑思维能力。

六、课后作业1. 完成《数学》课本第32页的练习题1、2、3。

2. 思考:在生活中,还有哪些问题可以用鸽巢原理解决?七、教学资源1. 《数学》课本。

2. 鸽巢和鸽子的教具。

八、教学建议1. 教师应注重培养学生的实际操作能力,让学生在实践中理解鸽巢原理。

2. 教师应鼓励学生提出问题,培养他们的批判性思维。

在以上的教案中,需要重点关注的是“教学过程”部分,特别是“探索”环节。

这个环节是学生通过实际操作来理解鸽巢原理的关键步骤,对于学生能否真正掌握和应用鸽巢原理至关重要。

三、教学过程(详细补充)2. 探索在探索环节,教师应设计一系列的实践活动,让学生在动手操作中直观地感受鸽巢原理。

以下是具体的活动步骤和教师指导要点:步骤一:准备材料- 教师为每个小组准备一套包含10个鸽巢和11个鸽子的教具。

六年级数学鸽巢问题教案

六年级数学鸽巢问题教案

六年级数学鸽巢问题教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!六年级数学鸽巢问题教案六年级数学鸽巢问题教案(通用10篇)作为一无名无私奉献的教育工作者,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

《鸽巢问题(第1课时)》(教案)六年级下册数学人教版

《鸽巢问题(第1课时)》(教案)六年级下册数学人教版

《鸽巢问题(第1课时)》(教案)六年级下册数学人教版《鸽巢问题(第1课时)》教案一、教学内容1. 理解鸽巢问题的概念,掌握其基本性质。

2. 学会运用鸽巢原理解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学目标1. 了解并掌握鸽巢问题的基本概念和性质。

2. 能够运用鸽巢原理解决实际问题。

3. 提高自己的逻辑思维能力和解决问题的能力。

三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。

难点在于如何引导学生理解并运用鸽巢原理。

四、教具与学具准备为了让大家更好地理解鸽巢问题,我准备了一些教具和学具,包括黑板、粉笔、PPT、鸽巢模型等。

五、教学过程1. 实践情景引入:请大家想象一下,如果我们有一个鸽巢,里面有若干个鸽子,我们要如何确定鸽子的数量呢?2. 讲解鸽巢问题的概念:通过引入的实践情景,我会向大家讲解鸽巢问题的基本概念和性质。

3. 例题讲解:我会给大家讲解一些典型的鸽巢问题例题,让大家通过例题理解并掌握鸽巢原理。

4. 随堂练习:在讲解完例题后,我会给大家一些随堂练习题,让大家运用所学知识解决实际问题。

5. 鸽巢原理的应用:通过一些实际问题,让大家学会运用鸽巢原理解决问题。

六、板书设计板书设计如下:鸽巢问题1. 概念与性质2. 鸽巢原理3. 应用与实例七、作业设计作业题目:1. 请用一句话概括鸽巢问题的定义。

2. 请用一句话概括鸽巢原理。

3. 请举例说明如何运用鸽巢原理解决实际问题。

答案:1. 鸽巢问题是指在一定条件下,确定鸽子数量的问题。

3. 举例:假设一个班级有30个学生,如果有31个学生,那么至少有两个学生坐在同一个座位上。

八、课后反思及拓展延伸通过本节课的学习,我希望大家能够理解并掌握鸽巢问题的基本概念和性质,以及如何运用鸽巢原理解决实际问题。

在课后,大家可以尝试解决一些更复杂的问题,也可以和同学互相交流心得和经验,共同提高。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容审定人教版六年级下册数学《 数学广角《鸽巢问题》,也就是原实验教材 抽屉原理》。

设计理念鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。

首先,用具体的操作,将抽象变为直观。

“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。

怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。

通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。

其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。

学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。

所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

再者,适当把握教学要求。

我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。

教材分析鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。

在这类问题中,只需要确定某个物体《 或某个人)的存在就可以了,并不需要指出是哪个物体 或哪个人),也不需要说明通过什么方式把这个存在的物体 或人)找出来。

这类问题依据的理论,我们称之为“鸽巢问题”。

通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。

它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。

呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。

《鸽巢问题》教案——六年级数学下学期

《鸽巢问题》教案——六年级数学下学期

《鸽巢问题》教案——六年级数学下学期一. 教材分析《鸽巢问题》是六年级数学下学期的一堂课,主要让学生了解和掌握鸽巢原理。

教材通过生活中的实例,引导学生思考和探究,从而理解并掌握鸽巢原理的应用。

本节课的内容对于学生来说较为抽象,需要通过实例和实际操作来理解和掌握。

二. 学情分析六年级的学生已经具备了一定的数学基础,对于一些基本的数学概念和运算规则有所了解。

但是,对于鸽巢问题这样的抽象问题,还需要通过具体的实例和操作来理解和掌握。

学生对于生活中的实际问题比较感兴趣,可以通过实例来吸引他们的注意力,激发他们的学习兴趣。

三. 教学目标1.让学生了解并理解鸽巢问题的概念和原理。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生合作交流的能力,提高他们的逻辑思维能力。

四. 教学重难点1.重点:理解并掌握鸽巢问题的原理和应用。

2.难点:如何将生活中的实际问题转化为数学问题,并运用鸽巢原理进行解决。

五. 教学方法1.实例教学:通过生活中的实例,引导学生理解和掌握鸽巢原理。

2.小组合作:让学生在小组内进行讨论和交流,共同解决问题。

3.问题驱动:教师提出问题,引导学生进行思考和探究。

六. 教学准备1.准备相关的实例和问题,用于引导学生思考和探究。

2.准备鸽巢问题的相关资料,用于学生自主学习和拓展。

3.准备黑板和粉笔,用于板书和讲解。

七. 教学过程1.导入(5分钟)教师通过一个生活中的实例,如猜拳游戏,引出鸽巢问题。

让学生思考和讨论,如何在一定条件下,确定胜负。

引导学生认识到问题的复杂性,从而引入鸽巢原理。

2.呈现(10分钟)教师通过PPT或黑板,呈现鸽巢问题的定义和原理。

让学生理解和掌握鸽巢问题的基本概念和运用方法。

3.操练(10分钟)教师提出一些实际问题,让学生运用鸽巢原理进行解决。

学生在小组内进行讨论和交流,共同解决问题。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)教师通过一些练习题,让学生巩固所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“鸽巢问题”教案
教学内容:教材第68-70页例1、例2,及“做一做”。

学习目标:
1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生学会用此原理解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感态度与价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

学习重点:引导学生把具体问题转化成“鸽巢问题”。

学习难点:找出“鸽巢问题”解决的窍门进行反复推理。

教具准备:多媒体课件。

学习过程:
一、创设情境,导入新知
老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。

其实这个游戏中蕴藏着一个非常有趣的数学原理,这节课我们就一起来研究这类问题。

-----出示课题《鸽巢问题》“鸽巢原理”又称“抽屉原理”,最先是由19世纪的德
国数学家狄利克雷提出来的,所以又称“狄利克雷原理”,这一原理在解决实际问题中有着广泛的应用。

“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

下面我们就来研究这一原理。

二、合作交流,探究新知
1、教学例1(课件出示例题1情境图)
思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。

为什么呢?
问题:“总有”和“至少”是什么意思?
学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。

(1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。

(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。

(3)探究证明。

个人调整意见
方法一:用“分解法”证明。

把4分解成3个数。

由图
可知,把4分解成3个数,有4中情况,每种分法中最多的数最小是2,也就是说每一种情况分得的3个数中,至少有1个数大于或等于2的数。

方法二:用“假设法”证明。

4÷3=1(支)......1(支),剩下1支,放进其中1个笔筒中,使其中1个笔筒都变成2支,因此把4支笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少放进2支笔。

通过以上几种方法证明都可以发现:把4只铅笔放进3 个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

(4)认识“鸽巢问题”
像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。

在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

用“抽屉问题”的语言描述就是把4个物体放进3个抽屉,总有一个抽屉至少有2个物体。

(5)归纳总结:
放的铅笔数比笔筒的数量多1,就总有1个笔筒里至少放进2支铅笔。

抽屉原理一:只要放的物体比抽屉的数量多1,总有一个抽屉里至少放入2个物体。

同学们现在可以理解为什么“抢椅子”游戏中总有一把椅子上至少有2人了吧?
考一考:5个人坐4把椅子,总有一把椅子上至少坐2人。

为什么?
5÷4=1(人)……1(人)
1+1=2(人)
2、教学例2(课件出示例题2情境图)
思考问题:
(一)把7本书放进3个抽屉,不管怎么放,有
1个抽屉里至少有3本书。

为什么呢?
(二)如果有8本书会怎样呢?10本书呢?
学生通过“探究证明→得出结论”的学习过程来解决问题(一)。

(1)探究证明。

方法一:用数的分解法证明。

把7分解成3个数的和。

把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。

方法二:用假设法证明。

把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。

如果把剩下的这1本书放进
任意1个抽屉中,那么这个抽屉里就有3本书。

(2)得出结论。

通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。

(1)用假设法分析。

8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

(2)归纳总结:
抽屉原理二:如果物体数除以抽屉数有余数,用所得的商加1,就会发现:“总有一个抽屉里至少有商加1个物体”。

三、巩固新知,拓展应用
1、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。

为什么?
2、11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。

为什么?
3、完成教材第71页练习十三的1-2题。

(学生独立思考解答问题,集体交流、纠正。


四、课堂总结
通过今天的学习你有什么收获?
五、作业布置
课本第71页练习十三,第2题、第3题。

板书设计:
鸽巢问题
方法一:用“分解法”证明。

(把4分解成3个数)方法二:用“假设法”证明。

4÷3=1(支)......1(支)
1+1=2(支)
教学反思:
我的印象里《抽屉原理》是非常难懂的。

为了上好这一内容,我搜集学习了很多资料,抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。

“抢椅子”的游戏为后面用假设法证明埋下了伏笔。

用笔和笔筒进行研究,学生操作起来方便,演示起来直观。

再有就是受前面“抢椅子”游戏的影响,大部分学生用假设法验证;也有部分学生尝试用分解法一种情况一种情况的分。

由分解法和假设法,引导学生理解“总有一个”和“至少”的含义。

研究稍复杂问题时,对学生提出新的要求:不用分解法,想一种更简便的方法来验证。

引导学生结合“抢椅子”的游戏,用假设法来验证。

假设法的实质是用极端法做最坏的打算,也就是考虑最不利的情况。

在理解了假设法验证后,后面的推理和总结规律也就相对来说容易了些。

练习设计由直接运用原理的鸽巢问题到解决实际生活中的生日问题,让学生逐步体会到“抽屉原理”的应用价值,进而激发学生的研究兴趣。

但是对于学生的情况考虑较少,当学生发言较少没能完整说出原理时,我没能及时进行调整,由此也暴露出我对课堂的调控,对学生积极性的调动的能力有待进一步的提高。

相关文档
最新文档