算法分析与设计常见算法思想

合集下载

算法设计与分析-第3章-蛮力法

算法设计与分析-第3章-蛮力法

哨兵
0123456789 k 10 15 24 6 12 35 40 98 55
查找方向
i
清华大学出版社
算法设计与分析
算法3.2——改进的顺序查找
int SeqSearch2(int r[ ], int n, int k) //数组r[1] ~ r[n]存放查找集合 { r[0]=k; i=n; while (r[i]!=k)
清华大学出版社
算法设计与分析
第3章 蛮力法
3.1 蛮力法的设计思想 3.2 查找问题中的蛮力法 3.3 排序问题中的蛮力法 3.4 组合问题中的蛮力法 3.5 图问题中的蛮力法 3.6 几何问题中的蛮力法 3.7 实验项目——串匹配问题
清华大学出版社
算法设计与分析
3.1 蛮力法的设计思想
蛮力法的设计思想:直接基于问题的描述。 例:计算an
52 37 65 不可行 不可行 不可行 不可行 不可行
清华大学出版社
算法设计与分析
对于一个具有n个元素的集合,其子集 数量是2n,所以,不论生成子集的算法 效率有多高,蛮力法都会导致一个Ω(2n) 的算法。
清华大学出版社
算法设计与分析
3.4.4 任务分配问题
假设有n个任务需要分配给n个人执行, 每个任务只分配给一个人,每个人只分配一 个任务,且第j个任务分配给第i个人的成本 是C[i, j](1≤i , j≤n),任务分配问题要求 找出总成本最小的分配方案。
用蛮力法解决0/1背包问题,需要考虑给定n个 物品集合的所有子集,找出所有可能的子集(总重 量不超过背包容量的子集),计算每个子集的总价 值,然后在他们中找到价值最大的子集。
清华大学出版社
算法设计与分析
10

常见算法的原理与实现分析

常见算法的原理与实现分析

常见算法的原理与实现分析算法可以说是现代科技中最重要的组成部分之一。

一个优秀的算法可以让程序性能提高数倍,让问题更快的得到解决。

因此,学习算法是每一个程序员必须努力追求的。

接下来,本文将介绍一些常见的算法,包括它们的实现和原理分析。

一、快速排序快速排序是一种基于分治思想的排序算法,其基本思路是将待排序数组不断划分成较小的子数组,然后分别对这些子数组进行排序。

在分治的过程中,我们需要选择一个基准数,将其与数组中的其他数进行比较,并将小于它的数放到其左边,大于它的数放到其右边。

通过这种方式,我们可以实现快速排序的过程。

快速排序的原理比较简单,但是在实际的应用中,我们需要注意一些问题。

首先,我们需要避免基准数的选择过于靠边,这会导致快速排序效率的降低。

其次,如果数组中存在大量重复的元素,我们需要使用基于三路划分的快速排序算法来提高效率。

二、二分查找二分查找也称为折半查找,它是一种可以在有序数组中查找目标元素的高效算法。

二分查找的原理是将有序数组从中间划分成两个子数组,并判断目标元素与中间元素的大小关系,进而确定需要查找的子数组。

通过不断的缩小查找范围,我们可以最终找到目标元素。

二分查找在实际应用中有很多优点,包括查询速度快、查找效率高、内存消耗小等。

但同时,二分查找也存在一些问题,比如只能在有序数组中进行查找,而无法在无序数组中进行查找。

三、动态规划动态规划是一种高效的求解最优化问题的算法。

它的核心思想是将一个大问题拆分成若干个小问题,通过解决这些小问题,最终得到大问题的最优解。

动态规划的实现通常需要借助一个表格来记录问题的解。

在表格的计算过程中,我们需要找到问题的递推关系式,并通过简单的计算来填充表格。

最终,我们可以通过查找表格中的最后一项来获取问题的最优解。

四、最小生成树最小生成树是一种可以在带权图中查找最小权值子集的算法。

最小生成树的核心思想是通过遍历图中所有节点,构建一个包含所有节点的树,并保证这棵树的权值总和最小。

软件工程师常见算法分析

软件工程师常见算法分析

软件工程师常见算法分析一、概述在软件开发中,算法是程序员必备的核心能力之一。

算法是解决问题的方法和步骤,是一种数学思维方式的体现。

对于软件工程师而言,常见的算法分析是学习和掌握各种算法的性能特点,选择合适的算法来解决具体的问题。

本文将介绍一些常见的算法以及其分析。

二、冒泡排序算法冒泡排序是一种简单且常见的排序算法。

它通过不断比较相邻的两个元素,并根据规则交换位置,实现将较大(或较小)的元素逐渐“冒泡”到最终位置的目的。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

三、插入排序算法插入排序是一种简单且高效的排序算法。

它将数组分为已排序和未排序两个部分,逐个将未排序的元素插入到已排序的部分中,使得整个数组有序。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。

四、选择排序算法选择排序是一种简单但较低效的排序算法。

它通过不断选择最小(或最大)的元素,并放置到已排序部分的末尾,实现整个数组的排序。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

五、快速排序算法快速排序是一种高效的排序算法。

它采用分治思想,通过确定一个基准元素,将数组划分为两个子数组,并递归地对子数组进行排序,最终实现整个数组的排序。

快速排序的时间复杂度通常为O(nlogn),空间复杂度为O(logn)。

六、二分查找算法二分查找是一种常见的搜索算法。

它适用于有序数组,通过不断将待查找区间缩小为一半,最终找到目标元素的位置。

二分查找的时间复杂度为O(logn),空间复杂度为O(1)。

七、动态规划算法动态规划是一种常见且重要的算法思想。

它通过将大问题拆分为子问题,并存储子问题的解,避免重复计算,从而提高算法的效率。

常见的动态规划问题包括斐波那契数列、背包问题等。

八、贪心算法贪心算法是一种简单且常用的算法思想。

它通过每一步选择当前状态下的最优解,从而希望得到全局最优解。

贪心算法通常适用于当局部最优解能够导致全局最优解的情况。

计算机算法设计五大常用算法的分析及实例

计算机算法设计五大常用算法的分析及实例

计算机算法设计五⼤常⽤算法的分析及实例摘要算法(Algorithm)是指解题⽅案的准确⽽完整的描述,是⼀系列解决问题的清晰指令,算法代表着⽤系统的⽅法描述解决问题的策略机制。

也就是说,能够对⼀定规范的输⼊,在有限时间内获得所要求的输出。

如果⼀个算法有缺陷,或不适合于某个问题,执⾏这个算法将不会解决这个问题。

不同的算法可能⽤不同的时间、空间或效率来完成同样的任务。

其中最常见的五中基本算法是递归与分治法、动态规划、贪⼼算法、回溯法、分⽀限界法。

本⽂通过这种算法的分析以及实例的讲解,让读者对算法有更深刻的认识,同时对这五种算法有更清楚认识关键词:算法,递归与分治法、动态规划、贪⼼算法、回溯法、分⽀限界法AbstractAlgorithm is the description to the problem solving scheme ,a set of clear instructions to solve the problem and represents the describe the strategy to solve the problem using the method of system mechanism . That is to say, given some confirm import,the Algorithm will find result In a limited time。

If an algorithm is defective or is not suitable for a certain job, it is invalid to execute it. Different algorithms have different need of time or space, and it's efficiency are different.There are most common algorithms: the recursive and divide and conquer、dynamic programming method、greedy algorithm、backtracking、branch and bound method.According to analyze the five algorithms and explain examples, make readers know more about algorithm , and understand the five algorithms more deeply.Keywords: Algorithm, the recursive and divide and conquer, dynamic programming method, greedy algorithm、backtracking, branch and bound method⽬录1. 前⾔ (4)1.1 论⽂背景 (4)2. 算法详解 (5)2.1 算法与程序 (5)2.2 表达算法的抽象机制 (5)2.3 算法复杂性分析 (5)3.五中常⽤算法的详解及实例 (6)3.1 递归与分治策略 (6)3.1.1 递归与分治策略基本思想 (6)3.1.2 实例——棋盘覆盖 (7)3.2 动态规划 (8)3.2.1 动态规划基本思想 (8)3.2.2 动态规划算法的基本步骤 (9)3.2.3 实例——矩阵连乘 (9)3.3 贪⼼算法 (11)3.3.1 贪⼼算法基本思想 (11)3.3.2 贪⼼算法和动态规划的区别 (12)3.3.3 ⽤贪⼼算法解背包问题的基本步骤: (12)3.4 回溯发 (13)3.4.1 回溯法基本思想 (13)3.3.2 回溯发解题基本步骤 (13)3.3.3 实例——0-1背包问题 (14)3.5 分⽀限界法 (15)3.5.1 分⽀限界法思想 (15)3.5.2 实例——装载问题 (16)总结 (18)参考⽂献 (18)1. 前⾔1.1 论⽂背景算法(Algorithm)是指解题⽅案的准确⽽完整的描述,是⼀系列解决问题的清晰指令,算法代表着⽤系统的⽅法描述解决问题的策略机制。

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。

通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。

二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。

三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。

递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。

分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。

设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。

●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始节点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的或节点,并成为当前扩展结点。

《算法设计与分析》期末必考复习及答案题整理

《算法设计与分析》期末必考复习及答案题整理

《算法设计与分析》期末必考复习及答案题整理1、分治法的基本思想:是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题互相独立且与原问题相同。

递归地解这些子问题,然后将各子问题的解合并得到原问题的解。

2、贪心选择性质:指所求问题的整体最优解可以通过一系列局部最优的选择,3、 Prim算法:设G=(V,E)是连通带权图,V={1,2,…,n}。

构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件i?S,j?V-S,且c[j]最小的边,将顶点j添加到S 中。

这个过程一直进行到S=V时为止。

4、什么是剪枝函数:回溯法搜索解空间树时,通常采用两种策略避免无效搜索,提高回溯法的搜索效率。

其一是用约束函数在扩展结点处剪去不满足约束的子树;其二是用限界函数剪去得不到最优解的子树。

这两类函数统称为剪枝函数。

6、分支限界法的基本思想:(1)分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。

(2)在分支限界法中,每一个活结点只有一次机会成为扩展结点。

活结点一旦成为扩展结点,就一次性产生其所有儿子结点。

在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。

(3)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程,这个过程一直持续到找到所需的解或活结点表这空时为止。

5、什么是算法的复杂性:是该算法所需要的计算机资源的多少,它包括时间和空间资源。

6、最优子结构性质:该问题的最优解包含着其子问题的最优解。

7、回溯法:是一个既带有系统性又带有跳跃性的搜索算法。

这在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任一结点时,先判断该结点是否包含问题的解。

如果肯定不包含,则跳过对以该结点为根的子树的搜索,逐层向其祖先结点回溯;否则,进入该子树,继续按深度优先策略搜索。

算法设计与分析知识点

算法设计与分析知识点

第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。

2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。

3、算法的时间复杂度的上界,下界,同阶,低阶的表示。

4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。

5、常用的几种数据结构:线性表、树、图。

第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。

递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。

递归元的递减方式~有两种:1、减法,即n -b,的形式。

2、除法,即n / b,的形式。

2、D(n)为常数c:这时,T(n) = 0(n P)。

D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。

对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。

【分析】算法分析与设计作业参考答案

【分析】算法分析与设计作业参考答案

【关键字】分析《算法分析与设计》作业参考答案作业一一、名词解释:1.递归算法:直接或间接地调用自身的算法称为递归算法。

2.程序:程序是算法用某种程序设计语言的具体实现。

2、简答题:1.算法需要满足哪些性质?简述之。

算法是若干指令的有穷序列,满足性质:1)输入:有零个或多个外部量作为算法的输入。

2)输出:算法产生至少一个量作为输出。

3)确定性:组成算法的每条指令清晰、无歧义。

4)有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。

2.简要分析分治法能解决的问题具有的特征。

分析分治法能解决的问题主要具有如下特征:1)该问题的规模缩小到一定的程度就可以容易地解决;2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;3)利用该问题分解出的子问题的解可以合并为该问题的解;4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

3.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。

将递归算法转化为非递归算法的方法主要有:1)采用一个用户定义的栈来模拟系统的递归调用工作栈。

该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。

2)用递推来实现递归函数。

3)通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。

后两种方法在时空复杂度上均有较大改善,但其适用范围有限。

三、算法编写及算法应用分析题:1.冒泡排序算法的基本运算如下:for i ←1 to n-1 dofor j ←1 to n-i doif a[j]<a[j+1] then交换a[j]、a[j+1];分析该算法的时间复杂性。

解答:排序算法的基本运算步为元素比较,冒泡排序算法的时间复杂性就是求比较次数与n的关系。

1)设比较一次花时间1;2)内循环次数为:n-i次,(i=1,…n),花时间为:3)外循环次数为:n-1,花时间为:2.设计一个分治算法计算一棵二叉树的高度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法导论复习——常见算法思想PPT2-1:1.堆排序(选择类排序,不稳定)(1)初始化操作:将R[1..n]构造为初始堆;(2)每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。

时间复杂度是:O(nlgn)2.归并排序)归并排序采用分治法思想的稳定的排序。

算法思想是先使每个子序列有序,再使子序列段间有序。

第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置重复步骤3直到某一指针超出序列尾,将另一序列剩下的所有元素直接复制到合并序列尾。

时间复杂度是:O(nlgn)3.快速排序(交换类排序,不稳定)|(1)通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小;(2)然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

时间复杂度是:O(nlgn)。

4.分治法实现大数相乘将a,b写成前一半数字和后一半数字相加的形式,例如若 a = 5423678,那么a1 = 542,a0 = 3678(注意若不是偶数截取较小一半)这样a和b相乘就可以写为:a * b = { a1 * 10^(n1/2) + a0 } * { b1 * 10^(n 2/2) + b0 }(展开后整理得:a *b = a1*b1 * 10^[ (n1+n2)/2 ] + a1*b0 * 10^(n1/2 ) + a0*b1 * 10^(n2/2) + a0*b0 四项这样就很容易递归的来求a * b,如果你嫌分解后的数还太大,就可以继续分解。

(你可以自己规定在何时结束递归)时间复杂度是:O(nlgn)参考资料见:5.分治法求最近点对步骤一:找一条中垂线m(坐位S集合x坐标的中位数)把n个元素分成左右两部分元素,步骤二:递归查找两边点集的的最短距离d1,d2,然后取两者中的最小者记为d;步骤三:在中线两边分别取d的距离,记录该距离范围内点的个数,中线左边有L个元素,右边有R个元素,分别将两边的点按y坐标升序排列,在左边集合中每一个点,找右边集合的点,找到与之距离小于d的点,更新最短距离,直到循环结束,即可求出最短距离。

>时间复杂度是:O(nlgn)6.格雷厄姆Graham扫描法求凸包基本思想:通过设置一个关于候选点的堆栈s来解决凸包问题。

操作:输入集合Q中的每一个点都被压入栈一次,非CH(Q)(表示Q的凸包)中的顶点的点最终将被弹出堆栈,当算法终止时,堆栈S中仅包含CH(Q)中的顶点,其顺序为个各顶点在边界上出现的逆时针方向排列的顺序。

具体步骤如下:(1)设P0 是Q 中Y 坐标最小的点,如果有多个这样的点则取最左边的点作为P0;(2)设<P1,P2,……,Pm>是Q 中剩余的点,对其按逆时针方向相对P0 的极角进行排序,如果有数个点有相同的极角,则去掉其余的点,只留下一个与P0 距离最远的那个点;!(3)PUSH(p0 , S)(4)PUSH(p1 , S)(6)PUSH(p3 , S)(7)for i ← 3 to m{while 由点NEXT-TOP-TOP(S),TOP(S)和Pi 所形成的角形成一次非左转do POP(S)PUSH(pi , S).}(8)return S时间复杂度是:O(nlgn)注:Jarvis步进法更加容易理解,见算法导论中文版P609。

7.D&C for 2D maxima Finding Problem(1)如果点集S只包含一个点,这直接输出该点。

否则找一条中垂线m(坐位S集合x坐标的中位数)把n个元素分成左右两部分个数相等的元素,分别为Sl和Sr。

^(2)递归查找两边点集的的最大点;(3)将获得的所有最大点按y值排序,并查找出Sl中y值小于Sr中最大点的y值的最大点,并将其排除;(4)最终获得所有的点集S的所有maximal point。

时间复杂度是:O(nlgn)Homework:Voronoi DiagramPPT2-2:8.,9.Depth First Search(DFS)深度优先搜索算法也叫回溯法,其基本策略是:尽可能深的深的搜索某一分支。

从源节点开始发现有一节点v,如果v还有未探测到的边,就沿此边继续探测下去,当节点v的所有边都被探测过,搜索过程将回溯到最初发现v点的源节点。

这一过程一直进行到已发现从源节点可达的所有节点为止。

这显然是一个递归过程。

伪代码(使用栈实现),递归实现:long DFS(图g,结点v0){(2)从网中删去该顶点,并且删去从该顶点发出的全部有向边.(3)重复上述两步,直到剩余的网中不再存在没有前趋的顶点为止.10.?11.参考资料:字典序法生成全排列(permutation)设P是1~n的一个全排列:p=p1p2......pn=p1p2......pj-1pjpj+1......pk-1pkpk+1......pn1.从右向左找,找到第一个比下一个元素还小的地方,记下位置,标注为左元素。

2.从右向左找,找到第一个比左元素大的元素,也是左元素右边比左元素大的数中最小的数,记下位置,标注为右元素。

3.交换左元素和右元素。

4.不管现在左元素位置上放的是谁,将左元素右边的序列逆序。

5.这样就得到了一个新数了。

6.可以继续重复1-5,来继续得到下一个排列。

7.如果再也找不到一个比下一个元素还小的地方,那么意味着这个序列已经降序了,排列完成了,那就结束吧。

时间复杂度:O(n!)参考资料:12.关节点(Articulation Point)见homework。

(13.约瑟夫问题(Josephus Problem)设有n个人围坐在一个圆桌周围,现从第s个人开始报数,数到第m的人出列,然后从出列的下一个人重新开始报数,数到第m的人又出列,…,如此反复直到所有的人全部出列为止。

Josephus问题是:对于任意给定的n,s和m,求出按出列次序得到的n个人员的序列。

解决思想:循环链表表示1 建立循环单链表2 寻找第s个结点,输出并删除第m个节点。

14.,15.二查搜索树BST(Binary Search Tree)PART2-3:(Transform &Conquer)16.霍纳法则(Horner Rule)霍纳法则出现的原因:为多项式求值提供了一个高效的方法。

用来简化朴素多项式的求值,在中国叫秦九韶算法。

朴素多项式可以简化为:举个例子,多项式变换如下::pseudo code:其中P[n]是多项式的系数组成的数组,17.平衡二叉树AVL(Balanced Binary Tree)18.红黑树R-B树19.参考链接:树每个节点最多包含两个关键子,所有叶子节点在树的同一层,因此树总是高度平衡的。

[20.堆Heap21.树堆Treap见homework,有可能考代码!22.优先队列Priority Queue重点:优先级队列,是要看优先级的,谁的优先级更高,谁就先得到权限。

不分排队的顺序! 利用堆可以实现优先队列!"21. 迷宫问题Maze Problem使用DFS或者BFS遍历搜索出口!PART2-423.计数排序Counting Sorting计数排序的基本思想是对于给定的输入序列中的每一个元素x,确定该序列中值小于x 的元素的个数。

一旦有了这个信息,就可以将x直接存放到最终的输出序列的正确位置上。

例如,如果输入序列中只有17个元素的值小于x的值,则x可以直接存放在输出序列的第18个位置上。

当然,如果有多个元素具有相同的值时,我们不能将这些元素放在输出序列的同一个位置上,因此,上述方案还要作适当的修改。

伪代码:A待排序数组,B排序后的数组,k待排序中最大的数(24.字符串匹配算法Horspool AlgorithmsHorspool算法是对Boyer-Moore算法的简化。

其基本思想(后缀匹配法):模式串是需要匹配的串,主串是在其中查找模式串的字符串,匹配窗口是模式串从左往右移动,在主串中需要比对的字符形成的窗口。

模式串是从左往右移动,字符比对是从匹配窗口的右边往左。

horspool算法将主串中匹配窗口的最后一个字符跟模式串中的最后一个字符比较。

如果相等,继续从后向前对主串和模式串进行比较,直到完全相等或者在某个字符处不匹配为止(如下图中的α与σ失配)。

如果不匹配,则根据主串匹配窗口中的最后一个字符β在模式串中的从右往左下一个出现位置,将窗口向右移动与之对齐。

为了实现模式串的移动,必须先记录模式串中每一个字符(不包括最后一个字符)在模式中距离最右边的距离,如若出现相同字符的距离不同,取最短的距离:#时间复杂度:假设主串的长度为n,模式串的长度为m,那么Horspool算法最坏情况下的时间复杂度是O(mn),但平均情况下它的时间复杂度是O(n)。

25.参考资料:字符串匹配算法BM:Boyer-Moore算法思想(后缀匹配法):Boyer-Moore算法是一种基于后缀匹配的模式串匹配算法,后缀匹配就是模式串从右到左开始比较,但模式串的移动还是从左到右的。

字符串匹配的关键就是模式串的如何移动才是最高效的,Boyer-Moore为了做到这点定义了两个规则:坏字符规则和好后缀规则,具体的移动规则见参考资料链接。

Boyer-Moore算法步骤1.对模式子串进行预处理Boyer-Moore算法实现必须对模式串进行预处理,得到坏字符规则和好后缀规则移动的映射表,下面代码中MakeSkip是建立坏字符规则移动的映射表,MakeShift是建立好后缀规则的移动映射表。

&MakeSkip是构造数组skip[],skip[k]表示字符k距离模式串末尾的距离。

MakeShfit是构造数组shfit[],shfit[k]表示模式串的以k为边界的后缀子串的最靠近的模式子串(或最前缀子串)到模式子串末尾的距离,例如:abcab,shfit[3]=3和shfit[2]=3(即都是第一个b到末尾的距离),k=2时,后缀子串为cab,这时只有最长前缀ab,shfit[2]=3。

2.从b_idx开始查找,得到坏字符和好后缀,得到最大移动距离,移动b_idx,直至b_idx 到达母串的末尾。

26.参考资料:(去年未考)27.字符串匹配算法KMP算法算法思想(前缀匹配法):KMP算法是一种高效的前缀匹配算法,在传统蛮力(BF)匹配算法的基础上改进的地方在于每次移动的距离不是1可以是更大,没有进行回溯,BF算法的时间复杂度是O(m*n),而KMP算法的时间复杂度是O(m+n)。

相关文档
最新文档