北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

合集下载

北京理工大学2006-2007学年第一学期数学分析B期末试题(A卷)

北京理工大学2006-2007学年第一学期数学分析B期末试题(A卷)
信息与电子学部学生会 学习部整理
课程编号:A071001
北京理工大学 2006-2007 学年第一学期
数学分析期末试题(A)
一. 解下列各题(每小题 6 分)
xa 1. 已知 lim 9 ,求常数 a . x x a
x ln cos t 2. 设曲线的参数方程为 , 求曲线在 t 对应点处的切线方程. 3 y sin t t cos t
七. (8 分) 一容器内含有 100 升清水, 现将每升含盐量 4 克的盐水以每分钟 5 升的 速率由 A 管注入容器, 假设瞬间即可混合均匀, 同时让混合液以同样的速率由 B 管 流出容器(容器内的液体始终保持为 100 升), 问在任意时刻 t 容器内溶液的含盐量是 多少?
ln(1
八. (8 分) 设 f ( x) 在 [0,2] 上连续, 在 (0,2) 内有二阶导数, 且 lim
2. 求不定积分 x arctan xdx .
3. 已知 y1 x x 2 , y 2 3e x x 2 , y 3 2 x x 2 e x 是某二阶线性非齐次微分方
程的三个特解, 求此微分方程的通解.
e x a 4. 已知函数 f ( x) x 2 b
x 0
f ( x) ) x 3, sin x

2 1
f ( x)dx 0 ,
(1) 求 f (0) ; (2) 证明 (0,2) , 使 f ( ) f ( ) 0 .
2
2
x 0 在 (,) 可导, 求 a, b 的值, 并求 f ( x) . x0
三. (7 分) 试确定函数 y 3 x 4 4 x 3 12 x 2 10 在区间 (0, ,3) 内零点的个数. 四.(8 分)设函数 f ( x) , g ( x) 满足 f ( x) g ( x) , g ( x) 2e x f ( x) , 且 f (0) 0 ,

北京理工大学 数学分析 分析解答2014-2(a)

北京理工大学 数学分析 分析解答2014-2(a)

(2014-2015-1)工科数学分析期末试题(A 卷)解答(2015.1)一.1. )43(7341-=-x y 2. 21 3.⎰+∞+2,)1(x x dx,0⎰+∞-dx xe x4. 1 , 32- 5. )(x f二. .122110dx x x I -=⎰ ……………..(2分)令t x sin = t d t t 22010cos sin 2⎰=π……………..(4分)tdt ⎰=210sin (2π)sin 2012tdt ⎰-π……………..(6分)π102421=……………..(8分)三. )(131⎰⎰+⎰=---dx exe C ey dx xxx dx xx……………..(4分))(ln 3ln ⎰--+=dx e xe C exx x xx ……………..(6分))(3⎰-+=dx xe xe C x e xx x )(2⎰+=dx e C xe x x……………..(8分) )21(2x x e C x e += ……………..(9分)四. (1) 1)0(=y ……………..(1分) y xe e y y y '--=' ……………..(分)e y -=')0( ……………..(3分)y xe y xe y e y e y y y y y ''-'-'-'-=''2)( ………..(4分) 22)0(e y ='' ……………..(5分)(2)由题设, 应有)0()0(y f = )0()0(y f '=' )0()0(y f ''='' ………..(6分)1)0(==f c ……………..(7分)b ax x f +='2)( e f b -='=)0( ……………..(8分) a x f 2)(='' 22)0(2e f a =''= 2e a = ……………..(9分)五. ⎰=34t a n c o sln ππx xd I ……………..(2分) ⎰+=3434t a n c o s s i n ln tan ππππxdx x xsx co x ……………..(5分) ⎰-+-=342)1cos 1(21ln 21ln 3ππdx x ……………..(6分) 34)(t a n 2ln 212ln 3ππx x -++-= ……………..(8分) 12132ln )321(π--+-= ……………..(9分)六. 设 a x x x f --=2ln )(2),0(+∞∈x ……………..(1分) x xx f -='1)( ……………..(2分) 令 0)(='x f 得1=x ……………..(3分)-∞==++→)(lim )00(0x f f x ……………..(4分) -∞==+∞+∞→)(lim )(x f f x ……………..(5分)a f --=21)1( ……………..(6分) 当21-<a 0)1(>f 二曲线有两个交点 ……………..(7分)当21-=a 0)1(=f 二曲线有一个交点 ……………..(8分)当21->a 0)1(<f 二曲线有没有交点 ……………..(9分)七. 设 12)1)(2(142222++++=++--x DBx x A x x x x ……………..(2分) )2)(()1(14222++++=--x D Bx x A x x得 3=A 2-=B 1-=D …(1+1+1)…..(5分)dx x x x x x x x )1223()1)(2(142222++-+=++--⎰⎰C x x x +-+-+=arctan 2)1ln(212ln 32 (每项1分)…..(9分)八. xx ax f x arcsin lim )00(30-=--→ ……………..(1分)2201113l i mx ax x --=-→ ……………..(2分)1113l i m 2220---=-→x x ax x22202113l i m x x ax x --=-→ ……………..(3分)a 6-= ……………..(4分)41lim )00(220x ax x e f ax x --+=++→ ……………..(5分)22l i m 0xax ae ax x -+=+→ ……………..(6分)212l i m 20+=+→ax x e a)2(22+=a ……………..(7分) 由题设得 6)2(262≠+=-a a 2-=a ……………..(9分)九.dx y a g x dW )(2100-⨯⋅=μdx x a a gx )(20022--=μ .……..(3分)⎰--=adx x a a gx 022)(200μ …..…..(4分)⎰-=a axdx g 0(200μ)022⎰-adx x a x …..…..(5分))312(20033a a g -=μ …(1+2)..…..(8分)33100ga μ=(J) ……………..(9分)十. 022=-+r r ……………..(1分) 1=r 2-=r ……………..(3分) x x e C e C y 221-+= ……………..(4分) 设 x e B Ax x y )(*+= ……………..(5分) 代入方程得 x B A Ax 3326=++ ……………..(7分)解得 21=A 31-=B ……………..(9分) 通解为 x x x e x x e C e C y )3121(2221-++=- ……………..(10分)十一. ⎰-=ξξπadx f x f V )]()([221 ……………..(2分)⎰-=bdx x f f x V ξξπ)]()([22 ……………..(4分)令 ⎰⎰---=btt adx x f t f x dx t f x f t F )]()([2)]()([)(22ππ …………..(6分)则)(x F 在],[b a 上连续0)]()([2)(<--=⎰ba dx x f a f x a F π ……………..(7分)0)]()([)(22>-=⎰badx b f x f b F π ……………..(8分)根据介值定理, ),(b a ∈∃ξ, 使0)(=ξF , 即⎰-ξξπadx f x f )]()([220)]()([2=--⎰bdx x f f x ξξπ21V V = ……………..(9分)。

北京理工大学2010-2011学年第一学期工科数学分析期末试题(A卷)答案

北京理工大学2010-2011学年第一学期工科数学分析期末试题(A卷)答案

代入方程得 解得
6 A 1 , 2 A 3 B 1
………………..(9 分) ………………..(10 分)
A
1 4 , B 6 9 x2 4 x )e x 6 9 x2 4 x )e x 6 9
y* (
通解为
y C1e x C 2 e 2 x (
……………..(11 分)
四.
1
………………….(3 分) …………………..(4 分)
dy 1 dx 1 sin y
dy d y dx dx 2 (1 sin y ) 2
2
cos y
……………(6 分)
cos y
1 cos y 1 sin y 2 (1 sin y ) (1 sin y ) 3
0 x
……(6 分)
…………………….(7 分)
令 t u ,得
F ( x) ( x 2t ) f (t )dt
0
x
…………………….(8 分)
( x 2t ) f (t )dt
0
x
( x 2u ) f (u )du F ( x)
v x 0 2 vdv sin xdx
1 2 v cos x C 2
由初值得
C 1
信息与电子学部学生会 学习部整理
v 2 2(cos x 1)
…………………….(8 分)
十.

f ( x) ln x f ( x) 1 1 x e
x 1 x2 e dx e 0
…………………….(1 分) …………………….(2 分)

f ( x) 0 , 得

2012-2013_1_期末试卷A答案(出自17系)

2012-2013_1_期末试卷A答案(出自17系)
2012 —2013 学年第一学期
部 试题答案
习 学 本答案由 1517 周俊孚同学领仪光学习部编写,不一定是标准答案,
仅供参考,如有问题请立刻询问老师,谢谢
光 考试课程 复变函数与积分变换 A
仪班 级 姓名
学号 成绩
2017 年 1 月
1
一、选择题(每题 3 分,共 24 分) 1.下列方程所表示的平面点集中,为有界区域的是(D)
6.级数 +
1 3n zn
+
1 32 z2
+
1 3z
+1+
z 2
+
z2 22
++
zn 2n
+ 的收敛域是 1 3
<|
z |<
2
学 7.
函数 F (ω )
=
sin t0ω
的傅立叶逆变换为 δ (t + t0 ) − δ (t 2i
− t0)
8.函数 f (t ) = sin(t − π )u(t − π ) 的 Laplace 变换为
(A)不可导
(B)不解析
(C)不连续
(D)以上答案都不对
解:奇点的定义见课本第 17 页
∫ 3.设 C 为椭圆 x 2 + y 2 = 2 正向,则积分 1 d z = (A)
2
C z−i

(A) 2πi
(B) π
(C) 0
dz
∫ 4. 设 c 为正向圆周 z = 2 ,则
=(B)
Cz
习(D)− 2πi
(B) 1 e 2iω F (ω )
2
2
(D) 1 e −2iω F (ω )

北京理工大学2015学年第二学期《工科数学分析》期末考试卷及参考答案

北京理工大学2015学年第二学期《工科数学分析》期末考试卷及参考答案

4
九. (9 分) 把 f (x) = x ln(2 + x) 展成 x + 1的幂级数, 并指出收敛域. 十. (9 分) 证明 (2x cos y − y2 sin x)dx + (2 y cos x − x2 sin y)dy = 0 是全微分方程, 并求其通解.
5
∫∫ 十一. (9 分) 计算积分 I = S
……………….(7 分)
∑ = −(x + 1) + ∞ (−1)n ( 1 + 1 )(x + 1)n
n=2
n n −1
………….(8 分)
收敛域为 − 2 < x ≤ 0
……………….(9 分)
十.
∂Y = −2 y sin x − 2xsin y = ∂X
∂x
∂y
故所给方程是全微分方程
……………….(2 分)
= 1 − sin1
……………….(8 分)
三.
fx′ = 2x(2 + y2 )
f y′ = 2x2 y + ln y + 1
令 fx′ = 0
f y′ = 0
得x=0 y=1 e
……………….(2 分) ……………….(3 分)
fx′′2 = 2(2 + y2 )
fx′′y = 4xy
f y′′2
dy − dx xz dy
dz = dx + xy
1 dz
z dx dz =
0
dx dx
将点 P 代入得
1 + 3 +
dy
dx dy
− +
dz = dx 3 dz
dz dx =0

工科数学分析上学期AB卷期末考试题及答案2套

工科数学分析上学期AB卷期末考试题及答案2套

,考试作弊将带来严重后果!期末考试《工科数学分析》试卷A1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;5分,共10分) (1))(lim 22x x x x x --++∞→ (2)xx x ln 1)(cot lim +→(10分)设1lim )(2212+++=-∞→n n n x bxax x x f 为连续函数, 试确定常数a 和b .(10分)设参数方程⎩⎨⎧=+=ty t x arctan )1ln(2确定了函数0)(>=x f y , 求x yd d 与22d d xy, 并判定函数)(x f 的单调性及凸性. (10分)造一个容积为V 的圆柱形无盖水池, 问高h 及底半径r为多少时, 可使其表面积最小? (10分)设0>x 时, 方程112=+xkx 有且仅有一个解, 求k 的取值范围.(10分)计算下列积分(每小题5分,共10分)(1)⎰+x x x )1(d 3 (2)⎰-+226d )cos (sin ππx x x x七.(10分)设⎰+∞-=0d e x x I x n n (n 为正整数), 试建立数列}{n I 的递推公式, 并求n I 的值.八.(10分)求抛物线px y 22=在点),2(p p 处法线与抛物线围成的图形的面积.九.(10分)设函数)(x f 在),(+∞-∞上有二阶导数且0)(≥''x f , 如果A xx f x =→)(lim, 试证明对任意),(+∞-∞∈x , 有Ax x f ≥)(. 十.(10分)设01>x , )(211nn n x ax x +=+, 证明数列}{n x 收敛并求其极限.《工科数学分析》试卷A 答案一. (1)解:12lim)(lim 2222=-++=--++∞→+∞→xx x x xx x x x x x(2)解:)1)1sin (cot 1lim exp()ln cot ln lim exp()(cot lim 200ln 10xx x xx x x x x x -==+++→→→ e1)1exp()cos sin lim exp(0=-=-=+→x x x x二. 解: ⎪⎪⎩⎪⎪⎨⎧>-=-+-=++<+=1|| ,/11 ,2/)1(1,2/)1(1|| ,)(2x x x b a x b a x bx ax x f , 由于)(x f 为连续函数, 故)1()1()1(f f f ==+-, )1()1()1(-=-=-+-f f f即1=+b a , 1-=-b a解之得.1 ,0==b a三. 解: t t t t x y 21)1/(2)1/(1d d 22=++=, 32222241)1/(2/121d d tt t t t x y +-=+-=. 因0)(>x f , 故0>t , 从而0d d >xy, 0d d 22<x y . 因此, 方程确定的函数)(x f y =单调增加且上凸.四. 解: 表面积2222r r V r rh S πππ+=+=, 令0222=+-='r rVS π, 得32/πV r =, 此时3/4πV h =. 因S 有唯一驻点, 由实际问题可知必有最小表面积, 故当32/πV r =, 3/4πV h =时, 表面积最小. 五. 解: 令11)(2-+=x kx x f , 则32)(xk x f -='. 0≤k 时, )(x f 在),0(+∞单调下降. 又+∞=+→)(lim 0x f x , -∞=+∞→)(lim x f x (0<k ), 1)(lim -=+∞→x f x (0=k )因此, 当0≤k 时, )(x f 在),0(+∞只有一个零点, 即原方程在),0(+∞内只有一个解. 当0>k 时, )(x f 有唯一驻点30/2k x =, 且)(x f 在),(0+∞x 与),0(0x 内分别单调增加和单调减少. 注意到此时+∞=+→)(lim 0x f x , +∞=+∞→)(lim x f x故当且仅当0)(0=x f 即392=k 时, 函数有且仅有一个零点, 即原方程在),0(+∞内有且仅有一个解. 六. 解: (1) 令6x t =, 于是Cx x C t t dt t dt t t t t dt t x x x +-=+-=+-=+=+=+⎰⎰⎰⎰)arctan (6 )arctan (6)111(616)1(6)1(d 662223253(2)⎰⎰⎰⎰-===+--202022226dcos 2d sin 2d sin d )cos (sin ππππππx x x x x x x x x x x x.2d cos 2cos 2202/0=+-=⎰ππx x x x 七. 因为101010d e 0d e |e d e -+∞--+∞--∞+-+∞-=+=+-==⎰⎰⎰n x n xn x n x n n nI x x n x nx x x x I于是容易知道1!I n I n =. 又因为1|e 0d e |e d e 001=-=+-==∞+-+∞-∞+-+∞-⎰⎰x x x xx x x x I , 故有!.n I n =八. 因p y y 22=', 故1|2=='=y py p x , 从而可知抛物线在点),2(p p 的法线方程为)2(p x p y --=-或y px -=23.除去切点外抛物线与法线的另一个交点坐标为)3,29(p p -, 所以所求图形的面积232316d )223(p y p y y p A pp =--=⎰-九. 0)(lim)(lim )0(0===→→x xx f x f f x x , A xx f x f x f f x x ==-='→→)(lim )0()(lim)0(00. 由泰勒公式, ),(+∞-∞∈∀x , 0≠x , 有Ax x f x f x f f x f ='≥''+'+=)0(!2)()0()0()(2ξ上式当0=x 时显然成立. 证毕.十. 单调增加(减少)有上界(下界)的数列必收敛. 下面我们证明数列}{n x 是单调减少有下界的数列. 由于a x ax x nn n =⋅≥+1 故数列}{n x 有下界. 此外, 因为1)11(21)1(2121=+≤+=+n n n x a x x 故数列}{n x 单调减少. 因此, 数列}{n x 收敛, 设其极限为A , 于是AaA x a x x A n n n n n +=+==∞→+∞→)(21limlim 1 解之得a A =(由极限保号性负根舍去).,考试作弊将带来严重后果!期末考试《工科数学分析》试卷B1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:闭卷;5分,共10分) (1))2(lim 2x x x x -++∞→ (2)x x x +→0lim二.(10分)设⎪⎩⎪⎨⎧≤+>=0 ,e 0,1sin )(x x xx x f x βα, 试根据α和β的值, 讨论)(x f 在0=x 处的连续性(包括左连续、右连续及间断点的类型).三.(10分)设方程22ln arctan y x x y +=确定函数)(x f y =, 求22d d x y .四.(10分)试确定数列}{n n 中的最大项.五.(10分)设0>a , 试讨论方程ax x =ln 实根的个数. 六.计算下列积分(每小题5分,共10分) (1)⎰+xx e1d (2)⎰-+22d )e (sin 4ππx x x x七.(10分)设⎰+∞-=0d e x x I x n n (n 为正整数), 试建立数列}{n I 的递推公式, 并求n I 的值.八.(10分)求抛物线x y 22=与直线21=x 所围成的图形绕直线1-=y 旋转而成的立体的体积.九.(10分)设函数)(x f 在]1,0[上二阶可导, a x f ≤|)(|, b x f ≤''|)(|,)1,0(∈c , 试证明22|)(|b a c f +≤'. 十.(10分)已知0>a , a x =1, n n x a x +=+1, 证明数列}{n x 收敛并求其极限.《工科数学分析》试卷B 答案一. (1)解:122lim)2(lim 22=++=-++∞→+∞→xx x x x x x x x(2)解:1)/1/1lim exp()/1ln lim exp()ln lim exp(lim 20000=-===++++→→→→xx x x x x x x x x x x 二. 解: )0(1)0(f f =+=-β. 当0>α时, 0)0(=+f ; 当0≤α时, )0(+f 不存在. 因此, 当0>α且1-=β时, 函数在0=x 处连续; 当0>α且1-≠β时, 函数在0=x 处左连续但又不连续, 0=x 为第一类间断点; 当0≤α时, 函数在0=x 处左连续, 0=x 为第二类间断点.三. 解: 方程两边关于x 求导得22222221)/(11yx y y x x y y x x y +'+=-'+ 整理得 yx yx x y -+=d d 于是, 322222)()(2)()1)(())(1(d d y x y x y x y y x y x y x y -+=-'-+--'+=. 四. 解: 令x x x f /1)(=, 0>x . 令0ln 1)(2/1=-='xxx x f x , 得e /1=x . 则在)/1,0(e 与),/1(+∞e 上)(x f 分别单调增加和单调减少. 从而33)/1(2<<e e因此,33为最大项.五. 解: 令ax x x f -=ln )(, 0>x . 解01)(=-='a xx f 得唯一驻点ax 1=. )(x f 在)/1,0(a 与),/1(+∞a 内分别单调增加和单调减少. 又由于-∞=+→)(lim 0x f x , -∞=+∞→)(lim x f x , 所以有如下结论:(1) 当e a /1>时, 0)/1(<a f , 原方程没有根; (2) 当e a /1=时, 0)/1(=a f , 原方程有一个根; (3) 当e a /1<时, 0)/1(>a f , 原方程有两个根 六. (1)令1+=x e t , 则)1ln(2-=t x , 于是Cx e C e e C t t dt t t dt t t t e dxx x x x+--+=+++-+=++-=+--=-=+⎰⎰⎰)11ln(21111ln 11ln )1111(12112(2) ⎰⎰⎰⎰-===+--20202222dcos 2d sin 2d sin d )e (sin 4ππππππx x x x x x x x x x x x.2d cos 2cos 2202/0=+-=⎰ππx x x x 七. 因为1010100d e 0d e |e d e -+∞--+∞--∞+-+∞-=+=+-==⎰⎰⎰n x n xn x n x n n nI x x n x nx x x x I于是容易知道1!I n I n =. 又因为1|e 0d e |e d e 001=-=+-==∞+-+∞-∞+-+∞-⎰⎰x x x xx x x x I , 故有!.n I n = 八. 体积元素x x x dV πππ24)12()12(22=+--+=, 因此所求体积ππ342421==⎰dx x V九. 由泰勒公式21)0)((21)0)(()()0(c f c c f c f f -''+-'+=ξ, ),0(1c ∈ξ 22)1)((21)1)(()()1(c f c c f c f f -''+-'+=ξ, )1,(2c ∈ξ 两式相减得2122)(21)1)((21)()1()0(c f c f c f f f ξξ''--''+'=- 因此22])1[(212 |)(|21)1(|)(|21|)1(||)0(||)(|222122b a c c b a c f c f f f c f +≤+-+≤''+-''++≤'ξξ十. 单调增加(减少)有上界(下界)的数列必收敛. 下面我们证明数列}{n x 是单调增加有上界的数列. 显然, 12x x >, 假设1->n n x x , 则n n n n x x a x a x =+>+=-+11故数列}{n x 单调增加. 此外, 显然, 11+<a x , 假设1+<a x n , 则111+<++<+=+a a a x a x n n故数列}{n x 有上界. 因此, 数列}{n x 收敛, 设其极限为A , 于是A a x a x A n n n n +=+==∞→+∞→lim lim 1解之得2411aA ++-=(由极限保号性负根舍去).。

北京理工大学2009-2010学年第二学期工科数学分析期末试题(A卷)答案

北京理工大学2009-2010学年第二学期工科数学分析期末试题(A卷)答案

2009-2010第二学期工科数学分析期末试题解答(A 卷)一.1.11,65arccos(2分,2分)2.(1,2,7),4(2分,2分)3.25-,}52,51{-(2分,2分)4.∑∞=+--01)1(4)1(n nn n x ,∑∞=---+11)1(4)1(4ln n nn n x n (2分,2分)5.dy dx 2-,}2,1{-(2分,2分)6.x x y ln ,34ln(2分,2分)7.0,ππ324+,0,12+π(1分,1分,1分,1分)二.⎰=Ly dlx I μ2…………………….(2分)⎰+=15322)1(1dxx x μ……………………(6分)μμ35611532=+=⎰dx x x ……………………(9分)三.设V 在第一卦限部分为1V ⎰⎰⎰⎰⎰⎰==122486V VdVx dV x I ……………(3分)⎰⎰⎰---=yx xdzdy dx x 101010248……………..(6分)⎰⎰---=xdyy x dx x 10102)1(48………………..(7分)⎰-=1022)1(24dx x x …………………(8分)54=…………………(9分)四.令02==∂∂x xz,014=-=∂∂y yz………………(2分)解得0=x ,41=y ,得驻点)41,0(,………………..(3分)由122=+y x ,得221y x -=,代入目标函数得62+-=y y z )11(≤≤-y ………………..(4分)令012=-=y dydz,得21=y ,此时23±=x ,得两点)21,23(±………..(6分)当1±=y 时,0=x ,得两点)1,0(±………………..(7分)83941,0(=z ,42321,23(=±z ,8)1,0(=-z ,6)1,0(=z 8max =z ,839min =z ……………..(9分)五.由题意,有yXx Y ∂∂=∂∂……………………….(1分)λλλλλλλλ2121)()()33()(3)()()3()(3y x y x y y x y x y x x y y x ++--+=++--+---…….(3分)即033=--+y x y x λλ,3=λ…………………….(4分)1),()1,1(33)(3)(3),(C dy y x xy dx y x x y y x u y x ++-++-=⎰…………………….(6分)11313)(3)(3C dy y x x y dx y x xy x++-++-=⎰⎰……………………(8分)C y x yx ++-=2)(……………………(10分)注:没有加C 不扣分。

北京理工大学2012级线性代数(A)A卷及答案

北京理工大学2012级线性代数(A)A卷及答案

课程编号:A073122 北京理工大学2012-2013学年第一学期线性代数A 试题 A 卷班级 ________ 学号 _________ 姓名 __________ 成绩 ___________一、(10分)已知3阶方阵123035002A ⎛⎫⎪= ⎪ ⎪⎝⎭,计算行列式*123A I+。

二、(10分) 设423110, 2123A AX A X ⎛⎫ ⎪⎪==+ ⎪ ⎪-⎝⎭, 求X 。

三、(10分)已知线性空间4][x F 的自然基为231,,,x x x 。

(1) 证明:2231,12,123,1234x x x x x x ++++++为4][x F 的一个基;(2) 求自然基231,,,x x x 到基2231,12,123,1234x x x x x x ++++++的过渡矩阵,以及23()1h x x x x =--+在后一个基下的坐标。

四、(10分)已知123(1,0,1), (2,2,0), (0,1,1)TTTααα=-==。

(1) 求向量组123,,ααα的一个极大无关组;(2) 求生成子空间123(,,)L ααα的一个标准正交基。

五、(10分)设A 是5阶方阵,且已知存在5阶可逆矩阵P ,使得111112P AP --⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭试写出A 的初等因子,同时判断P 的哪几列是A 的特征向量。

六、(10分)在多项式空间4[]R x 中定义变换σ:233012330201()()a a x a x a x a a a x a a x σ+++=-+++(1)证明:σ是4[]R x 上的线性变换;(2)求σ在4[]R x 的自然基231,,,x x x 下的矩阵,并判断σ是否可逆。

七、(10分)假设A 是m n ⨯的实矩阵,证明:()()TA A A =秩秩八 (10分)已知(1,1,1)T ξ=-是矩阵2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量, (1)确定参数a , b 及特征向量ξ所对应的特征值; (2)判断A 是否可以相似对角化,说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程编号:MTH17003 北京理工大学2012-2013学年第一学期
工科数学分析期末试题(A 卷)
班级_______________ 学号_________________ 姓名__________________
(本试卷共6页, 十一个大题. 解答题必须有解题过程. 试卷后面空白纸撕下做草稿纸. 试卷不得拆散.)
一. 填空题(每小题2分, 共10分)
1. 设⎪⎩

⎨⎧<≥++=0
1
arctan 01)(x x x x a x f 是连续函数,则=a ___________.
2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________.
3. 已知),(cos 4422
x o bx ax e x x ++=- 则_,__________=a .______________
=b 4. 微分方程1cos 2=+y dx
dy
x
的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________.
二. (9分) 求极限 2
1
)sin (cos lim x x x x x +→.
三. (9分) 求不定积分⎰+dx e x
x x x )1
arctan (1
2.
四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值.
五. (8分) 判断2
12arcsin arctan )(x x
x x f ++= )1(≥x 是否恒为常数.
六. (9分) 设)ln(21arctan 2
2y x x y +=确定函数)(x y y =, 求22,dx
y d dx dy .
七. (10分) 求下列反常积分. (1);)
1(122⎰--∞
+x x dx
(2)
.1)2(10

--x
x dx
八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受到的水压力. (要求画出带有坐标系的图形)
九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解.
十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x
a +=+⎰)())((2 ()0(>a , 求)(x f 的表达
式. 又若曲线)(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转
体的体积为,6
7
π 求a 的值.
十一. (8分) 设)(x f 在]2,0[上可导, 且,
0)2()0(==f f ,1sin )(12
1=⎰
xdx x f 证明在)2,0(内存在ξ
使 .1)(='ξf。

相关文档
最新文档